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Abstract

Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions
on the moduli space of N-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein
series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral
enveloping algebra.
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1. Introduction
1.1. Notation and conventions

Let G be a simply connected complex reductive group with Langlands dual group G defined over k := C.
Choose a maximal torus 7" and a Borel subgroup B with unipotent radical N. Let p be half the sum of
the positive coroots. Let X /k be a smooth projective complex genus g curve. Choose a square root of
the canonical bundle on X and form the anticanonical 7-bundle w™.

We work in the framework of [16]. In particular, all functors are derived and categories are by default
presentable stable DG-categories.
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2 J. Taylor

Let o be a T-local system on X, and let Loc]‘\T] = Locy XLocs O be the derived moduli stack of B-

local systems on X whose underlying 7-local system is identified with o; see (1.3). A T-local system is
called regular if for every coroot, the associated rank 1 local system is nontrivial. If o is regular, then
Loc¢ is a classical affine scheme isomorphic to a vector space.

Let K be the Hecke o -eigensheaf on Buny whose stalk at w™ twisted by a negative coweight valued
divisor A - x = X A;x; is

Koo (cam) = ((X) a;ﬁf)[dT +dh. (1.1

Above, o 4

. means the fiber at x of the rank 1 local system o = o X k,. Here, dr = dim Buny and
d' := (2p,4(g — 1)p + A) is the shift appearing in Section 6.4.8 of [13].
The Whittaker or Poincaré series sheaf Whit := riy*Dexp =~ ri(—x)*exp[—2] on Bung is the

pullback then pushforward of the exponential sheaf along
Al & Bun%” 5 Bung;

see 5.4.1 of [10]. Here, D denotes Verdier duality. The function y is defined for example in [9]. The
character sheaf exp on A! is normalized so that its costalks are in degree zero. If F is a G,,-constructible
sheaf on A!, then Hom(exp, F)[2] and Hom(D exp, F) both calculate t-exact vanishing cycles of F.
The Whittaker sheaf does not have nilpotent singular support.

The automorphic and spectral Eisenstein series functors, Eis, := p,g* and Eis := pndCoh zIndCoh
are defined by pullback then pushforward along

q P q p
Buny < Bung — Bung and Locy < Locy — Locg.

All of the above functors are left adjoints. For example, p"4°h js defined because p is schematic, and
a left adjoint because p is proper.

1.2. Main theorem statement

Write Shvyjip (Bung) for the DG-category of ind-constructible sheaves on Bung with singular support
[20] in the global nilpotent cone [14]. Let Loc be the restricted moduli space of G-local systems on
X [3]. Write IndCohyjp(Loc;) for the DG-category of ind-coherent sheaves with nilpotent singular
support [2].

The geometric Langlands conjecture is supposed to be compatible with parabolic induction. More-
over, the Whittaker functional is expected to correspond under Langlands to global sections on Loc
(up to a shift by dg = dim Bung). Thus, commutativity of conjectural (since this paper was written, a
proof was announced) diagram

Shvnirp (Bunr) QCoh(Locy )

Eis; ((w™-) [dﬁl)l \Ll::iS(—)

[l

Shvyiip (Bung) ~ IndCohygip (Locs) (1.2)
Hom (Whit,—) [dc]\/t A&yh (=)

Vect

applied to the skyscraper k , predicts the following isomorphism.
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Main Theorem 1.1. Let o be a T-local system on X and let K be the Hecke eigensheaf on Buny defined
in (1.1). Whittaker coefficients of Eisenstein series equals functions on moduli space of N-local systems:

Hom(Whit, Eis\K) [dg] = O(Loc,‘g).

The proof uses a combination of [24] and [6] to relate twisted cohomology of the Zastava space to
the formal completion of Loc]‘\f].

Both sides of the main theorem are coweight graded vector spaces. On the automorphic side, let K*
be the restriction to the degree —1 — 2(g — 1)p connected component Bun#. On the spectral side, the
adjoint T-action on B induces an action on Loc]‘\fj.

Remark 1.1. If we replace naive Eisenstein series by compactified Eisenstein series of [5], then geo-
metric Langlands predicts that Hom(Whit, Eis,. K’) should equal global sections of a skyscraper sheaf
at o € Loc. This is verified by Gaitsgory in appendix B of [7].

1.3. Restricted, de Rham and Betti versions

Our results apply for all three versions of geometric Langlands [3]. On the automorphic side, Eis| K is a
constructible sheaf, equivalently regular holonomic D-module, with nilpotent singular support by [14].
On the spectral side, there are three versions of the moduli space of local systems, all having the same
complex valued points. For a unipotent group,

Loco‘,dR ~ LOC(r,restr ~ LOC(r,Betti (1.3)
N N h N )
coincide by Proposition 4.3.3 and Section 4.8.1 of [3].
In the Betti setting, there is no exponential D-module. Because y is C*-equivariant for the 2p-action
on Bunl“\;_f) and the weight 2 action on Al the sheaf defined in 2.5.2 of [23] serves as a substitute.

1.4. Normalizations and shifts

First, we explain how the normalization (1.1) of the Hecke o-eigensheaf K matches the normalization
Eis)((w™-)[d"]) appearing in (1.2) (as in Section 4.1 of [11] or Section 6.4.8 [13]). Let K’ €
Shviip (Buny) correspond under class field theory to the skyscraper sheaf k, € QCoh(Locy ). The
Hecke eigensheaf condition determines K’ up to tensoring by a line. Whittaker normalization says that
global sections of k- equals the costalk at the trivial 7-bundle of K’ [dr ]. Thus, K is only noncanonically
isomorphic to a shift of K’. On the degree —1 — 2(g — 1)p connected component Bun’Tl, there is a
canonical identification K ~ w™K’[d*]. We translated K’ by w ™ (having the effect of tensoring it by
a certain line; see Section 4.1 of [11]).

Now we perform a consistence check. If o is a regular, then Theorem 10.2 of [6] says that
Eis;(K*)[dg — d%] is perverse. The Whittaker functional Hom(Whit, —)[d%] is exact by [22] or [10],
so the automorphic side of the main theorem is concentrated in degree 0. This is consistent with Loc;
being a classical scheme if o is regular. Here,

dy = (g —1)dim B + (23,4 +2(g — 1)p) = dim Bun} (1.4)

is the dimension of the degree —2 — 2(g — 1)p connected component.

1.5. Proof outline

It is convenient to take the coweight graded linear dual to avoid topological rings and because Lie
algebra homology behaves better than Lie algebra cohomology. Here is the proof of our main theorem
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in one sentence:

2.1
Hom(Whit, Eis;K)*[-d6] = €] Hom(x, D exp. ¢y DK [dr +d°]
A

(1.5)
2.4 2.7 2.10 211
S Drot v = rRan i) Tx ) GO Cx ) O(Lock)”"
p

In Section 2.1, we use [22] or [10] to exchange Eis, for a right adjoint, then apply base change and
aresult of [1] to get a calculation on the Zastava space. In Section 2.2, we pushforward to the space of
positive coweight valued divisors and, by Theorem 4.6.1 of [24], obtain a certain factorizable perverse
sheaves Y2 on X*.

In Section 2.3, we interpret Y - in terms of the chiral enveloping algebra of 1t as in [6]. In Section 2.4,
we explain, following [6], how the cohomology of Y, equals factorization homology of A := C.(it,).
Beilinson and Drinfeld’s formula says factorization homology of C, (11, ) is Lie algebra homology of
I'(X, 1, ). In Section 2.5, we study moduli of 1i-local systems using deformation theory. Since I' (X, 1)
is the shifted tangent complex of Loc;, its Lie algebra homology is related the formal completion of
Loc]‘\f, at 0. Using that Locl‘\’v] ~ (Spec R)/N is the quotient of an affine scheme by a unipotent group and
using the contracting G,,,-action, we show that C,(I'(X, 1)) = (’)(Loc;\’v])* is the graded linear dual
ring of functions.

The idea of using factorization homology to study the formal completion of Loc; is from [6] and
[12]. Proposition 3.4.4 of [12] (whose proof is omitted) implies an isomorphism &P (x4, DYd) ~
O(Loc;). For o~ regular, Propositions 11.3 and 11.4 of [6] give an isomorphism between [ I'( X4, Y£)*

and the completed ring of functions O(Loc )". Sections 2.3 and 2.4 review some of their arguments and

do not contain new content apart from filling in some details. Our main contribution is in Section 2.5,
where we extend the results of [6] to the more interesting case of irregular o, and we obtain a formula
for the ring of functions on Loc]‘\fl (not just its formal completion) using the contracting G,,-action.

2. Proof of the main theorem
2.1. Base change to Zastava

In this section, we interpret Whittaker coefficients of Eisenstein series as twisted cohomology of the
Zastava space Z.

The fiber product Z’ := Bung Xpun Bunﬁip has a stratification indexed by the Weyl group, deter-
mined by the generic relative position of two flags. Let j : Z < Z’ be the open inclusion of the locus
where the two flags are generically transverse, called the Zastava space.

)
AR

Bunp Bunjy -

N N

Buny Bung Al

Consider the compositions
qz :Z — Bung — Buny and yz :Z — Buny’ — Al

and let gz = qgz/j and yz = yz/j be their restrictions to Z.

Proposition 2.1. There is an isomorphism

Hom(Whit, Eis;K")*[~dg] ~ Hom(x} D exp, ¢, DK*)[dr + d°]. 2.1
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Proof. We cannot directly apply adjunction to calculate Whittaker coefficients of Eisenstein series
because Eis; is a left not right adjoint. It is shown in [10] and [22] that the shifted Whittaker functional
Hom(Whit, —) [dOB] on nilpotent sheaves commutes with Verdier duality D. This allows us to exchange
Eis, := piq* for Eis, := p.q'. Then apply adjunction and base change to reduce to a calculation on the
fiber product Z’.

Hom(Whit, Eis;K*)*[-2d%] ~ Hom(Whit, Eis, DK*) ~ Hom(x3, D exp, ¢, DK*)

Finally, by Equation (3.5) of [1], restriction to the open generically transverse locus Z does not change
the calculation. More precisely, the map

Hom(x3, D exp, ¢, DK*) = Hom(y} D exp, g, DK*)

is an isomorphism. For the shifts, use (1.4) and dg + dr + d° = Zd%. ]

2.2. Pushforward to the configuration space

In this section, we recall how to factor the projection ¢ : Z* — Bun% through the configuration space
X of positive coweight valued divisors of total degree A. Hence, we obtain a description of the 1-graded
piece of Proposition 2.1 as cohomology of a certain perverse sheaf Y4 on X*.

Let (F,F,E) € Z1be a point in the A connected component of Zastava space — that is, a G-bundle
E equipped with generically transverse B, B™-reductions F, F~, such that F has degree —1 —2(g — 1)p,
and F~ xpg- T is identified with w™. For each dominant weight (i, the Plucker description gives maps

Ft — EFf 5 (F)A ~ P, (2.2)

Here, FA = F xg C, is aline bundle and E A= F Xg Vj is the vector bundle associated to the simple
G-module of highest weight ji.

By the generic transversality condition, the composition (2.2) is nonzero map of line bundles, so 1 is
a non-negative coweight. For each point in the Zastava space, there is a unique positive coweight valued
divisor x - 1 € X* such that (2.2) factors through an isomorphism F#((x - A, ii)) ~ w™ ). Since G is
assumed simply connected, we can write 1 = ' n;@; as a sum of simple coroots and X = [T X ") as a
product of symmetric powers of the curve. Therefore, gz factors through a map x to the configuration
space followed by the Abel-Jacobi map,

Al
qz - Z* 5 X' 25 Bund, (E.F.F ) x- A w?”(-x-1) =~FxgT.

Let A be a coweight and n = (g, ). Let it = o X; 1, an 1t-local system on X. The Chevalley
complex on the coweight graded Ran space gives a [[S,, equivariant perverse sheaf Ax» on [] X".
Let sym? : X® — X be the partial symmetrization map. There is a certain canonical summand
YL c (sym? Axn)[15% whose stalk at x - 1 € X? is

(Yo)ea = @) Culito)dls 2.3)
see Section 3.1 of [6] and Section 4 of [24]. (The definition of Yfr involves the Chevalley differential,

but the associated graded of Y4 with respect to the Cousin filtration is easier to describe; see Section
3.3 of [6].)

Remark 2.2. Since sym* is finite, sym? Ay» ~ sym;' Ax» is perverse by Artin vanishing. Since [] S,,,-
invariants is exact and commutes with taking (co)stalks, Y4 is perverse.
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Proposition 2.3. There is an isomorphism
x ! 1 01 ~ 1y
Hom(y; D exp,q,DK")[dr +d"] = T'(X",Yy). 2.4)
Proof. Pushing forward to the configuration space X+, the left of (2.4) becomes
Hom(mrx}, D exp, AV DKY) [dr +d°] ~ T(Y' ® (AF'KY)")[dr +d'] ~ T (X%, Y1).

We used that the configuration space X* is smooth, so the dualizing sheaf is a rank 1 local system. And
we used Theorem 4.6.1 of [24], which says that

Dmyy3, D exp = ﬂ*/\/!z exp =~ YA[d' - d°].

Here, d* — d° = dim Z*, and Y* has stalks Y7 , ~ Q) C. ().
Under class field theory (1.1), the stalks of AJ* K L are

AV K = () o) dr +a*]

and its =-pullback to [T X™ is the [] S,,, equivariant rank 1 local system R(o-~% )" By the projection
formula, Y* ® (AJ* K4)* ~ Y4, O

Combining Propositions 2.1 and 2.3 shows Whittaker coefficients of Eisenstein series is graded dual
to global sections of Y- on the configuration space.

2.3. The chiral enveloping algebra as a Chevalley complex

The local system 11~ determines a Lie* algebra on the Ran space. Its Lie algebra homology A = C, (it )
is a factorization algebra, related to Y, by partial symmetrization (2.6).

A sheaf on the Ran space of X is a collection of sheaves Ay on each power of the curve X/, together
with compatibility isomorphisms for !-restrictions along partial diagonal maps; see Section 2.1 of [8]
for the precise definition. Recall from Section 1.2.1 of [8] that the category of sheaves on the Ran space
admits two tensor products with a map ®* — ®< between them.

Pushing forward along the main diagonal A : X — Ran, we can regard A1, € Shv(Ran) as a Lie
algebra for the *-tensor product. Restricting to X2, the Lie* bracket (A.it, ®* A,ity)y2 = 1y Rty —
(AMiy)x2 = A, comes by adjunction from the Lie bracket.

Let A == C.(11,) € Shv(Ran) be Lie algebra homology of A .1t with respect to the #-tensor product,
viewed by the forgetful functor as a cocommutative coalgebra with respect to the ch-tensor product.
Proposition 6.1.2 of [8] says that A corresponds to the chiral enveloping algebra of A1, under the
equivalence between factorization and chiral algebras.

The Chevalley complex A = €P A? is coweight graded because Sym(fi,[1]) is coweight graded
and because the Chevalley differential preserves the grading. Choose a coweight A and let n := (g, 1).
The sheaf A;,, on X" is S,-equivariant and perverse. Symmetrize it along sym : X" — X to get
a perverse sheaf (sym, A;l(,,)sn on the nth symmetric power. (In other words, we pushed forward A%,
from the stack quotient X" /S,, to the coarse quotient X "))

Now we describe a certain canonical summand A;l((n) C (sym, Ag‘( )3 defined in Section 3 of [6].
Let Xi(") c X ™ be the space of effective degree n divisors supported at exactly i points. The !-restriction

of (sym, A§")S" to Xl.(") is a local system whose stalk at a divisorn - x € Xl.(") is given by

A
(sym, A = (D ) Cono)y.

A=Y 4;
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to X;") c X™ jis the summand whose stalks are

(A s = P X c.ioy. 2.5)

=3 4,
P4 )=n;

The !-restriction of A%,

By Section 11.6 of [6], the pushforward of Y4 — see (2.3) — along the partial symmetrization map
Agym: X1 — X" s

toym, Yg ~ AL, (2.6)

2.4. Factorization homology

In this section, we review, following [6], how factorization homology of A% := C, (it,-)" can be computed
as cohomology on the symmetric power X", where n := (g, A).

Let FSet be the category whose objects are finite nonempty sets and whose morphisms are surjective
maps. For each surjection J —» I, there is a partial diagonal map A : X/ — X7. A sheaf on the Ran
space comes with isomorphisms Ayr =~ A'Ay, so adjunction gives maps A, Ayr — Ay. . Factorization
homology is defined in Section 6.3.3 of [8] or Section 4.2.2 of [4] as the colimit over these maps

I'(Ran, A) ~ colimI"(Ayr).
(Ran, A) = colimT (A1)

The following proposition is stated in 11.6 of [6], and below, we fill in the proof using the Cousin
filtration and ideas from Section 4.2 of [4].

Proposition 2.4. The cohomology of Y, — see (2.3) — is the factorization homology of the Chevalley
complex,

@ I'(X*, YL) ~ I'(Ran, A). Q2.7
A

Proof. Equation (2.6) relates Y, to the symmetrization of A. Thus, it suffices to show that

T(X'Y}) ~T(A},) = [(A%.) — I'(Ran, AY) (2.8)
is an isomorphism for n := (g, 1). Indeed, we will prove that (2.8) is compatible with the Cousin
filtration and that it induces an isomorphism on the associated graded pieces.

Consider the filtration on (2.8) whose < ith filtered piece consists of sections supported on the partial
diagonals of dimensions < i. The ith graded piece is

i A . 1 1
[(A3m) = T(A%,) = colim(43,) = gr, (Ran, A%). 2.9)

Here, A;’( () 18 the !-restriction of A;’( to the space Xl.(") c X of effective degree n divisors supported

o)
at exactly 7 points. Similarly, A;l(i, is the !-restriction of A?( ; to the space X lI c X! of I-tuples supported

at exactly 7 points.
The symmetric group S; acts freely on the space X l’ C X' of distinct i-tuples of points. By Section
4.2.3 of [4], the ith graded piece of the factorization homology of A4 is gr; I'(Ran, A%) =~ T'(A%,)s..

The connected components of Xl.(") are indexed by partitions n = n; + ... n;. Also, the local system
A;i splits as a direct sum indexed by such partitions; see 6.4.9 of [8]. Restricting (2.9) to the connected

https://doi.org/10.1017/fms.2024.77 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.77

8 J. Taylor

component Xi(ﬂ) C Xl.(") indexed by a certain partition,

T(AL ) = grl(Ran, A") = T(Ay,)s,

is an isomorphism onto the corresponding summand of F(A;l( )s; by (2.5). Summing over partitions
shows that the ith graded piece of (2.8) is an isomorphism. l O

Since the factorization algebra A := C,(11) corresponds to the chiral enveloping algebra U (11 ),
Beilinson and Drinfeld’s formula for chiral homology of an enveloping algebra — see Theorem 4.8.1.1
of [4] or 6.4.4 of [8] — says

['(Ran, A) =~ Co(I'(X, fi,)). (2.10)

2.5. Deformation theory

In this section, we show that
C.(I'(X, 1)) = O(Loc;)*, (2.11)

Lie algebra homology of the shifted tangent complex equals the graded dual ring of functions on Loc;\f].
Deformation theory says that Co(I'(X, 1l,)) = FIndCOh(w(LOCg)A) is global sections of the dualizing
sheaf on the formal completion at o~. Using the structure of Locl‘\fl described below, we recover the
graded dual ring of functions on Loc;f], not just its completion, from I" IndCOh(w(Locg)A).

First, we show that Loc]‘\fv] ~ Loc;’x/ N is the quotient by a unipotent group of an affine derived
scheme with a contracting G,,-action. Let Locg = B8 x 5 1 (respectively, LOC; =728 X 1) be the
Betti moduli of B (respectively, 7) local systems trivialized at a point x. Let Loc;’x = Loc}, XLocy 0 be

the moduli of B-local systems with underlying T-local system identified with o=, plus a T-reduction at x.
Since 7' is abelian, it acts by automorphisms on o~ € Locy so there is a canonical lift o~ € Loc.. We

also sometimes regard o as a point in Loc 7" via the inclusion T cB.
Let B act on Loc)l‘§ by changing the trivialization at x, equivalently by the adjoint action on B¢ x L

Restricting the adjoint action along g gives a G,-action that contracts B to 7. Thus, we expect a G-
action that contracts Locg to Loc;, as is made precise below.

Proposition 2.5. The moduli space LOC;’X ~ Spec R is a finite type affine scheme with a B-action.

Restricting the action along p gives a non-negative grading R = Eano R,, such that o = Spec(R/R~¢)
is cut out by the ideal of strictly positively graded functions.

Proof. We argue in the Betti setting, but the restricted and de Rham versions also follow by (1.3). First,
rewrite

Loc™ = Locy Xpocx 0 = B Xfrn, O = (B X2 o) Xjx,1 1= Spec(R ®s k). (2.12)

The contracting g-action induces non-negative gradings on the classical rings R’ := O(B*8 Xiag O)
and S == O(B Xp 1) = O(N). Since N is smooth, the augmentation module k =~ S/S-o admits a finite
graded resolution by free S-modules, with all but one term shifted into strictly positive g-gradings.
Therefore, R ~ R’ ®g k is a finite type non-negatively graded ring and o= =~ Spec R/Rxy. O

Now we review some derived deformation theory. Let Y be the formal completion of a derived stack
Y at a point 0. The shifted tangent bundle 7Y [—1] is a DG Lie algebra whose enveloping algebra
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is endomorphisms of the skyscraper at o-. By Chapter 7 of [17] or Remark 2.4.2 of [21], there is an
equivalence

Mod(T,Y[-1]) = IndCoh(Y")

between Lie algebra modules for the shifted tangent complex and indcoherent sheaves on the formal
completion. Let p : Y* — pt be the map to a point. By Chapter 7, Section 5.2 of [17], the trivial
T, Y[—-1]-module corresponds to the dualizing sheaf wy~ =~ p'k € IndCoh(Y"). Moreover, Lie algebra
homology corresponds to global sections

Co(TyY[-1]) = TdCON ()0 0). (2.13)

Suppose Y” =~ Spec R is the spectrum of an Artinian local ring R. By properness, p' is right adjoint
to p"dCoh Therefore, the dualizing complex wy~ =~ R* is the linear dual of R viewed as an R-module.

Suppose Y* =~ Spf R =~ colimY,, where ¥,, ~ Spec R/m" and let i, : ¥,, — Y". Since ¥;, — Y11
is proper, IndCoh(Y") is the colimit under *-pushforward of IndCoh(Y,,); see Chapter 1, Proposition
2.5.7 of [16]. The dualizing sheaf can be written as a colimit, wy = colim i,y ; see Chapter 7,
Corollary 5.3.3 of [17]. Since FI“dC"h(Y A, —) is continuous, it follows that

FIndCOh((,()y/\) ~ colim((R/m")*) ~ (R/\)* (2.14)

is the topological dual of the completed local ring R”. In this case, Equation (2.13) is Corollary 5.2
of [18].

Proposition 2.6. Let R = @nzo R, be a non-negatively graded finite type derived ring with Ry ~ k. Let
R" be the formal completion with respect to the ideal of positively graded functions. Then the graded
dual R* = P R}, equals the topological dual of the completion (R")*.

Proof. First, suppose R is classical and choose homogeneous generators fi,... f € R. Let d be the

maximum of their degrees, so R>gn C (fi,...fr)" C Rsy. Therefore, the graded dual R* (linear
functionals that vanish on some Rs,) equals the topologogical dual (R")* (linear functionals that
vanish on some (fi, ... f;)™).

Now suppose that R is derived. The finite type assumption means that after taking cohomology,
H*(R) is a finitely generated module over H(R), a finitely generated graded classical ring. Choose a
finite collection of homogeneous elements fi, ... f, € R whose images generate H’(R).

The formal completion is the topological ring

R =R, 1 klLfi,... fr]] = 11,5111? Okl fir. ] kLf1s- - 1 kL1, frlsn).

For the first equality, see Section 6.7 of [ 15]. The second equality uses that fiber products commute with
filtered colimits and that k[[ f1,... fr]] = im(k[f1,... fr1/k[fi,... fr]sn). (The formal completion
of a classical positively graded polynomial algebra can be computed using the grading filtration.)

Since k[ f1, ... fr] is smooth, R ®x (... 1 k[ f1,... fr1/kL[f1,... fr]>n has finite dimensional coho-
mology and therefore is concentrated in bounded degrees. Hence, for m sufficiently large, the quotient
map factors through

R — R/R>; — R ®r(fi....f] k[fis. . fellklfise o frlsn = R/Rsy.

Therefore, the formal completion of R can be computed using the grading filtration
R" ~ lirIan k[ fireo fo] k[f1s- - fr 1KLLy frlon) = li’IlnR/R>n.
Taking the topological dual proves (R")* =~ colim((R/R>,)*) ~ P R}, ~ R*. O
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The following proposition shows (2.11), completing the final step of (1.5) and the proof of the main
theorem.

Proposition 2.7. Lie algebra homology of the shifted tangent complex of Y = Loc; equals the graded
dual of the ring of functions,

Co(ToY[-1]) = O(Y)".

Proof. Write Loc;’x ~ Spec R as in Proposition 2.5. Let N act by changing the T-reduction at x. Since
T normalizes N, the quotient ¥ ~ (Spec R)/N retains the j-action. The formal completion of Y at o is
the inf-scheme Y” ~ Spf(R")/exp(it), the quotient by the formal group exp(it).

Deformation theory says

Co(ToY[~1]) = TN (wyn) = ((RY) )i

The first equality is equation (2.13). For the second equality, we pushed forward the dualizing sheaf
wy~+ in two steps,

Y" — pt/exp(it) — pt.

The pushforward of wy« to pt/exp(it) is an i--module. By proper base change and (2.14), the underlying
vector space is FlndCOh((/)Spf r+) = (R™)* and the #--module structure comes from the N-action. Further
pushing forward along pt/exp(it) — pt corresponds to taking fi-coinvariants, so IO (¢ 1) ~
((R")")si-

Now we show that fi-coinvariants of the topological dual of R" equals the graded dual ring of
functions on Y,

((R™)")g = colim(((R/Rsn)*)i) = colim(((R/Rsn)™)") = colim(((R™/(R™)>,)") = (RN)".

The ideal R, is an fi-module because the tt-action increases g-weights. For the first equality, Proposition
2.6 says that (R")* = colim((R/R>,)*), and coinvariants commutes with colimits. For the second
equality, ((R/R>,)")x = ((R/R>n)")* because R/R-, has finite dimensional cohomology. For the
third equality, the image of (R-,)™ — R™ is concentrated in degrees > n so we get a map (R/R>,)" —
R / (Rﬁ)>n. Moreover, since (R/ R>,1)FI is concentrated in bounded degrees, for m sufficiently large, the
quotient map factors through

RY/(RY2pm — (R/R>p)™ — R/ (RY),.

For the fourth equality, we used the van Est isomorphism; see Theo;em 5.10f [19]. Since N is unipotent,
Lie algebra cohomology R™ coincides with group cohomology RY . O

Example 2.8. Let G = SL(2) and let o be a T-local system, viewed as a rank 1 local system using the
positive coroot. Then o is regular if and only if it is nontrivial.
If o is regular, then Locg ~ H! (X, o) is a classical affine scheme because the other cohomologies

vanish. The shifted tangent complex T Locl‘\fvj [-1] =~ H'(X,o)[-1] is an abelian Lie algebra with
enveloping algebra U := Sym(H'!(X, 0)[~1]). Lie algebra homology of the shifted tangent complex is

k @y k ~SymH' (X, o) ~ O(Locg)*.

If o is trivial, then Co (T, Loc [—1]) = Sym(H?(X)[-1] ® H'(X) ® H°(X)[1]) is the graded dual
ring of functions on Locy =~ H?(X)[-1] x H'(X) x pt/H(X).
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