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Surfaces of Rotation with Constant Mean
Curvature in the Direction of a Unitary
Normal Vector Field in a Randers Space

T. M. M. Carvalho, H. N. Moreira, and K. Tenenblat

Abstract. We consider the Randers space (V n, Fb) obtained by perturbing the Euclidean metric by a

translation, Fb = α + β, where α is the Euclidean metric and β is a 1-form with norm b, 0 ≤ b < 1.

We introduce the concept of a hypersurface with constant mean curvature in the direction of a unitary

normal vector field. We obtain the ordinary differential equation that characterizes the rotational

surfaces (V 3, Fb) of constant mean curvature (cmc) in the direction of a unitary normal vector field.

These equations reduce to the classical equation of the rotational cmc surfaces in Euclidean space, when

b = 0. It also reduces to the equation that characterizes the minimal rotational surfaces in (V 3, Fb)

when H = 0, obtained by M. Souza and K. Tenenblat. Although the differential equation depends on

the choice of the normal direction, we show that both equations determine the same rotational surface,

up to a reflection. We also show that the round cylinders are cmc surfaces in the direction of the unitary

normal field. They are generated by the constant solution of the differential equation. By considering

the equation as a nonlinear dynamical system, we provide a qualitative analysis, for 0 < b <
√

3
3

. Using

the concept of stability and considering the linearization around the single equilibrium point (the

constant solution), we verify that the solutions are locally asymptotically stable spirals. This is proved

by constructing a Lyapunov function for the dynamical system and by determining the basin of stability

of the equilibrium point. The surfaces of rotation generated by such solutions tend asymptotically to

one end of the cylinder.

Introduction

The concept of mean curvature for immersions in Finsler spaces was introduced by

Z. Shen [S1] in 1998. This concept differs from the Riemannian case, since in Finsler

spaces the metric depends on the point of the manifold and on the direction in the

tangent space. Shen proved that the mean curvature form Hϕ(p,W ) for an immer-

sion ϕ : Mn → (M̃m, F̃), of a manifold in a Finsler space (M̃, F̃) always vanishes when

(p,W ) is an element of the tangent bundle TM. In Riemannian geometry besides the

minimal hypersurfaces, one also studies nonzero constant mean curvature hypersur-

faces. But, in Finsler geometry, due to the fact that the mean curvature form always

vanishes on tangent directions, one cannot have nonzero constant mean curvature

form in all directions. However, the mean curvature form is linear (see [S1]). There-

fore, if N is a unitary vector field normal to the submanifold, then the curvature

vector in any direction W is determined by its normal component W N and the mean

curvature on the normal direction, i.e., Hϕ(p,W ) = W N Hϕ(p,N). Hence, once the
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mean curvature form is determined in the direction of a unitary normal vector field,

it is determined in any other direction W . Due to these observations, we decided

to study surfaces with constant mean curvature in the direction of a unitary normal

vector field. The purpose of this paper is to study such surfaces in the Randers space

obtained by perturbing the three-dimensional Euclidian space by a translation.

Namely we consider the Randers metric F = α+β, where α is the euclidian metric

and β is a 1-form with constant coefficients. This is a Minkowski metric, i.e., it does

not depend on the point. Three-dimensional spaces equipped with this metric are

Randers spaces and they will be denoted by (V 3, Fb). We will consider x ∈ V 3 with

coordinates x1, x2, x3, so that

Fb(x, y) =

√∑3
i=1(yi)2 + by3,

0 < b < 1 and y =
∑3

i=1 yi ∂
∂xi ∈ TxV 3.

In this Randers space, the minimal surfaces of rotation (Hϕ ≡ 0) and a Bernstein

type theorem for 0 ≤ b <
√

3
3

were already studied by M. Souza and K. Tenenblat

in [ST] and by Souza, Spruck, and Tenenblat in [SST], see also [Y]. Therefore, we

concentrate our studies in the case Hϕ 6≡ 0. The main objective of this paper is to

characterize the surfaces of rotation around the axis Ox3, with constant mean curva-

ture in the direction of the unitary normal vector fields in Randers spaces (V 3, Fb).

Such immersions are characterized by two ordinary differential equations, one for

each normal vector field (due to the non-reversibility of the norm in Finsler spaces, in

general, the normal vectors are not necessarily parallel). We show that, although each

normal vector field gives origin to a distinct equation, they both generate the same

rotational surfaces in V3. This result is important in the sense that we can choose a

single differential equation (and a single normal vector field) to accomplish the study

of the possible solutions for the curves generating the rotational surfaces. We show

that the round cylinders are cmc surfaces in the direction of a unitary normal vector

field. They are generated by the constant solutions of the differential equation. We

consider the equation as a nonlinear dynamical system and we provide its qualita-

tive analysis, for 0 ≤ b <
√

3
3

, by introducing what we call the surface method. It

consists of using the implicit function theorem to study the behavior of the solutions

of the differential equation. It uses the relationship between the surface associated

to the equation and the curves that describe the behavior of the critical points and

the points of inflection of the solutions. Using the concept of stability and consid-

ering the linearization around the single equilibrium point (the constant solution),

we verify that the solutions are locally asymptotically stable spirals. This is proved by

constructing a Lyapunov function for the dynamical system.

1 Preliminaries

We follow the notation and terminology of [ST], and we will make use of the follow-

ing conventions: we will use Greek letters γ, ǫ, η, τ for indices running from 1 to n,

and Latin letters i, j, k, l for indices running from 1 to n + 1. We will also use the

Einstein convention for repeated indices.
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Let Mn be a C∞ n-dimensional manifold and let (x, y) be a point of the tangent

bundle TM, x ∈ M, y ∈ TxM. We consider local coordinates (xl, . . . , xn) on an

open subset U of M. As usual, ∂
∂xi and dxi are the induced coordinate basis for TxM

and T∗
x M and (xi , yi) are local coordinates on TM, where y = yi ∂

∂xi . A function

F : TM → [0,∞) is called a Finsler metric on M if F has the following properties:

(i) (Regularity) F ∈ C∞ in TM\{0};

(ii) (Positive Homogeneity) F(x, t y) = tF(x, y), ∀t > 0, (x, y) ∈ TM;

(iii) (Strong Convexity) g =
(

gi j(x, y)
)
=
(

1
2
[F2(x, y)]yi y j

)
is positive definite at

each point of TM\{0}.

The pair (M, F) is called a Finsler space. The strong convexity property is equivalent

to saying that the symmetric bilinear form gy on M is positive definite ∀y ∈ TM\{0},

where

(1.1) gy(u, v) :=
1

2

∂2

∂s∂t
[F2(y + su + tv)]|s=t=0.

Denote by V n the standard n-dimensional real vector space. A Minkowski space is

a vector space V n equipped with a Minkowski norm, i.e., a Finsler metric F(x, y) that

depends only on y ∈ TxV n. Minkowski spaces are the simplest Finsler manifolds. A

Randers metric on M is a Finsler structure F on TM given by

(1.2) F(x, y) = α(x, y) + β(x, y),

where α(x, y) =
√

ai j(x)yi y j , ai j are the components of the Riemannian metric, ai j

denotes the inverse matrix of ai j and β := zkdxk is the 1-form whose norm b(x) =√
ai j(x)ziz j satisfies 0 ≤ b < 1.

An interesting property of a Minkowski norm is that in general F(y) 6= F(−y).

When F(y) = F(−y) we say that the norm is reversible. It follows from expres-

sion (1.1) and from property (iii) that

(1.3)
gy(y, u) =

1

2

∂

∂s
[F2(y + su)]

∣∣
s=0

,

gy(y, y) = F2(y).

One can prove (see [S2]) that if V n+1 is a vector space and F : TV → R is a Randers

metric given by F = α + β, then there exists {ei}, 1 ≤ i ≤ n + 1, an orthonormal

frame in the metric α, such that F has the following normal form

F(x, y) =

√∑n+1
i=1(yi)2 + b(x)yn+1, ∀x ∈ Vn+1, and ∀y = yiei ∈ TxV n+1,

where b(x) is the norm of the 1-form β given in (1.2).

If (Mn, F) is a Finsler space, then F induces a smooth volume form defined by

dµF := σFdx1 ∧ · · · ∧ dxn,

where

σF(x) :=
Vol(B

n)

Vol{(y) ∈ TxM; F(x, y) ≤ 1} ,
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B
n is a unit ball in R

n and Vol is the Euclidean volume. dµF is the volume element

of Busemann–Hausdorff, which owes its name to the fact that Busemann [B] proved

that if F is reversible, then the volume element is the Hausdorff measure of the metric

induced by F.

Let (M̃m, F̃) be a Finsler space with local coordinates (x̃1, . . . , x̃m) and let

ϕ : Mn → M̃n+1 be an immersion. Then there is an induced Finsler metric on M,

defined by

F(x, y) = (ϕ ∗ F̃)(x, y) = F̃
(
ϕ(x), ϕ∗(y)

)
, ∀(x, y) ∈ TM.

The concept of mean curvature in Finsler spaces was introduced by Z. Shen in [S1]

and it is obtained by considering a variational volume problem as follows. Let

ϕ : Mn → (M̃n, F̃) be an immersion in a Finsler space and let ϕt : Mn → (M̃m, F̃),

t ∈ (−ǫ, ǫ) be a variation such that for all t , ϕt is an immersion, ϕ0 = ϕ and ϕt = ϕ
outside a compact set Ω ⊂ M. Then ϕt induces a family of Finsler metrics Ft := ϕ∗

t F̃

and X̃ := ∂ϕt

∂t
|t=0 is the variational vector field along ϕ. Let V (t) :=

∫
Ω

dµFt
, then

V ′(0) =

∫

M

Hϕ(X̃) dµF,

where Hϕ denotes the mean curvature of the immersion ϕ.

In [S1], Z. Shen showed that Hϕ(v) depends linearly on v and Hϕ vanishes on

ϕ∗(TM). Therefore, it follows that in Finsler spaces one cannot determine a mean

curvature form that is constant and it does not vanish for all (x, y) ∈ TM. However,

a minimal immersion is defined as usual, i.e., the immersion ϕ is said to be minimal

when Hϕ ≡ 0.

The proof of the following result can be found in [S2].

Proposition 1.1 ([S2]) Let (V, F) be a Minkowski space. Given a hyperplane Υ ⊂ V

there exists, in each half space determined by Υ, a single unitary vector N ∈ V such that

Υ = {w ∈ V : gN (N,w) = 0}.

N is called a normal vector to the hyperplane Υ.

From now on, we will consider immersed hypersurfaces ϕ : Mn → (Ṽ n+1, F̃b), in a

special Randers space, where Ṽ is an (n+1)-dimensional real vector space, F̃b = α+β,

where α is the Euclidian metric, and β is a 1-form with norm b ∈ R, 0 ≤ b < 1.

Without loss of generality we will consider β = bdxn+1. Let x = (xǫ), ǫ = 1, . . . , n,
be local coordinates of Mn and ϕ(x) =

(
ϕi(xǫ)

)
∈ Ṽ , i = 1, . . . , n + 1.

In local coordinates, the mean curvature form Hϕ is given by (see [S1]),

(1.4) Hϕ(X̃) =
1

F

{ ∂2F

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη
+

∂2F

∂x̃ j∂zi
ǫ

∂ϕ j

∂xǫ
− ∂F

∂x̃i

}
X̃i ,

where

(1.5) F(x, z) = (1 − b2Aτγzn+1
τ zn+1

γ )
n+1

2

√
det A,
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A is the matrix whose components are given by

(1.6) (Aγτ ) =
( n+1∑

i=1

zi
τ zi

γ

)
, zi

γ =
∂ϕi

∂xγ
,

and (Aτγ) is the inverse of A.

Observe that whenever (Ṽ , F̃) is a Minkowski space, F̃b does not depend on x,

consequently F also is independent of x. Therefore, the expression of the mean cur-

vature (1.4) reduces to

(1.7) Hϕ(W ) =
1

F

{ ∂2F

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη

}
W i .

Since Hϕ vanishes when applied to tangent vector fields, one cannot have constant

nonzero mean curvature. Due to this restriction we introduce the concept of constant

mean curvature (cmc) form in the direction of a unitary normal vector field. For such

a hypersurface Hϕ(v) = vnc, where c = Hϕ(N) is constant and vn is in the normal

component of v. As we saw in Proposition 1.1, at each point x ∈ M, we have two

normal vectors, not necessarily parallel, one in each half space determined by the

hyperplane TxM.

Intuition leads us to suppose that if we have two distinct normal vectors, we should

obtain two distinct differential equations associated to the immersion. In fact, as we

will see later, considering rotational surfaces, for each normal vector field we have a

distinct differential equation. However, an important result will show that although

these differential equations are distinct, they determine the same rotational surface,

up to a reflection.

2 The Differential Equation for a Surface cmc in the Direction of a
Unitary Normal Vector Field in (V n+1, Fb)

In this section we will deduce the differential equation for immersions in the space

(V n+1, Fb) with constant mean curvature in a normal direction.

Let {ei} be an orthonormal basis of V n+1 in the Euclidean metric, and let Fb be

given by

F(x, y) =

√∑n+1
i=1(yi)2 + byn+1, 0 ≤ b < 1, y = yi ∂

∂xi .

Theorem 2.1 Let ϕ : Mn → (V n+1, Fb) be an immersion. Let
(
ϕi(xǫ)

)
be coordinate

functions of ϕ. Then the immersion is cmc in the direction of a normal unitary vector

field Nξ if and only if the following differential equation is satisfied

1

(1 − B)2C

{
(n2 − 1)

4

∂B

∂zi
ǫ

∂B

∂z
j
η

C − (n + 1)

2
(1 − B)

[ ∂2B

∂zi
ǫ∂z

j
η

C +
∂B

∂z
j
η

∂C

∂zi
ǫ

+
∂B

∂zi
ǫ

∂C

∂z
j
η

]

+ (1 − B)2 ∂2B

∂zi
ǫ∂z

j
η

}
∂2ϕ j

∂xǫ∂xη
N i

ξ − H = 0, H ∈ R, ξ = ±1,

(2.1)
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where 0 ≤ b < 1, N = N iei , A is given by (1.6), and

(2.2) C =

√
det A, B = b2Aǫηzn+1

ǫ zn+1
η , zi

ǫ =
∂ϕi

∂xǫ
.

Proof From (1.5) we have that, F(x, z) = (1 − b2Aτγzn+1
τ zn+1

γ )
n+1

2

√
det A. Using the

notation introduced in (2.2), we have

(2.3) F(z) = (1 − B)
n+1

2 C.

Taking the derivatives of F with respect to z
j
η , we obtain

(2.4)
∂F

∂z
j
η

= − (n + 1)

2
(1 − B)

n−1
2

∂B

∂z
j
η

C + (1 − B)
n+1

2
∂C

∂z
j
η

.

Taking now the derivatives of (2.4) with respect to zi
ǫ, we have

∂2F

∂zi
ǫ∂z

j
η

=
(n2 − 1)

4
(1 − B)

n−3
2

∂B

∂zi
ǫ

∂B

∂z
j
η

C

− (n + 1)

2
(1 − B)

n−1
2

[ ∂2B

∂zi
ǫ∂z

j
η

C +
∂B

∂z
j
η

∂C

∂zi
ǫ

+
∂B

∂zi
ǫ

∂C

∂z
j
η

]

+ (1 − B)
n+1

2
∂2C

∂zi
ǫ∂z

j
η

.

(2.5)

It follows from the expression of H given by (1.7) that

1

F

∂2F

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη
N i

ξ − H = 0.

Therefore, using (2.3) and (2.5), we obtain the differential equation (2.1).

From now on, we will consider the dimension n = 2.

Theorem 2.2 Let ϕ : M2 → (V 3, Fb) be an immersion in a Randers space under the

conditions of Theorem 2.1. Then, ϕ has cmc H in the direction of a normal unitary field

Nξ if and only if the following differential equation is satisfied

1

(C2 − E)C

[( 12E2 − (2E + C2)2

C(C2 − E)

) ∂C

∂zi
ǫ

∂C

∂z
j
η

− 3C

2

∂2E

∂z
j
η∂zi

ǫ

− 3

2

( 2E −C2

C2 − E

)( ∂C

∂zi
ǫ

∂E

∂z
j
η

+
∂C

∂z
j
η

∂E

∂zi
ǫ

)
+

3C

4(C2 − E)

∂E

∂zi
ǫ

∂E

∂z
j
η

+
( 2E + C2

2C

) ∂2 det A

∂z
j
η∂zi

ǫ

] ∂2ϕ j

∂xǫ∂xη
N i

ξ − H = 0, ∀N = N iei , H ∈ R,

(2.6)
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where

(2.7) E = b2

3∑

k=1

[(zk
2)2(z1

3)2 − 2zk
1zk

2z3
1z3

2 + (zk
1)2(z3

2)2],

C is given by (2.2), A = Aǫη(z), and z = (zi
ǫ) are given by (1.6).

Proof Considering n = 2 in Theorem 2.1, equation (2.1) reduces to

(2.8)
1

(1 − B)2C
G
ǫη
i j

∂2ϕ j

∂xǫ∂xη
N i

ξ − H = 0,

where

(2.9)

G
ǫη
i j =

3

4

∂B

∂zi
ǫ

∂B

∂z
j
η

C − 3

2
(1 − B)

( ∂2B

∂zi
ǫ∂z

j
η

C +
∂B

∂z
j
η

∂C

∂zi
ǫ

+
∂B

∂zi
ǫ

∂C

∂z
j
η

)
+ (1 − B)2 ∂2C

∂zi
ǫ∂z

j
η

.

Moreover, the inverse matrix of Aǫη is given by

(2.10) (Aǫη) =
1

det A

( ∑3
i=1 zi

2zi
2 −∑3

i=1 zi
1zi

2

−∑3
i=1 zi

1zi
2

∑3
i=1 zi

1zi
1

)
.

It follows from (2.2), (2.7) and (2.10) that

(2.11) B =
1

C2
E.

We also have from (2.3) that F = (1 − B)
3
2 C .

We will now compute separately the components of the expression (2.9). Taking

both first and second order derivatives of B with respect to zi
ǫ, and using (2.11) we

obtain

(2.12)
∂B

∂zi
ǫ

=
1

C2

∂E

∂zi
ǫ

− 2

C

∂C

∂zi
ǫ

B

and

(2.13)
∂2B

∂zi
ǫ∂z

j
η

=
1

C2

[
−2E

C

∂2C

∂z
j
η∂zi

ǫ

+
6E

C2

∂C

∂z
j
η

∂C

∂zi
ǫ

− 2

C

( ∂C

∂zi
ǫ

∂E

∂z
j
η

+
∂C

∂z
j
η

∂E

∂zi
ǫ

)
+

∂2E

∂z
j
η∂zi

ǫ

]
.

The derivative of C with respect to zi
ǫ is given by

(2.14)
∂C

∂zi
ǫ

=
1

2C

∂C2

∂zi
ǫ

=
1

2C

∂ det A

∂zi
ǫ

,

where we used (2.2) and (2.11). Therefore, from (2.14), we have that

(2.15)
∂2C

∂z
j
ηzi

ǫ

=
1

C

[ 1

2

∂2 det A

∂z
j
η∂zi

ǫ

− ∂C

∂z
j
η

∂C

∂zi
ǫ

]
.
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Substituting (2.12) and (2.13) into (2.9) and observing from (2.11) that (1−B)/C =

(C2 − E)/C3, we have

G
ǫη
i j =

(C2 − E

C4

)[ 3E

C

( −C2 + 2E

C2 − E

) ∂C

∂zi
ǫ

∂C

∂z
j
η

− 3

2

( −C2 + 2E

C2 − E

)( ∂C

∂zi
ǫ

∂E

∂z
j
η

+
∂C

∂z
j
η

∂E

∂zi
ǫ

)

− 3C

2

∂2E

∂z
j
η∂zi

ǫ

+
3C

4(C2 − E)

∂E

∂zi
ǫ

∂E

∂z
j
η

+ (C2 + 2E)
∂2C

∂zi
ǫ∂z

j
η

]
.

It follows from (2.15) that

G
ǫη
i j =

(C2 − E

C4

){ 12E2 − (2E + C2)2

C(C2 − E)

∂C

∂zi
ǫ

∂C

∂z
j
η

− 3C

2

∂2E

∂z
j
η∂zi

ǫ

− 3

2

( 2E −C2

C2 − E

)( ∂C

∂zi
ǫ

∂E

∂z
j
η

+
∂C

∂z
j
η

∂E

∂zi
ǫ

)

+
3C

4(C2 − E)

∂E

∂zi
ǫ

∂E

∂z
j
η

+
(2E + C2)

2C

∂2 det A

∂z
j
η∂zi

ǫ

}
.

(2.16)

Substituting this expression into (2.8), we obtain (2.6). This concludes the proof of

the theorem.

Next we will compute the derivatives of C and E in terms of the z
j
η ’s for subsequent

use. We have from (2.2) and (1.6) that

det A =

∑

k 6=l

(zk
1)2(zl

2)2 −
∑

k 6=l

zk
1zk

2zl
1zl

2 and C =

√
det A.

We can write the derivative of det A with respect to zi
ǫ as follows:

∂ det A

∂zi
ǫ

=
1

2C

[∑

k 6=l

(
δikδǫ12zk

1(zl
2)2 + δilδǫ22(zk

1)2zl
2 − δik(δǫ1zk

2zl
1zl

2 + δǫ2zk
1zl

1zl
2)
)

−
∑

k 6=l

δil(δǫ1zk
1zk

2zl
2 + δǫ2zk

1zk
2zl

1)
]
.

Hence the derivative of C with respect to zi
ǫ reduces to

(2.17)
∂C

∂zi
ǫ

=
1

C

∑

l 6=i

(zi
1zl

2 − zi
2zl

1)(δǫ1zl
2 − δǫ2zl

1).
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Therefore,

∂2 det A

∂zi
ǫ∂z

j
η

=

∑

l 6=i

{
δǫ1
(
δη1δ ji(zl

2)2 + 2zi
1δη2δ jlz

l
2

)
+ δǫ2

(
δη2δ ji(zl

1)2 + 2zi
2δη1δ jlz

l
1

)

− δǫ1[δη2δi jz
l
1zl

2 + zi
2(δη1δ jlz

l
2 + δη2δ jlz

l
1)]

− δǫ2[δη1δ jiz
l
1zl

2 + zi
1(zl

2δη1δ jl + zl
1δη2δ jl)]

}
.

(2.18)

Moreover, it follows from (2.7) that

∂E

∂zi
ǫ

= 2b2
[

z3
ǫ̃ (−1)ǫ̃+τ zi

τ̃ z3
τ + δi3

3∑

k=1

(−1)ǫ+τ z3
τ zk

τ̃ zk
ǫ̃

]
,

where ǫ̃ = 1 + δǫ1, ǫ = 1, 2. Taking the derivative with respect to z
j
η , we have

∂2E

∂z
j
η∂zi

ǫ

= 2b2
[
δ j3δη̃ǫ(−1)ǫ̃+τ zi

τ̃ z3
τ + z3

ǫ̃

(
(−1)ǫ̃+η̃δ jiz

3
η̃ + (−1)ǫ̃+ηδ j3zi

η̃

)

+ δi3

3∑

k=1

(−1)ǫ+ηδ j3zk
η̃zk

ǫ̃ + δi3(−1)ǫ+η̃z3
η̃z

j

ǫ̃ + δi3(−1)ǫ+τδη̃ǫz
3
τ z

j

τ̃

]
.

(2.19)

These expressions will be used in next section.

3 Rotational Surfaces with cmc in the Direction of a Unitary
Normal Vector Field in (V 3, Fb)

In this section we will determine the unitary vector fields, normal to an immersion

in the Randers space (V 3, Fb) and obtain two ordinary differential equations, which

describe rotational surfaces with constant mean curvature H in the direction of these

vector fields. It is well known from the classical theory of surfaces (corresponding to

b = 0) that such equations reduce to the ordinary differential equation that describes

the Delaunay surfaces (cylinder, sphere, onduloids and nodoids).

Let (V 3, Fb) be the Randers space with Fb = α+β, where α is the Euclidian metric

perturbed by a translation β of norm b. Let ϕ : M2 → (V 3, Fb) be given by

(3.1) ϕ(t, θ) =
(

g(t) cos θ, g(t) sin θ, t
)
, t ∈ R, θ ∈ [0, 2π],

where g(t) is a nonvanishing differentiable function. It follows from Proposition 1.1,

that there exists a unique unitary normal vector N in each half space determined by

a plane tangent to M2, i.e.,

gN (N,w) = 0, ∀w ∈ TM.

https://doi.org/10.4153/CJM-2011-047-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-047-4


Surfaces of Rotation with Constant Mean Curvature 53

In order to obtain the normal vectors, it is sufficient to find the solutions N =

(N1,N2,N3) of the following system,

(3.2)





gN (N, ϕt ) = 0,

gN (N, ϕθ) = 0,

gN (N,N) = 1,

where ϕt and ϕθ denote the derivatives of the immersion ϕ(t, θ) with respect to t and

θ respectively.

From (1.3), we have

gN (N, v) =
∂

∂s
F(N + sv)|s=0, ∀v ∈ V 3.

Hence,

(3.3) gN (N, v) =

∑3
i=1 N ivi

√∑3
i=1(N i)2

+ bv3.

Since F(N) = 1, it follows from (3.1) and (3.3) that

(3.4) gN (N, ϕt ) =
N1g ′ cos θ + N2g ′ sin θ + N3

√
(N1)2 + (N2)2 + (N3)2

+ b

and

(3.5) gN (N, ϕθ) =
N2g cos θ − N1g sin θ√
(N1)2 + (N2)2 + (N3)2

.

From (1.3), we have

(3.6) gN (N,N) = F2(N) = 1.

Proposition 3.1 The unit vectors normal to the tangent planes of M, in the Randers

metric in (V 3, Fb), are given by

(3.7) Nξ =
1√

1 − b2 + (g ′)2

(
−ξ cos θ,−ξ sin θ,

−b
√

1 − b2 + (g ′)2 + ξg ′

1 − b2

)
,

where ξ = ±1.

Proof We will solve the two first equations of (3.2). Using (3.4), (3.5) and the fact

that g(t) 6= 0, it follows that

(3.8)

{
N2 cos θ − N1 sin θ = 0,

N1g ′ cos θ + N2g ′ sin θ + N3(1 − b2) + b = 0.
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If g ′(t) 6= 0 we have that

(3.9) N1
= −cos θ

g ′
(

N3(1 − b2) + b
)

and N2
= − sin θ

g ′
(

N3(1 − b2) + b
)
.

It follows from (3.6) and (3.9) that

(3.10) N3
=

−b
√

1 − b2 + (g ′)2 + ξg ′

(1 − b2)
√

1 − b2 + (g ′)2
, ξ = ±1.

Therefore N1 and N2 are determined by (3.9) and hence,

(3.11) N1
= − ξ cos θ√

1 − b2 + (g ′)2
and N2

= − ξ sin θ√
1 − b2 + (g ′)2

, ξ = ±1.

When g ′
= 0, it follows from (3.8) that

(3.12) N1
=

χ cos θ√
1 − b2

, N2
=

χ sin θ√
1 − b2

, N3
= − b

1 − b2
, χ = ±1.

Observe that we can choose the sign of N1 and N2 in (3.12). Since we need dif-

ferentiable vector fields, we choose χ = −ξ. This provides us the unit normal vector

fields given in (3.7).

From now on, we will consider rotational surfaces with cmc H in the direction

of a unitary normal vector field Nξ in (V 3, Fb). We will prove that there exist two

ordinary differential equations, whose solutions characterize these surfaces.

Theorem 3.2 Consider the Randers space (V 3, Fb). Let ϕ : M2 → V 3 be an immer-

sion given by ϕ(t, θ) =
(

g(t) cos θ, g(t) sin θ, t
)

such that ∀t, g(t) 6= 0. Then ϕ has

constant mean curvature H in the direction of the unitary normal vector field Nξ , if and

only if g satisfies the following ordinary differential equation:

{
−gg ′ ′[wb

(
1 + 2b2 + (1 − 3b2)(g ′)2

)
+ 3b4(g ′)2

]

+ w0wb

(
1 − b2 + (1 − 3b2)(g ′)2

)}
(−ξwb − bg ′√wb)

− Hg(1 − b2)w2
0(wb)

5
2 = 0, H ∈ R,

(3.13)

where

(3.14) ξ = ±1, w0 = 1 + (g ′)2 and wb = 1 − b2 + (g ′)2.

In order to prove Theorem 3.2, we will need the following lemma.
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Lemma 3.3 Let ϕ : M2 → (V 3, Fb) be an immersion given by

ϕ(t, θ) =
(

g(t) cos θ, g(t) sin θ, t
)
, g(t) 6= 0 ∀t.

Then the following equalities hold:

∂C

∂zi
ǫ

N i
ξ =

λξδǫ1g√
w0

√
wb

[−ξg ′ + Z],(3.15)

∂C

∂z
j
η

∂2ϕ j

∂xǫ∂xη
=

λξg ′
√

w0

δǫ1(gg ′ ′ + w0),(3.16)

∂E

∂zi
ǫ

N i
ξ =

2b2g2

√
wb

δǫ1Z,(3.17)

∂E

∂z
j
η

∂2ϕ j

∂xǫ∂xη
= 2b2gg ′δǫ1,(3.18)

∂2E

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη
= 2b2g(δi32g ′ − δi1 cos θ − δi2 sin θ),(3.19)

where A, C and E are given by (1.6), (2.2) and (2.7), respectively, N i , i = 1, 2, 3, are

given by (3.10) and (3.11), λ = sgn(g) and Z is given by

(3.20) Z =
−b

√
wb + ξg ′

1 − b2
.

Proof By considering x1 = t and x2 = θ in (2.2), we have

zi
ǫ = δǫ1(δi1z1

1 + δi2z2
1 + δi3z3

1) + δǫ2(δi1z1
2 + δi2z2

2 + δi3z3
2)

= δǫ1
(
δi1g ′(t) cos θ + δi2g ′(t) sin θ + δi3

)
+ δǫ2

(
−δi1g(t) sin θ + δi2g(t) cos θ

)
.

(3.21)

Using the same notation, we will write the second order derivative of the immersion

as

∂2ϕ j

∂xǫ∂xη
= (δǫ1δη2 + δǫ2δη1)g ′(t)(−δ j1 sin θ + δ j2 cos θ)

+
(
δǫ1δη1g ′ ′(t) − δǫ2δη2g(t)

)
(δ j1 cos θ + δ j2 sin θ).

(3.22)

It follows from (3.21) and (3.22) that

(3.23) z3
ǫ = δǫ1 and

∂2ϕ3

∂xǫ∂xη
= 0, ∀ǫ, η.

From now on we will omit the parameter t whenever there is no possibility of

ambiguity. It follows from (1.6), (2.2), (2.7), (3.21) and (3.23), that

(3.24) A =

(
1 + (g ′)2 0

0 g2

)
, C = |g|

√
1 + (g ′)2, E = b2g2.
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Using (2.17), it follows from (3.21) that ∀i, 1 ≤ i ≤ 3, and ǫ = 1, 2, we have

∂C

∂zi
ǫ

=
λ√

1 + (g ′)2

{
δǫ1g[g ′(δi1 cos θ + δi2 sin θ) + δi3]

+ δǫ2
(

1 + (g ′)2
)

(−δi1 sin θ + δi2 cos θ)
}
,

(3.25)

where λ = sgn(g).

We will rewrite the components of the normal vector field Nξ given by (3.7) in the

following way,

(3.26) N i
ξ =

1√
wb

(−δi1ξ cos θ − δi2ξ sin θ + δi3Z),

where wb and Z are given by (3.14) and (3.20), respectively. Multiplying (3.25)

by (3.26) and adding in i, we conclude, using (3.14), that (3.15) is verified. Equa-

tion (3.16) is obtained from (3.22) and (3.25), by adding in j and η. It follows from

(2.7) that the derivatives of E are given by

(3.27)
∂E

∂zi
ǫ

= 2b2g(δǫ1δi3g − δǫ2δi1 sin θ + δǫ2δi2 cos θ).

Multiplying (3.27) by N i
ξ and adding in i, we obtain equation (3.17). Substituting i

by j and ǫ by η in the equation (3.27), multiplying by (3.22) and adding in j and η,

we obtain equation (3.18).

We observe that (2.19) gives us the second order derivatives of E for any immer-

sion. Therefore, considering the immersion ϕ(t, θ) and using (3.21), we obtain

∂2E

∂zi
ǫ∂z

j
η

= 2b2
[
δ j3δη̃ǫ(−1)1+̃ǫg(−δi1 sin θ + δi2 cos θ)

+ δ̃ǫ1
(

(−1)1+η̃δ jiδη̃1 + (−1)1+ηδ j3zi
η̃

)

+ δi3

( 3∑

k=1

(−1)η+ǫδ j3zk
η̃zk

ǫ̃

+ (−1)ǫ+η̃δη̃1[δ j1(δ̃ǫ1g ′ cos θ − δ̃ǫ2g sin θ)

+ δ j2(δ̃ǫ1g ′ sin θ + δ̃ǫ2g cos θ)]

+ (−1)ǫ+1gδη̃ǫ(−δ j1 sin θ + δ j2 cos θ)
)]

,

(3.28)

where ǫ̃ = 1 + δǫ1, ǫ = 1, 2.
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Multiplying (3.28) by (3.22) and adding in ǫ, η and j, we obtain

∂2E

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη

= 2b2
{
δǫ2(−1)1+η̃δi jδη2 + δi3(−1)ǫ+η̃

[
δη2

(
δ j1(δǫ2g ′ cos θ + δǫ1g sin θ)

+ δ j2(δǫ2g ′ sin θ + δǫ1g cos θ)
)

+ (−1)1+ǫgδ̃ǫη(−δ j1 sin θ

+ δ j2 cos θ)
]}{

(δǫ1δη2 + δǫ2δη1)g ′(t)(−δ j1 sin θ + δ j2 cos θ)

+
(
δǫ1δη1g ′ ′(t) − δǫ2δη2g(t)

)
(δ j1 cos θ + δ j2 sin θ)

}

= δi34b2gg ′ − δi12b2g cos θ − δi22b2g sin θ

= 2b2g(δi32g ′ − δi1 cos θ − δi2 sin θ).

This proves (3.19) and concludes the proof of Lemma 3.3.

Lemma 3.4 Let ϕ : M2 → (V 3, Fb) be an immersion as in Lemma 3.3. Then

(3.29)
∂2 det A

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη
N i

ξ =
2g√

wb(1 − b2)
[ξ(1 − b2)(1 − gg ′ ′)

+ ξ(g ′)2(1 + b2) − 2bg ′√wb],

where A and N i
ξ are given by (3.24) and (3.26) respectively.

Proof Equation (2.18) gives us the second order derivatives of det A with respect

to zi
ǫ. We will compute separately each term of this expression. Before that, we note

that we do not need to compute the terms involving δ j3, since they will be multi-

plied by zero when we consider the product ∂2 det A

∂zi
ǫ∂z

j
η

∂2ϕ j

∂xǫ∂xη
(see (3.23)). In the next

expressions R(δ j3) will denote a term involving δ j3.

It follows from the expression of zi
ǫ =

∂ϕi

∂xǫ
given by (3.21) that ∀i, j, 1 ≤ i, j ≤ 3,

(3.30)
∑

l 6=i

δi j(zl
2)2

= g2(δi1δ j1 cos2 θ + δi2δ j2 sin2 θ) + R1(δ j3).

Moreover,

∑

l 6=i

δi j(zl
1)2

= (g ′)2(δi1δ j1 sin2 θ + δi2δ j2 cos2 θ) + (δi1δ j1 + δi2δ j2)

+ R2(δ j3),

(3.31)

∑

l 6=i

δ jlz
i
1zl

2 = g[g ′(δi1δ j2 cos2 θ − δi2δ j1 sin2 θ) + δi3(−δ j1 sin θ + δ j2 cos θ)]

+ R3(δ j3).

(3.32)
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Similarly,

−
∑

l 6=i

δ jlz
i
2zl

1 = −gg ′(−δi1δ j2 sin2 θ + δi2δ j1 cos2 θ) + R4(δ j3),(3.33)

−
∑

l 6=i

δi jz
l
1zl

2 = −gg ′ sin θ cos θ(δi1δ j1 − δi2δ j2) + R5(δ j3).(3.34)

Moreover,

(3.35)∑

l 6=i

δ jlz
i
1zl

1 = (g ′)2 sin θ cos θ(δi1δ j2 + δi2δ j1) + g ′δi3(δ j1 cos θ + δ j2 sin θ) + R6(δ j3).

Finally,

(3.36) −
∑

l 6=i

δ jlz
i
2zl

2 = g2[(δi1δ j2 + δi2δ j1) sin θ cos θ] + R7(δ j3).

Therefore, it follows from equations (3.30)–(3.36) that,

∂2 det A

∂zi
ǫ∂z

j
η

= δǫ1
{
δη1[g2(δi1δ j1 cos2 θ + δi2δ j2 sin2 θ) + (δi1δ j2 + δi2δ j1)g2 sin θ cos θ]

+ δη2

[
2g
(

g ′(δi1δ j2 cos2 θ − δi2δ j1 sin2 θ) + δi3(−δ j1 sin θ + δ j2 cos θ)
)

− gg ′ sin θ cos θ(δi1δ j1 − δi2δ j2)

− gg ′(−δi1δ j2 sin2 θ + δi2δ j1 cos2 θ)
]}

+ δǫ2

{
δη1

[
−gg ′ sin θ cos θ(δi1δ j1 − δi2δ j2)

+ 2gg ′(−δi1δ j2 sin2 θ + δi2δ j1 cos2 θ)

− g[g ′(δi1δ j2 cos2 θ − δi2δ j1 sin2 θ)

+ δi3(−δ j1 sin θ + δ j2 cos θ)]
]

+ δη2

[
−g ′ sin θ cos θ[g ′(δ j1δi1 − δi2δ j1) + δi3(δ j1 cos θ + δ j2 sin θ)]

+
(
δi1δ j1

(
1 + (g ′)2 sin2 θ

)
+ δi2δ j2

(
1 + (g ′)2 cos2 θ

))]}
+ R(δ j3).

(3.37)

Multiplying equation (3.37) by ∂2ϕ j

∂xǫ∂xη
and N i

ξ , given by (3.22) and (3.26) respectively,

and adding in all the indices, we obtain (3.29).

We will now use Lemmas 3.3 and 3.4 to prove Theorem 3.2.

Proof of Theorem 3.2 For the proof, in view of equation (2.6), we will obtain the

following expressions:
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(i)
∂C

∂zi
ǫ

∂C

∂z
j
η

∂2ϕ j

∂xǫ∂xη
N i

ξ =
gg ′b

(1 − b2)w0
√

wb

[(gg ′ ′ + w0)(ξbg ′ −√
wb)];

(ii)
∂E

∂zi
ǫ

∂E

∂z
j
η

∂2ϕ j

∂xǫ∂xη
N i

ξ =
4b4g3g ′

√
wb(1 − b2)

(−b
√

wb + ξg ′);

(iii)
( ∂C

∂zi
ǫ

∂E

∂z
j
η

+
∂C

∂z
j
η

∂E

∂zi
ǫ

) ∂2ϕ j

∂xǫ∂xη
N i

ξ

= λ
2b2g2g ′

(1 − b2)
√

wb
√

w0

[g ′(w0 + gg ′ ′ + b2) − bξ
√

wb(1 + g ′ ′ + w0)];

(iv)
∂2E

∂z
j
η∂zi

ǫ

∂2ϕ j

∂xǫ∂xη
N i

ξ =
2b2g√

wb(1 − b2)

[
ξ
(

1 + 2(g ′)2 − b2
)
− 2bg ′√wb

]
.

In fact, from (3.15) and (3.16), we have that

(3.38)
∂C

∂zi
ǫ

∂C

∂z
j
η

∂2ϕ j

∂xǫ∂xη
N i

ξ =

[ λξδǫ1g√
w0

√
wb

(−ξg ′ + Z)
][ λξg ′

√
w0

δǫ1(gg ′ ′ + w0)
]
.

Therefore, a simple computation, using (3.20), gives us (i) (observe that λ2
= 1).

(ii) follows directly from the product of (3.17) by (3.18), using (3.20). (iii) follows

directly from the product of the equations (3.15), (3.18), (3.16) and (3.17). And

finally, to prove (iv) we multiply equation (3.19) by N i
ξ , given by (3.26).

A straightforward computation shows that the coefficients that appear in equa-

tion (3.13) are given by the following equalities:

12E2 − (2E + C2)2

C(C2 − E)
=

λg(8b4 − 4b2w0 − w2
0)√

w0wb

,(3.39)

3C

2
=

3|g|
2

√
w0,(3.40)

−3

2

( 2E −C2

C2 − E

)
= −3

2

( 2b2 − w0

wb

)
,(3.41)

3C

4(C2 − E)
= λ

3

4

√
w0

g
√

wb

,(3.42)

2E + C2

2C
= λg

(2b2 + w0)

2
√

w0

,(3.43)

1

C(C2 − E)
=

1

g3
√

w0wb

,(3.44)

where λ =
g
|g| = sgn(g), C and E are given by (3.24).

Substituting equalities (i)–(iv), equation (3.29) and equations (3.39)–(3.44) into
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(2.6), we obtain

H =
1

|g|g2
√

w0wb

·
{ λg(8b4 − 4b2w0 − w2

0)√
w0wb

[ gg ′b

(1 − b2)w0
√

wb

(gg ′ ′ + w0)(ξbg ′ −√
wb)
]

− 3|g|
2

√
w0

2b2g√
wb(1 − b2)

[
ξ
(

1 + 2(g ′)2 − b2
)
− 2bg ′√wb

]

− 3

2

( 2b2 − w0

wb

)
λ

2b2g2g ′

(1 − b2)
√

wb
√

w0

· [g ′(w0 + gg ′ ′ + b2) − bξ
√

wb(1 + g ′ ′ + w0)]

+ λ
3

4

√
w0

g
√

wb

[ 4b4g3g ′
√

wb(1 − b2)
(−b

√
wb + ξg ′)

]

+
( λg(1 + 2b2 + (g ′)2)

2
√

w0

) 2g√
wb(1 − b2)

· [ξ(1 − b2)(1 − gg ′ ′) + ξ(g ′)2(1 + b2) − 2bg ′√wb]
}
.

Simplifying this expression, we obtain (3.13). This concludes the proof of Theo-

rem 3.2.

It follows from Theorem 3.2 that we have two distinct differential equations, de-

pending on choice of ξ in equation (3.13), i.e., depending on the normal vector field.

This is in contrast to the Euclidian case, b = 0, when we have just one equation.

4 Characterization of Rotational Surfaces with cmc in the Direction
of the Unitary Normal Vector Fields in (V 3, Fb)

In this section we show that, in spite of finding two distinct differential equations that

characterize the surfaces of rotation with cmc in the direction of the unitary normal

vector fields in (V 3, Fb), both equations determine the same rotational surface. This

allows us to choose only one equation to be analyzed. We also show, that the cylinder

is a cmc surface in the direction of a unitary normal vector field and that there are no

nonconstant linear solutions of the differential equation, for any b, 0 ≤ b < 1.

A particular case of equation (3.13) is obtained by considering H = 0. This case

represents the minimal rotational surfaces in Randers spaces (V 3, Fb), and it was al-

ready studied by Souza and Tenenblat in [ST]. In [SST], Souza, Spruck, and Tenen-

blat concluded that the equation that describes the minimal surfaces as a graph of

a function in (V 3, Fb) is elliptic for b <
√

3
3

. This same value of b appears also in

our work. Therefore, we will restrict the analysis of equation (3.13) to the interval

0 < b <
√

3
3

. The Euclidean case is obtained taking b = 0 in equation (3.13). In this

case, the solutions are curves that generate the Delaunay surfaces (see [D]).
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One knows that in general, nonlinear ordinary differential equations cannot be

analytically solved. Equation (3.13) is highly nonlinear. This entails enormous dif-

ficulties in the analysis of the possible solutions and mainly in the determination of

the interval of existence and uniqueness of the solutions. In view of these difficulties

we will use methods of qualitative analysis to determine the behavior of the solutions

for all 0 < b <
√

3
3

and H 6= 0. We will see that we only need to choose H > 0.

We can rewrite equation (3.13) as follows,

(4.1) {−gg ′ ′Q + P}A± − HgR = 0,

where we used the notation

P := Pb(g ′) = w0wb[1 − b2 + (1 − 3b2)(g ′)2],(4.2)

Q := Qb(g ′) = wb[1 + 2b2 + (1 − 3b2)(g ′)2] + 3b4(g ′)2,(4.3)

R := Rb(g ′) = (1 − b2)w2
0w

5
2

b ,(4.4)

A+ := A+
b (g ′) = wb − bg ′√wb,(4.5)

A− := A−
b (g ′) = −wb − bg ′√wb,(4.6)

with w0 and wb given by (3.14).

Remark 4.1 It follows from the fact that w0 and wb are both positive ∀b, 0 ≤ b ≤√
3

3
(see (3.14)), that:

(i) Pb(g ′) vanishes for
√

3
3

< b < 1, when g ′ assumes the values

(4.7) r1(b) = ±
√

1 − b2

3b2 − 1
.

(ii) Pb(g ′) > 0 (resp. < 0) if and only if |g ′| < |r1(b)| (resp. |g ′| > |r1(b)|).

(iii) Pb(g ′) > 0, ∀b, 0 ≤ b ≤
√

3
3

and ∀g ′.

(iv) The polynomial Qb(g ′) vanishes if
√

3
3

< b < 1, when g ′ assumes the values

r2(b) = ±

√
1 − b2 + 3b4 +

√
12b4 − 12b6 + 9b8

3b2 − 1
.

(v) Qb(g ′) > 0 (resp. < 0) if and only if |g ′| < |r2(b)| (resp. |g ′| > |r2(b)|).

(vi) Qb(g ′) > 0, ∀b, 0 ≤ b ≤
√

3
3

and ∀g ′.

Remark 4.2 Rb(g ′) > 0, ∀b, 0 ≤ b < 1 and ∀g ′.

Proposition 4.3 A−
b (g ′) < 0 (resp. A+

b (g ′) > 0), ∀b, 0 ≤ b < 1.

Proof If g ′ > 0, it follows from (3.14) and (4.6) that A− < 0. If g ′ ≤ 0, the proof

follows from the fact that (1 − b2)(1 + g ′2) > 0, ∀b, 0 ≤ b < 1. For A+ the proof is

analogous.
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For a fixed H 6= 0, consider the following differential equations given by (4.1)

{−gg ′ ′Q(g ′) + P(g ′)}A−(g ′) − gHR(g ′) = 0,(4.8)

{−gg ′ ′Q(g ′) + P(g ′)}A+(g ′) − gHR(g ′) = 0.(4.9)

The following proposition, whose proof is immediate, shows that both equations

define the same surface of rotation.

Proposition 4.4 A differentiable function h(t) = −g(t) is a solution of (4.8) if and

only if −h(t) is a solution of (4.9).

The next proposition shows us that we can restrict the study of the equations (4.1)

to the case H > 0. In fact, consider the two differential equations

{−gg ′ ′Q(g ′) + P(g ′)}A−(g ′) + gHR(g ′) = 0,(4.10)

{−gg ′ ′Q(g ′) + P(g ′)}A+(g ′) + gHR(g ′) = 0.(4.11)

Then one can easily see that the following result holds.

Proposition 4.5 A differentiable function, h(t), t ∈ I ⊂ R, is a solution of (4.8)

(resp. (4.9)) if and only if −h(−t) is a solution of (4.11) (resp. (4.10)).

In short, together Propositions 4.4 and 4.5 tell us that, although we have two equa-

tions describing the surfaces of rotation, in the space (V 3, Fb), with cmc H in the

direction of the normal unitary vector fields, both describe the same surface, inde-

pendently of the choice of the normal field and also of the sign of H. This result is

important for the fact that it allows us to choose just one equation to analyze. It is

also important for the fact that it would not be desirable, in the development of our

theory, that the choice of the normal field would affect the surface of rotation.

Due to this fact, from now on we will work only with equation (4.9) (it corre-

sponds to taking A+ in equation (4.1)). Moreover we will consider g(t) > 0, ∀t ∈ R.

Lemma 4.6 For a fixed constant H > 0,

(4.12) g(t) =
1

H
√

1 − b2
(respectively g(t) = − 1

H
√

1 − b2
), ∀t ∈ R,

is a solution of (4.9) (respectively (4.8)). Moreover, this is the unique constant solution

of (4.9) (respectively (4.8)).

The proof of Lemma 4.6 is trivial and shows that (4.12) is the unique constant

solution. We observe that this constant solution generates the cylinder of radius
1

H
√

1−b2
.

Remark 4.7 If g(t) is a solution of (4.9), where H is a nonvanishing constant and

g(t0) 6= 1

H
√

1−b2
, for some t0 ∈ R, then g ′(t0) and g ′ ′(t0) do not vanish simultane-

ously.
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The next lemma excludes any nonconstant linear solution for the equation (4.9),

whenever H is a nonvanishing constant. In the case H = 0, the linear solutions

generate minimal cones and they were obtained in [ST].

Lemma 4.8 Let d 6= 0 be a constant.

(i) g(t) = r1(b)t + d is a solution of (4.9) with H constant if and only if H = 0,

where r1(b) is given by (4.7) and
√

3
3

< b < 1.

(ii) Let H be a nonvanishing constant. If g(t) = at + d is a solution of (4.9), for all

t ∈ R, then a = 0.

Proof If H = 0, it is enough to substitute g and its derivatives into equation (4.9) to

verify that g is a solution of (4.9). Similarly, if g(t) = ±r1(b)t + a is a solution, then

it follows from (4.9), that H = 0. This proves (i). In order to prove (ii), we conclude

from equation (4.9) that if H 6= 0, then a = 0.

In short, we proved that the cylinder has cmc in the direction of the normal vector

field N in (V 3, Fb) and it is generated by the constant solution. Moreover, we excluded

all nonconstant linear solutions. Although we do not have an explicit nonconstant

solution of equation (4.1), we can describe qualitative information on their solutions.

In the next section, we present a qualitative analysis of equation (4.9).

5 Qualitative Analysis

One knows that, for smooth functions f (x), the solution of the initial value problem

ẋ = f (x), x ∈ R
n, x(0) = x0,

is defined at least in some neighborhood t ∈ (−ǫ, ǫ) of t = 0. This, in the nonlinear

case, means that a local flux ϕt : R
n → R

n is defined by ϕt (x0) = x(t, x0) in a similar

way to the linear case. One knows also that, it is not always possible to determine the

interval (−ǫ, ǫ) of existence and uniqueness of the solutions.

In this section, we consider equation (4.9) as a nonlinear dynamical system. We

use the concept of stability and through the linearization around the single equilib-

rium point (the constant solution), we verify that the solutions are, locally, asymp-

totically stable spirals.

Making the change of variables x(t) = g(t) and y(t) = ẋ(t), we have that Ẋ =

G(t,X, b), where X = (x, y) ∈ R
2 and G is of class C r. We can rewrite equation (4.9)

in the form of an autonomous system of two equations of first order as

(5.1)

{
ẋ = y,

ẏ = φb(x, y),

where G(t,X, b) =
(

y, φb(x, y)
)

and φb is given by

(5.2) φb(x, y) =
P(y)A(y) − xR(y)H

xQ(y)A(y)
.
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Moreover, the expressions P, Q, R and A, given by equations (4.2)–(4.5), are written

now in the following form:

P(y) = w0wb[1 − b2 + (1 − 3b2)y2],(5.3)

Q(y) = wb[1 + 2b2 + (1 − 3b2)y2] + 3b4 y2,(5.4)

R(y) = (1 − b2)w2
0w

5
2

b ,(5.5)

A(y) = wb − by
√

wb,(5.6)

w0 = 1 + y2 and wb = 1 − b2 + y2.

Observe that (5.1) defines an autonomous nonlinear system of differential equa-

tions, whose equilibrium points (or fixed points) are determined by the solutions of

the system Ẋ = 0, where Ẋ = (ẋ, ẏ). That is, the equilibrium points are all the points

(x, y) of the form

(5.7) X0 =

(
x0

y0

)
=

( 1

H
√

1−b2

0

)
.

Observe that the equilibrium solution is exactly the generatrix of the cylinder defined

in Lemma 4.6. From now on, we will restrict the study of the solutions of (5.1) to the

interval 0 < b <
√

3
3

and we will consider only x > 0 and H > 0.

Hartman–Grobman’s theorem (see [H] and [WS]) tells us that, in a neighbor-

hood of a hyperbolic equilibrium point, the linearized system behaves as the linear

part of the linearization. In the case of the nonhyperbolic equilibrium points, the

eigenvalues of the linearization matrix are purely imaginary, and consequently the

trajectories are closed orbits around the equilibrium points and small perturbations

can transform a closed orbit in a spiral, stable or not.

Lemma 5.1 The partial derivatives of φb with respect to x and y, at the point X0 =

( 1√
1−b2H

, 0), are given respectively by

(5.8) [φb(x, y)]x|X0
= − (1 − b2)2H2

1 + 2b2
and [φb(x, y)]y |X0

= −Hb(1 − b2)

1 + 2b2
,

where φb(x, y) is given by (5.2).

Proof For the proof of this lemma, we take the derivatives of φb(x, y), with respect

to x and then with respect to y at the point X0, and we use the fact that Py|y=0
=

Ry|y=0
= Qy|y=0

= 0.

It follows from (5.8) that the Jacobian matrix A associated to the linearization of

the system (5.1) at the point X0 = ( 1

(
√

1−b2H)
, 0) is given by

A =

(
0 1

− (1−b2)2H2

1+2b2 −Hb(1−b2)
1+2b2

)
.

https://doi.org/10.4153/CJM-2011-047-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-047-4


Surfaces of Rotation with Constant Mean Curvature 65

Therefore, the eigenvalues of A are given by

λ± =
(1 − b2)H(−b ± i

√
7b2 + 4)

2(1 + 2b2)
.

For 0 < b <
√

3
3

, the eigenvalues of A are distinct complex numbers whose real parts

are nonvanishing and negative. Thus, the following remark follows from Hartman–

Grobman theorem.

Remark 5.2 For all b, 0 < b <
√

3
3

the unique equilibrium point X0 of the sys-

tem (5.1) is hyperbolic and this equilibrium is locally asymptotically stable in the

sense that the orbits are spirals inward the equilibrium point. In this case, X0 is said

be a stable focus for 0 < b <
√

3
3

. Therefore, for these values of b, all the solutions

tend to the equilibrium point, when the parameter t tends to infinity. For b = 0, the

eigenvalues of A are complex numbers with vanishing real part, therefore the equi-

librium point is nonhyperbolic and it is denominated a center. In this case, the orbits

are closed (ellipses centered at the equilibrium point).

5.1 Surface Method

Due to the great difficulty in obtaining any information on the behavior of the solu-

tions of the nonlinear equation (4.9), in order to accomplish the study of the fields of

directions, we introduce what we call surface method. This method consists in using

the implicit function theorem to study the behavior of the solutions of the differential

equation. It uses the existent relationship between the surface associated to the equa-

tion and the curves that describe the behavior of the critical points and the points of

inflection of the solutions. With this information, we determine the behavior of the

fields of direction in the phase plane. We remind once again that we are considering

0 < b <
√

3
3

.

In coordinates x, y and z, equation (4.9) takes the following form,

(5.9) {−xzQ + P}A − HxR = 0,

where H is a nonvanishing constant and the expressions of P, Q, R and A are given

by equations (5.3)–(5.6) respectively, by replacing g by x, g ′ by y and g ′ ′ by z. Equa-

tion (5.9) defines implicitly a surface G(x, y, z) = 0 (see Figure 1), where

(5.10) G = [−xzQ(y) + P(y)]A(y) − HxR(y).

On the left side of Figure 1, the surface G(x, y, z) = 0 is visualized with its two con-

nected components. On the right side of Figure 1 we can see its connected compo-

nent given by x > 0.

In the same way we can define the intersection of the planes y = 0 or z = 0 with

the surface G = 0. That is, the curves G(x, 0, z) = 0 and G(x, y, 0) = 0. We denote
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Figure 1: Surface G(x, y, z) = 0, with b = 0.3 and H = 1. Figure constructed using ACOGEO.

F1(x, z) := G(x, 0, z) and F2(x, y) := G(x, y, 0). Thus,

F1(x, z) = {−xz[(1 − b2)(1 + 2b2)] + (1 − b2)2}(1 − b2) − Hx(1 − b2)
7
2 ,(5.11)

F2(x, y) =
[

w0wb

(
1 − b2 + (1 − 3b2)y2

)]
(wb − by

√
wb) − Hx(1 − b2)w2

0(wb)
5
2 .

(5.12)

Proposition 5.3 G(x, y, z) = 0 is a regular surface for all x > 0 (resp. x < 0).

Proof It follows from (5.10), that ∂G
∂z

= −xQA and, from equations (5.4) and (5.6),

that QA > 0 ∀x > 0. We also have that

∂G

∂y
= −zx

[ ∂Q

∂y
A + Q

∂A

∂y

]
+
[ ∂P

∂y
A + P

∂A

∂y

]
− Hx

∂R

∂y
and

∂G

∂x
= zQA + RH.

Therefore ∂G
∂x

, ∂G
∂y

and ∂G
∂z

do not vanish simultaneously for all x > 0. It follows that

G(x, y, z) = 0 is the inverse image of zero, that is a regular value of G for all x > 0

and hence G is a regular surface for all x > 0. The proof for x < 0 is analogous.

We observe that G(x, y, z) = 0 is not defined for x = 0, because in this case we

would have PA = 0 and we know from (5.3) and (5.6) that P and A are positive

for all 0 < b <
√

3
3

. From this fact and from Proposition 5.3, we conclude that

the surface G has two connected components. In what follows, G(x, y, z) = 0 will

designate the connected component where x > 0, which is the one we are interested

in.

Let G : U ⊂ R
3 → R be the function defined by (5.10) and let p = (x0, y0, z0) =

( 1√
1−b2H

, 0, 0) ∈ U . We have that G, ∂G
∂x

, ∂G
∂y

, are continuous ∀b, 0 < b <
√

3
3

and
∂G
∂x
|p = −H(1 − b2)

7
2 6= 0. Moreover G(p) = 0. Therefore, applying the Implicit

Function Theorem, there is an interval I and an open ball B ⊂ R
2, centered at (0, 0),

such that G−1(0) ∩ (B × I) is the graph of a function W : B → I of class C2. This

allows us to express x as a function of (y, z) in U , as follows:

(5.13) x = W (y, z) =
PA

zQA + HR
,
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Figure 2: In this figure we can see the intersection between curves h(y) and f (z) on the surface

G(x, y, z).

where P = P(y), Q = Q(y), R = R(y), A = A(y), are given by equations (5.3)–(5.6),

respectively. This expression will be useful in the next section.

Proposition 5.4 Consider p1 = (x0, z0) = ( 1√
1−b2H

, 0) and p2 = (x0, y0) =

( 1√
1−b2H

, 0). Then

∂F1

∂x

∣∣∣
p1

6= 0,
∂F1

∂z

∣∣∣
p1

6= 0,
∂F2

∂y

∣∣∣
p2

6= 0,
∂F2

∂x

∣∣∣
p2

6= 0,

∀x 6= 0 and ∀b, 0 < b < 1.

Proof The proof is a straightforward computation that follows from equations (5.11)

and (5.12).

Let F1 : U ⊂ R
2 → R be the function defined by (5.11) and let p1 = (x0, z0) =

( 1√
1−b2H

, 0) ∈ U . The functions F1, ∂F1

∂x, , ∂F1

∂z
, are continuous ∀b, 0 < b <

√
3

3
and

F1(p1) = 0. From Proposition 5.4, it follows that ∂F1

∂x
|p1

6= 0. Therefore, applying the

Implicit Function Theorem, there is a rectangle I × J centered at (x0, z0) such that

x = f (z), for a unique function f : J → I of class C1 that satisfies F1

(
f (z), z

)
= 0.

That is, F−1
1 (0) ∩ ( J × I) is the graph of the function f .

Similarly, considering F2 : V ⊂ R
2 → R defined by (5.12) and p2 = (x0, y0) =

( 1√
1−b2H

, 0) ∈ V one can apply the Implicit Function Theorem to ensure the exis-

tence of a function h : K → I of class C1 satisfying F2

(
h(y), y

)
= 0.

Observe that the curves f and h intersect at the point p1 = p2 (see Figure 2),

which is the equilibrium point of the system (5.1) obtained in (5.7).

The curves f (z) and h(y) can be obtained by considering F1(x, z) = 0 and

F2(x, y) = 0. Thus we get

(5.14) f (z) =
(1 − b2)

z(1 + 2b2) + (1 − b2)
3
2 H
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and

(5.15) h(y) =
PA

RH
=

wb − 3b2 y2

H(wb + by
√

wb)(wb)
1
2

,

where wb = 1 − b2 + y2.

Remark 5.5 Considering g(t) = x(t) in Remark 4.7, we have that, for any given

initial condition, the solution x(t) of equation (5.9) does not have inflexion points

such that ẋ(t) = y(t) = 0. Therefore, we can say that, in the phase plane, f represents

a curve where the tangent fields to the trajectories are not defined (i.e., the tangent

fields are parallel to the axis Ox).

Figure 3: The figure on the left side shows the curve h(y) and the figure on the right side shows

the curve f (z).

The curves f (z) and h(y) are represented in Figure 3, with b = 0.3 and H = 1.

With respect to the curve h, we have the following properties.

Proposition 5.6 Let h(y) be a function defined by (5.15).

(i) There exists a unique y0 such that h ′(y0) = 0 and y0 < 0.

(ii) lim
y→±∞

h(y) = 0.

(iii) y0 is the point of global maximum of h.

Proof (i) Taking the derivative of h with respect to y and equating to zero, we obtain

(5.16) y(wb)
1
2 [9b2 y2 − (1 + 6b2)(wb)] = b[(wb)2 + 3b2 y2(wb) − 6b2 y4],

where wb = 1−b2+y2. Taking squares on both sides of (5.16) we obtain the following

polynomial of degree 8:

(5.17) P(y) = a0 + a2 y2 + a4 y4 + a6 y6 + a8 y8,
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where

a0 = −b2(1 − b2)4, a2 = (1 − b2)3(30b4 + 8b2 + 1),

a4 = 3(1 − b2)3(1 + 5b2 + 3b4), a6 = (1 − b2)(3b2 − 1)(6b4 − 5b2 − 3),

a8 = (1 − b2)(1 − 3b2)2.

Since 1 − b2 > 0, it follows that, a0 < 0, a2 > 0, a4 > 0, ∀b, 0 < b < 1 and a6 > 0.

Moreover, a8 > 0, ∀b, 0 < b <
√

3
3

.

Observe that P(y) = P(−y) and in both cases we have just one sign change among

the coefficients, thus, by the Descartes sign rules for polynomials, we have only one

positive root and only one negative root. We can show that the positive one is inad-

equate. In fact, assuming that we have a positive root r and using the fact that r > 0,

(3b2 − 1) < 0 and (−1 + b2) < 0, we show that ∀b, 0 < b <
√

3
3

, the left-hand side

of (5.16) is negative and the right-hand side is positive. This is a contradiction. It

follows then, that the polynomial (5.17) has a unique negative root. This concludes

the proof of (i).

For the proof of (ii), we apply L’Hospital’s rule twice and verify that lim
y→±∞

PA
RH

= 0.

In order to prove (iii), we observe that it follows from (5.5) that, for both b and y

real, the denominator of (5.15) does not vanish and consequently the curve (5.15) is

continuous for any real value. Moreover, as a consequence of (i) and (ii), there is a

unique critical point of h which satisfies y0 < 0 and h tends to zero when y → ±∞.

Therefore y0 may be either a maximum or a minimum global point of h. From the

fact that h(y) > 0, ∀b, y ∈ R, we conclude that h(y0) is a global maximum point of

h(y). This concludes the proof of (iii).

For φb(y, x) 6= 0, the system (5.1) defines a vector field in the phase plane, whose

directions are tangent to the trajectories, pointing to the direction of time increasing.

Its directions are determined by dx
dy

=
ẋ
ẏ
=

y
φb(y,x)

, where ẋ =
dx
dt

and ẏ =
dy
dt

.

It follows from (5.2) that, ∀b, 0 < b <
√

3
3

. φb(y, x) > 0 if and only if x < PA
RH

and

φb(y, x) < 0 if and only if x > PA
RH

. Thus, taking into account these results, we will

analyze the behavior of the fields dx/dy in the phase plane.

Figure 4: Behavior of the directions fields in the phase space and the graph of the function h(y).

One can observe the following cases (see Figure 4):
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(i) dx
dy

= 0 if and only if y = 0 (tangent fields parallel to the y axis);

(ii) for dx
dy

> 0 we have either y > 0 and x < PA
RH

(region D) or y < 0 and x > PA
RH

(region A);

(iii) for dx
dy

< 0 we have either y < 0 and x < PA
RH

(region C) or y > 0 and x > PA
RH

(region B);

(iv) dx
dy

is not defined for x =
PA
RH

(see Remark 5.5).

Based on this information and knowing that in the phase plane the trajectories be-

have asymptotically as stable spirals, we sketched, using the resources of Maple, the

phase portrait of the system (5.1), as we can see in Figure 5. We used the initial con-

ditions x(0) = 1, y(0) = 0 with b = 0.3 and H = 1.

Figure 5: The figure on the left side shows the direction fields in the phase space and the figure

on the right side shows a path in the phase space.

Observe that we are considering just the interval 0 < b <
√

3
3

, where the polyno-

mial Q does not have real roots. Since equation (4.9) has continuous partial deriva-

tives, it follows from the Picard–Lindelöf theorem, that given the initial conditions,

there exists a unique solution in the neighborhood of t = 0. The difficult problem is

to determine the extension of this neighborhood.

In what follows, we will prove some results that will provide information about

the behavior of the solutions of the differential equation (4.9). When convenient, we

will look at the solutions of our differential equation as a graph and, we will refer

to equation (4.9) in the variables g, g ′, and g ′ ′. Alternatively we will look at the

same solutions as a trajectory in the phase plane. We will then follow the notation

introduced in the previous section, considering g = x, g ′
= y, and g ′ ′

= z, and refer

to equation (5.9).

Remark 5.7 From equation (5.9) we have that x(zQA + HR) = PA. Since PA > 0,

∀b, 0 < b <
√

3
3

, we have that zQA + HR 6= 0, ∀x > 0. Thus, the solution of (5.9) is

not defined for

z = −HR

QA
.
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In particular, at the points where y vanishes, this expression is given by

z = − (1 − b2)
3
2 H

1 + 2b2
.

In the previous section, we saw that the intersection of the surface G(x, y, z) = 0

with the plane y = 0 is a curve in the coordinate plane z0x, denoted by f (z) and

given by (5.14). Observe that y(t) = g ′(t), thus f (z) defines a curve on the sur-

face G(x, y, z) = 0 that contains all the critical points of any solution g(t) of equa-

tion (4.9).

Lemma 5.8 For any nonconstant solution g(t) of the differential equation (4.9), there

do not exist t1, t2 ∈ R such that g(t1) = g(t2) and g ′(t1) = g ′(t2) = 0, ∀b, 0 < b <√
3

3
.

Proof Suppose that for b, 0 < b <
√

3
3

, there exists t1 6= t2 ∈ R such that g(t1) =

g(t2) and g ′(t1) = g ′(t2) = 0. This implies the existence of a closed orbit in a neigh-

borhood of the equilibrium point (or equivalently that the equilibrium point is a cen-

ter), but this contradicts the fact that the equilibrium point is a focus (Remark 5.2).

Observe that when b = 0, the equilibrium point is a center. This means that the

orbits are all closed in a neighborhood of the equilibrium point. In this case, the

solutions g are the curves whose rotation around the t axis generate the Delaunay

surfaces [D].

The next two lemmas assure that, when t grows, the norm of the second derivative

decreases at the points where the first derivative vanishes (minimum and maximum

points). At these points, the solution g approaches the value 1√
1−b2H

, ∀b, 0 < b <
√

3
3

. In other words, we will prove that the solution g behaves as in Figure 6, where

we used the initial conditions g(0) = 1, g ′(0) = 0, b = 0.3 and H = 1.

Before starting the next lemma we will rewrite equation (5.13) in the variables g ′

and g ′ ′, i.e.,

(5.18) g = W (g ′, g ′ ′) =
PA

g ′ ′QA + HR
,

where P = P(g ′), Q = Q(g ′), R = R(g ′) and A = A(g ′) are given by equations (4.2)–

(4.5), respectively.

Lemma 5.9 Let g(t) be a solution of equation (4.9) with b 6= 0. The minimum

and maximum values of g, are respectively below and above the constant solution g =
1√

1−b2H
.

The proof follows directly from equation (4.9), by considering g ′(t0) = 0.

Lemma 5.10 Let t0 and t1 be such that g ′(t0) = g ′(t1) = 0 and g ′ ′(t0) > 0, g ′ ′(t1) >
0 (resp. g ′ ′(t0) < 0, g ′ ′(t1) < 0), i.e., t0 and t1 are points of local minimum (resp.

maximum). Then g(t0) < g(t1) (resp. g(t0) > g(t1)) if and only if g ′ ′(t0) > g ′ ′(t1)

(resp. g ′ ′(t0) < g ′ ′(t1)). Moreover g(t0) = g(t1) = 0 if and only if b = 0.
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Proof Observe that, at the points where the derivative g ′ vanishes, equation (5.18) is

given by

(5.19) g = f (g ′ ′) =
(1 − b2)

g ′ ′(1 + 2b2) + (1 − b2)
3
2 H

.

It follows from Lemma 5.8 that g(t0) 6= g(t1), ∀b, 0 < b <
√

3
3

. Thus, assuming

that g ′ ′(t0) > 0 and g ′ ′(t1) > 0, it follows from (5.19) that g(t0) > g(t1) (resp.

g(t0) < g(t1)) if and only if g ′ ′(t0) < g ′ ′(t1) (resp. g ′ ′(t0) > g ′ ′(t1)). Similarly,

one proves the case in which g ′ ′(t0) < 0 and g ′ ′(t1) < 0. Moreover, it follows from

Lemma 5.8 that equality occurs if and only if b = 0.

Lemmas 5.9 and 5.10 mean that, when t tends to infinity, local minimum and

maximum values of g approximate the equilibrium solution. Hence, any solution

approaches the equilibrium solution (see Figure 6).

Lemma 5.11 Let a = − (1−b2)
3
2 H

1+2b2 and consider the function f (z) given by (5.14), with

0 ≤ b < 1. Then

(i) f is decreasing for all z > a;

(ii) lim
z→0

f (z) = 1√
1−b2H

;

(iii) lim
z→a±

f (z) = ±∞;

(iv) lim
z→±∞

f (z) = 0.

Proof We will only prove (i); the other items are trivially verified. Taking the deriva-

tive of (5.14) with respect to z we obtain

f ′(z) =
(b2 − 1)(1 + 2b2)

[z(1 + 2b2) + (1 − b2)
3
2 H]2

.

It follows from the fact that the denominator of f ′ is always positive and the nu-

merator is negative that f ′ < 0, ∀b, 0 ≤ b < 1. Hence, f is a decreasing function.

Rotating the generatrix curve (Figure 6) around the z = t axis, we obtain the

corresponding surface of rotation, which is represented in Figure 7, where we used

b = 0.3, H = 1 and the initial conditions g(0) = 1, g ′(0) = 0. Figures 6 and 7 were

obtained by numerical methods.

6 Basin of Attraction

Next we will determine the existence of a region containing the equilibrium point of

the system (5.1) in whose interior, a function of Liapunov to be defined, has strictly

negative derivative. This region is denominated the basin of asymptotic stability of the

equilibrium point.
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Figure 6: A solution
(

t, g(t)
)

of the equa-

tion (4.1) and the equilibrium solution.

Figure 7: Surface of rotation cmc in the di-

rection of the unitary normal vector field.

Let

(6.1) S(y) =
P(y)

Q(y)
, B(y) =

R(y)H

Q(y)A(y)
,

where P, Q, R and A are given by equations (5.3)–(5.6) respectively. In this condition,

(5.1) can be rewriten in the following form

ẋ = y,(6.2)

ẏ =
S(y)

x
− B(y).

After the translation X = x − x0, Y = y, the above system is given in the new

coordinates by

(6.3) Ẋ = Y, and Ẏ =
S(Y )

X + x0

− B(Y ).

Remark 6.1 Consider the function

(6.4) V (X,Y ) = S(0) ln
( x0

X + x0

)
+

S(0)

x0

X +
Y 2

2
.

Then

V (0, 0) = 0, VX = − S(0)

X + x0

+
S(0)

x0

, VY = Y,

VXX =
S(0)

(X + x0)2
, VYY = 1, VXY = 0.

Thus, the Hessian matrix of V (X,Y ) at (0, 0) is given by

Hess V (0, 0) =

(
S(0)

(X+x0)2 0

0 1

)

Hence, det Hess V (0, 0) = S(0)
(X+x0)2 > 0 and V (X,Y ) ≥ 0.
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Taking the derivative of (6.4) with respect to t , using (6.3) and the fact that S(0)
x0

=

(1−b2)
3
2

1+2b2 H = B(0), we obtain

V̇ (X,Y ) =
(
− S(0)

X + x0

+
S(0)

x0

)
Y +

( S(Y )

X + x0

− B(Y )
)

Y

=
Y

X + x0

{(X + x0)[B(0) − B(Y )] + [S(Y ) − S(0)]}.

(6.5)

Next, we will prove a series of properties, which will be useful for us to conclude

the central objective of this section, that is to prove that there exists a region where

the function V̇ (X,Y ) is negative definite.

Lemma 6.2 lim
Y→±∞

B(Y ) = +∞, where B(Y ) is given by (6.1).

Proof In fact, simplifying the expression of B(Y ), we obtain

(6.6)

B(Y ) =
(1 − b2)H(1 + Y 2)2(1 − b2 + Y 2)2

[(1 − b2 + Y 2)
1
2 − bY ][(1 + Y 2)2 + b4(−2 + 6Y 2) + b2(1 − 2Y 2 − 3Y 4)]

.

It follows from Remark 4.1 and from Proposition 4.3 that Q(y) > 0 and A(y) > 0,

∀b, 0 < b <
√

3
3

. Therefore, we complete the proof observing that the denominator

of (6.6) is positive and the numerator is a polynomial in Y of degree 16, while in the

denominator Y appears with powers of, at most degree 5.

Lemma 6.3 The function

(6.7) S(Y ) =
P(Y )

Q(Y )
=

(1 + Y 2)(1 − b2 + Y 2)[1 − b2 + (1 − 3b2)Y 2]

(1 − b2 + Y 2)[1 + 2b2 + (1 − 3b2)Y 2] + 3b4Y 2

is positive ∀b, 0 < b <
√

3
3

. Moreover, Y = 0 is the only critical point of S and it is a

global minimum.

Proof Proving that the function has a unique critical point is equivalent to showing

that the first derivative has a unique real root. We can rewrite (6.7) in the following

form:

(6.8) S(Y ) =
e1Y 6 + e2Y 4 + e3Y 2 + e4

e1Y 4 + e2Y 2 + e3

,

where e1 = 1 − 3b2, e2 = 3b4 − 8b2 + 3, e3 = 4b4 − 7b2 + 3, e4 = (1 − b2)2, e1 = e1,

e2 = 6b4 − 2b2 + 2 and e3 = (1 − b2)(1 + 2b2).

Taking the derivative of (6.8) with respect to Y , we obtain

S ′(Y ) =
6e1Y 5 + 4e2Y 3 + 2e3Y

e1Y 4 + e2Y 2 + e3

− (e1Y 6 + e2Y 4 + e3Y 2 + e4)(4e1Y 3 + 2e2Y )

(e1Y 4 + e2Y 2 + e3)2
.

(6.9)
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Therefore, one can see that S ′(Y ) = 0 if and only if

(6.10)

2e2
1Y 9 +4e1e2Y 7 +[6e1e3 +2(e2e2−e1e3)]Y 5 +4(e2e3−e1e4)Y 3 +[2(e3e3−e2e4)]Y = 0.

It follows from Remark 4.1 that the polynomial Q does not vanish for 0 < b <
√

3
3

.

Moreover, for such a b all the coefficients of Y in the expression (6.10) are positive.

It follows that S ′(Y ) = 0 if and only if Y = 0. Consequently Y = 0 is the unique

critical point of S(Y ). In order to show that Y = 0 is a minimum point, it is sufficient

to observe that, the coefficients are all positive and Y appears with odd power, hence

S(Y ) is decreasing for negative values of Y and increasing for positive values of Y .

Therefore, Y = 0 is a global minimum for S(Y ) and consequently, S(Y ) > 0, ∀Y ∈ R.

Consider the derivative B ′(Y ) of the function B(Y ) given by (6.6). We have that

(6.11) B ′(Y ) =
R ′(Y )HA(Y )Q(Y ) − R(Y )H[A ′(Y )Q(Y ) + Q ′(Y )A(Y )]

[A(Y )Q(Y )]2
.

Observe that B ′
= 0 if and only if QAR ′H = (QA ′ + AQ ′)RH, i.e.,

(6.12) QAY [4wb + 5w0] = (QA ′ + AQ ′)w0wb,

where prime indicates the derivative with respect to Y , w0 = 1 +Y 2, wb = 1−b2 +Y 2

and we used R given by (5.5). Using the notation

Z = 1 + 2b2 + (1 − 3b2)Y 2,

we have that Q and A, given by (5.4) and (5.6) respectively, reduce to Q = wbZ+3b4Y 2

and A = wb − bY (wb)
1
2 . Thus,

(6.13) QAY = (wbZ + 3b4)AY [4wb + 5w0].

Moreover, we have

QA ′ + AQ ′
= 4Y wbZ − 3bY 2(wb)

1
2 Z − 9b5Y 2(wb)

1
2 − b(wb)

3
2 Z − 3b5Y 4(wb)−

1
2

+ 2Y (1 − 3b2)(wb)2 + 6b4Y wb − 2bY 2(1 − 3b2)(wb)
3
2 + 6b4Y 3.

(6.14)

Substituting (6.13) and (6.14) into (6.12), we obtain that B ′
= 0 if and only if

(6.15) Y (wb)
1
2 [D(Y )] = b[ J(Y )],

where

D(Y ) = (9w2
b + 5b2wb − 4w0wb)Z + 27b4Y 2

+ 15b6Y 2 − 2(1 − 3b2)w0w2
b − 6b4w0wb − 6b4Y 2w0,

(6.16)

J(Y ) = −1 + 3b4 − 2b6 + (15b2 − 39b4 + 24b6)Y 2

+ (6 + 21b2 − 15b4 − 6b6)Y 4 + (8 − 3b2 + 27b4)Y 6 + (3 − 9b2)Y 8.

(6.17)

https://doi.org/10.4153/CJM-2011-047-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-047-4


76 T. M. M. Carvalho, H. N. Moreira, and K. Tenenblat

Lemma 6.4 The function K(Y ) = Y (wb)
1
2 D(Y ) is increasing for all Y ∈ R and

0 < b <
√

3
3

. Moreover, K(0) = 0 if and only if Y = 0.

Proof The expression of D given by (6.16) can be written as

(6.18) D(Y ) = d6Y 6 + d4Y 4 + d2Y 2 + d0,

where d6 = 3(1 − 3b2), d4 = 30b4 − 7b2 + 9, d2 = (1 − b2)(15b4 + 11b2 + 4)

+ (5 − 4b2)(1 + 2b2) + 3b6, d0 = (1 − b2)(3 + 14b2 − 20b4). It is easy to verify that

all di , i = 0, 2, 4, 6 are positive, for 0 < b <
√

3
3

. Taking the derivative of K(Y ) with

respect to Y , we obtain

(6.19) K ′(Y ) = (wb)
1
2 D(Y ) +

Y 2D(Y )

(wb)
1
2

+ (wb)
1
2 [6d6Y 6 + 4d4Y 4 + 2d2Y 2].

Since the coefficients in (6.18) are all positive for 0 < b <
√

3
3

and the powers of Y

in (6.18) are all even, we have from (6.19) that K ′(Y ) > 0. We also have from (6.15)

and from the positivity of D(Y ) that K(Y ) = 0 if and only if Y = 0. This tells us that

K(Y ) is increasing for all Y ∈ R ∀b, 0 < b <
√

3
3

.

Lemma 6.5 Y = 0 is the unique critical point of the function J(Y ) given by (6.17),

where 0 < b <
√

3
3

.

Proof In fact, taking the derivative of (6.17) with respect to Y , we get the following

polynomial of degree 7 in Y ,

(6.20) J ′(Y ) = 6(a1 + 8b6)Y + 6(a2 + a3)Y 3 + 6(a4 + 27b4)Y 5 + 6a5Y 7,

where a1 = 5b2 − 13b4, a2 = 4 − 10b4, a3 = 14b2 − 4b6, a4 = 8 − 3b2 and

a5 = 4 − 12b2.

It is easy to prove that ai , i = 1, . . . , 5 are all positive for 0 < b <
√

3
3

. Since

the powers of Y in (6.20) are all odd, we have J ′(Y ) > 0 for Y > 0 and J ′(Y ) < 0

for Y < 0. Moreover, since the coefficients do not vanish simultaneously, it is clear

that J ′(Y ) = 0 if and only if Y = 0. Therefore, J(Y ) is decreasing for Y < 0 and

increasing for Y > 0 and has Y = 0 as a critical point. Moreover, from the fact that

J(0) = −(1 − b2)2(1 + 2b2) < 0, we have that J(Y ) has exactly two real roots.

Lemma 6.6 The function B(Y ) given in (6.1) has a single point of minimum Y1 < 0.

Proof Again we will prove that the derivative of the function B ′(Y ) has only one

real root, which is negative. From (6.15) we have that B ′(Y ) = 0 if and only if

Y (wb)
1
2 [D(Y )] = b[ J(Y )]. From Lemmas 6.4 and 6.5 we infer that the graphs of

K(Y ) and J(Y ) are either as in Figure 8 or as in Figure 9. Suppose that K(Y ) and J(Y )

have two distinct points Y1 < 0 and Y2 > 0 (as in Figure 8) such that K(Y1) = J(Y1)

and K(Y2) = J(Y2). Then B ′(Y1) = B ′(Y2). We will show that, actually, there exists

only one point Y1 satisfying K(Y1) = J(Y1) (as in Figure 9).

It follows from (6.15) that:
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(i) B ′(Y ) < 0 when K(Y ) < b J(Y ), and this can only occur for Y < Y1.

(ii) B ′(Y ) > 0 when K(Y ) > b J(Y ), and this can only occur for Y1 < Y < Y2.

(iii) B ′(Y ) < 0 when K(Y ) < b J(Y ), and this can only occur for Y > Y2.

Thus, under these conditions the graph of B(Y ) has the following behavior: B(Y ) is

decreasing for Y < Y1, B(Y ) is increasing for Y1 < Y < Y2 and B(Y ) is decreasing

for Y > Y2. It is a contradiction, because from Lemma 6.2 we have that

lim
Y→±∞

B(Y ) = ∞.

Hence the function B(Y ) is concave upward and has a unique real root given by Y1,

which is negative (see Figure 9). This completes the proof of this lemma.

Figure 8: False intersections between the

curves K and b J.

Figure 9: True intersection between the

curves K and b J.

Lemma 6.7 There exists a region ∆ := {(X,Y ) | X + x0 > 0,Y < Y < 0} in which

V̇ (X,Y ) < 0, where x0 =
1√

1−b2H
and Y is the unique point of the function B(Y ) such

that B(Y ) = B(0).

Proof Consider the expression given by (6.5),

(6.21) V̇ (X,Y ) =
Y

X + x0

{(X + x0)[B(0) − B(Y )] + S(Y ) − S(0)}.

We have that 1
X+x0

> 0, when X + x0 > 0. In Lemma 6.3, we proved that S(Y ) is

positive and Y = 0 is the global point of minimum of S(Y ), i.e., S(Y ) is a parabola

with vertex in (0, 1−b2

1+2b2 ). Furthermore, we have from Lemma 6.6 that B(Y ) has a

global minimum point, which is negative. We also have from Proposition 6.2 that

lim
Y→±∞

B(Y ) = +∞. Therefore the function B(Y ) is a parabola with concavity facing

upward and vertex
(

Y1,B(Y1)
)

(remember that B(Y ) is positive for all Y ∈ R), then

there is a single point Y ∈ R such that B(Y ) =
(1−b2)

3
2 H

1+2b2 = B(0). It follows that, if

Y < Y < 0, then B(0) − B(Y ) > 0. Hence, for Y < Y < 0 the expression (6.21) is

negative, i.e., V̇ (X,Y ) < 0.
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Lemma 6.8 There exists a region ∆ := {(X,Y ) | X + x0 > S ′(Y )
B ′(Y )

, 0 < Y < ∞} in

which V̇ (X,Y ) < 0.

Proof In order to prove this lemma, we will prove that, if X + x0 > S ′(Y )
B ′(Y )

, ∀Y > 0,

then V̇ (X,Y ) < 0. Expression (6.21) tells us that if Y > 0, then

(6.22) V̇ (X,Y ) < 0 ⇔ X + x0 >
S(Y ) − S(0)

B(Y ) − B(0)
.

Let Y > 0 be arbitrary. Observe that the derivatives S ′(Y ) and B ′(Y ) are continuous

in (0,∞) and B ′(Y ) 6= 0, for 0 < b <
√

3
3

. It follows, from the mean value theorem,

that there is a number 0 < ǫ < Y such that

(6.23)
S ′(ǫ)

B ′(ǫ)
=

S(Y ) − S(0)

B(Y ) − B(0)
.

By hypothesis we have that X + x0 > S ′(Y )
B ′(Y )

∀Y > 0. In particular, for 0 < ǫ < Y , we

have that X + x0 > S ′(ǫ)
B ′(ǫ) . Hence, from (6.23) we conclude that X + x0 > S(Y )−S(0)

B(Y )−B(0)
.

This is the condition given in (6.22) to have V̇ (X,Y ) < 0. This concludes the proof.

Note that for purposes of calculations, we considered the translation X = x − x0,

Y = y. In what follows we will go back to the original coordinates (x, y). Thus,

∆ := {(x, y) | x > 0, y < y < 0} and ∆ := {(x, y) | x > S ′(y)
B ′(y)

, 0 < y < ∞}.

Using Lemma 6.3 and equations (6.9) and (6.11), we can infer the following infor-

mation on the function
S ′(y)
B ′(y)

, where the numerator and the denominator are poly-

nomials in y of degree 11 and 12 respectively.

S ′(0)

B ′(0)
= 0,

S ′(y)

B ′(y)
> 0, ∀y > 0, lim

y→∞
S ′(y)

B ′(y)
= 0.

It follows, from Lemmas 6.7 and 6.8 and from equation (6.21), that V̇ (x, y) ≤ 0

(equality follows from the fact that V̇ (x, 0) = 0) for all y < y < ∞, where y = Y .

Hence, it follows from the Liapunov theorem [LSL] that the equilibrium point (x0, 0)

is globally stable within the region

G = {(x, y) ∈ R : 0 ≤ x ≤ c, y ≤ y ≤ 0}

∪
{

(x, y) ∈ R :
S ′(y)

B ′(y)
≤ x ≤ c, 0 < y ≤ y2

}
,

where c and y2 are arbitrary positive real numbers (this region is visualized in Fig-

ure 10). In what follows we will show that, indeed, in this region it is globally asymp-

totically stable.

Theorem 6.9 The equilibrium point (x0, 0) of the system (6.2) is globally asymptoti-

cally stable within the region G.
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Figure 10: In this figure, we visualize the region G, that is the basin of attraction of the equilib-

rium point ( 1
√

1−b2H
, 0), where we used b = 0.3 and H = 1.

Proof Let G be the set consisting of the interior points of G. Thus G contains the

solutions of the system (6.2). Let E = {(x, y) ∈ G : V̇ (x, y) = 0}. Note that we

can rewrite the set E in the following form, E = {(x, 0) ∈ G : x > 0}. Thus,

(x0, 0) ∈ E. This means that the trajectories contained in E are such that y(t) = 0,

∀t ∈ R. It follows from Lemma 4.6 that the unique solution satisfying y(t) = 0,

∀t ∈ R is the constant solution x(t) =
1√

1−b2H
= x0. By the definition of invariant

set (see [W]), we have that {(x0, 0)} is the bigger (because it is the unique) invariant

set contained in E. Therefore, by the Liapunov–La Salle Theorem (see [LSL]), all

solutions
(

x(t), y(t)
)

in G tend to {(x0, 0)} when t tends to infinity, i.e., (x0, 0) is

globally asymptotically stable in G. This proves the theorem.

We finally observe that in the set

G = {(x, y) ∈ R : 0 < x < c, y < y ≤ 0}

∪
{

(x, y) ∈ R :
S ′(y)

B ′(y)
< x ≤ c, 0 < y < y2

}
,

one has that V̇ ≤ 0. Moreover, V̇ vanishes only when y = 0, because we are excluding

the other set of points where V̇ vanishes, which belong to the boundary of G. This set

is given by ∆ = {(x, y) : x =
S ′(y)
B ′(y)

, 0 < y < ∞}. Thus, the equality E = {(x, 0) ∈
G : V̇ (x, y) = 0} = {(x, 0) ∈ G : x > 0} holds.

References

[B] H. Busemann, Intrinsic area. Ann. of Math. 48(1947), 234–267.
http://dx.doi.org/10.2307/1969168
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