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Abstract. The non-linear Schrodinger systems arise from many important
physical branches. In this paper, employing the ‘/-method’, we prove the global-in-time
well-posedness for a coupled non-linear Schrodinger system in H*(R”) when n = 2,
s >4/Tandn = 3,s > 5/6, respectively, which extends the results of J. Colliander, M.
Keel, G. Staffilani, H. Takaoka and T. Tao (Almost conservation laws and global rough
solutions to a nonlinear Schrodinger equation, Math Res. Lett. 9, 2002, 659-682) to
the system.

AMS Classification. Primary 35Q55.

1. Introduction. In this paper, we consider the following Cauchy problem of a
non-linear Schrodinger system:

i + Auyp = pyluyPur + Bluzur, xeR", >0,
iy + Auy = polun|*us + BluyPuz, x€R", >0, (1)
ui(x, 0) = ujo(x) € H(R") and u(x, 0) = uzo(x) € H*(R").

Model (1) has applications in many physical problems, especially in non-linear optics.
There have been many articles concerning this model in the literature, and here we
cite only [1, 4, 5, 9, 10] as references. Recently, the first author and the third author of
this paper have obtained some results about the ground state or blow-up solutions of
system (1) (see [11-13]).

From the physical angle, a very interesting question is whether the global-in-time
well-posedness holds true in some sense when the initial data enjoys infinite energy. In
the pioneering paper [6], Colliander, Staffilani, Tao, and the co-authors obtained the
global well-posedness for the single Schrodinger equation in H*(R”). The aim of this
paper is to extend their results to the coupled non-linear Schrédinger system, exploring
the method given in [6].
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Let us recall some corresponding classical results (see [7, 8, 11, 14, 15]) about the
Schrodinger system in H'(R"). The mass conservation law about (1) reads

lur (DNl 2@y + N2 (Ol 2wy = Nutoll 2@y + Nluzoll 2wy 2

and the energy conservation law is

1
EGu, w)(1) = / SV + Vol

er
1
+ Z/ (ilur|* + palual* + 281 [P |ua))lox
Ru
= E(uy, u2)(0). 3)
Throughout this paper, we make the following assumption on u{, u; and g that the
matrix:
K1 min{p, 0}
[min{ﬁ, 0w } )

is positive definite. To investigate the global well-posedness in H*(R") instead of

H'(R"), we need to introduce a modification of the energy functional which is
‘almost conserved’. Given s < 1 and a parameter N > 1, we define the multiplier
operator

IN(€) = My(E) (), (5)

where the multiplier My (&) is smooth, radially symmetric, non-increasing in |£| and

1, |El <N,

My(§) = (6)

(2)". k=

Note that

E(Iyu, Iyup)(1) < N> (||u1(-, Ol ey + 2 t)||§-,s(R,,))

el G, Ol sy, + m2lltaC, D 7agn + 2181 D, D@
@)

a1 G )1 Feqgeny + N2, Dl sy
< CE(Iyur, Iyun)(t) + Cllurol|72gny + ClltaollZ 2 - ®)

To prove the global well-posedness, it is equivalent to obtain a bound on the H*-norm
of the solution which grows at most polynomially in 7. To be special, we intend to
prove

E(Iyuy, Iyu)(?) < (1 + 0)F, ©

for a positive constant N depending on ¢ and a positive constant L depending on
lu1oll mrsrey + Ilee20 | ). The assumption that matrix (4) is positive definite guarantees
that estimate (9) implies the same bound on the H*-norm.
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Our main results in this paper are the following two theorems:

THEOREM 1. Assume that matrix (4) is positive definite. Initial value problem (1) is
globally well-posed from data (u19, ux) € H(R*) x H(R?) withs > 4/7.

THEOREM 2. Assume that matrix (4) is positive definite. Initial value problem (1) is
globally well-posed from data (uy9, uz) € H*(R?) x H(R?) withs > 5/6.

We remark that our assumption (4) is crucial to the globally well-posed solution to
the system. Similar condition has been used in our blow-up result and stability result
treated in our previous works [11] and [13]. Generally speaking, system (1) has more
phenomenon than the scalar case to discover.

The rest of this paper is organized as follows: In Section 2, we introduce some
notations and preliminaries. In Section 3, we will consider (1) and prove Theorem 1.
In Section 4, we will deal with (1) and prove Theorem 2.

2. Preliminaries. Let us recall some well-known notations. Denote (4) = (1 +
Az)% and (V) for the operator with Fourier multiplier (1 + |§|2)%, while the symbol

V denotes the spatial gradient. Let i+ =1 + e, 1-=1—cand ] - — =1 —2¢ for
some universal 0 < ¢ < 1. Define the weighted Sobolev norms
W lx, = 1€ (@ — EPTE Ol @), (10)
= inf 11
IV1x, wzflgn 0. ¥ llye, » (11

W gy @y = (/R( i |F(x, l)I"dx) dl) . (12)

A pair of exponents (g, r) is called Schridinger admissible for R*! if ¢ and r satisfy

o gr=2 (nq) #(2,2). (13)

ES
o
~
NN

For a Schrodinger admissible pair (g, r) and a function F(x, f) on R"*!, we have
the L7 L’ Strichartz estimate (see [3, 15])

IEN o1y @y < C||F||XO%+. (14)

We next recall a lemma given by Bourgain [2] and Colliander [6].

LEMMA 2.1. Let ¥, ¥y € Xg 1y be supported on spatial frequencies || ~ Ny, N,
respectively. Then for any Ni < N,

1
Ni\?
||1//1-1/fz||quo,,s]XW)sC<—N1> Wil 1W2lixs, - (15)
2 0.5+ 0.5+

holds. Moreover, if we replace the product V| - Yr» on the left with either yry - Yr2 or Yy - ¥,
(15) also holds.

3. The case of n = 2. As argued by Colliander et al. [6], to prove Theorem 1, it is
sufficient to prove the following proposition:
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PrROPOSITION  3.1. Assume that 4/7 <s and ujo(x), ux(x) € Cg"(IRZ) with
E(luyg, Tux) < 1. Then there exists constant § = §(|luioll r2@ey> lu20ll 2m2)) such that
the solution (uy, uy) satisfies

ui(x, 1) € C([0, 8], H(R?), ws(x, 1) € C([0, 8], H(R?))
and
E(Iyur, Inw)(t) = E(Iyuy, Iyuz)(0) + O(N~3%) (16)

forallt €0, 6]

In fact, Proposition 3.1 implies (9) in the following way. By scaling invariance, if
(u1, up) is a solution to (1), so does

1
@ (x. 1), 1 (x, 1) —(— 1(;‘ ;2) ~u (f;@)) (17)

For all A > 0, we have the following estimate, which is similar to case of the single
Schrodinger equation:

Ey®, sy = 1 / (VIVUEP + [V Iyl Py

/ (il Il 1 + palIyusy 14 + 281 Iy P Lyusy 1) dx
< COTHENTE 407 2)(1 + [lroll ey + lluao sy (18)

Moreover, we can choose

1=s

1 N B ,
A= L . |
rnax{N (20%( + lluroll sy + Nuzoll mswe)) } (19)

to achieve E(INu(l%), INum) < —. Reapplying Proposition 3.1 at least C; - N - times,
we arrive at

EUn”, IyilP)(Cy - N378) ~ 1.

Choosing N o~ o and re-scaling back to the original energy, we obtain the desired
bound

E(Iyuy, Iyuio)(T) < C(1 + T) 75+,

For further details, refer to [6].
To prove Proposition 3.1, we need the following proposition:

PROPOSITION 3.2. Assume that 4/7 < s < 1 and we are given the data for problem
(1) with E(Iuyo, Tuy) < 1. Then there exist constants § = §(|luroll 2@y, U0 ll 2wey) and
C such that the solution (u, v) satisfies

Murllxs, + Ml < C. (20)
L+ L+

https://doi.org/10.1017/50017089509005138 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509005138

ON GLOBALROUGH SOLUTIONS TO A NON-LINEAR SCHRODINGER SYSTEM 503

Proof. First we recall some estimates involving the X f » spaces and functions f(x),

F(x,1)
IIS(f)fllel <L W e ey (21
5t
t

H/ S(t —1v)F(x, t)dt L | Fllys (22)

1.-4

0 )(l.%Jr T2
IFlxs , < 8"IFlx (23)

where 0 < < b < %,P: %(1—%)>0.
Duhamel’s principle gives us

t
il = ISO0)+ [ S = urT@m) + i)y,
2 0 7

BNl

< Hupoll ey + M1||1(u1ﬁ1u1)||xf
2

1
2

< Huollmwey + 8 pua L uutiun) llys |+ 8° B (uatioun) o
L—d++ R s

Muxllyxs, = Mullmee + 8 M Gtiou) Ly
gl 1

2

T OB minw)llys - (24

2

By the definition of the restricted norm, we have

||1u1||)(fl+ < Huroll i 2 -l-35#1III(l/fllzfl’#l)IlX;{l++ +5s|/3|||1(¢21/721/f1)lle7 N

1
2

(25)
Mullys = IMuollmee) + 58#2”1(%1}2%)“)(]5 LT 58|ﬂ|||1(¢1&11ﬁ2)||xf "
°2 T2 T2
(26)
where the function v agrees with u; and v, agrees with u; for ¢ € [0, §) and
Ml ~illx,, o Ml ~ 1l (27)
L+ '3 L+ 02
By the results of [6], we know that
@Dl < Ily (28)
T A§+
@ aday)lly, |, < IMYaly | (29)
L-5++ L3+
Now we only need to show that
M@l < I, 179y, (30)
||[(1ﬂ21/_f21ﬁ1)||X117%++ L (Y ||§(],%+ 1l - (31)

We only prove (30), the proof of (31) is similar. Using the interpolation lemma of
[7], we need to prove that

Wty <tk sl , (32)
) sy

+ 5+
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forall 4/7 < s < 1. However, by duality and ‘Leibniz’ rule (32) follows from

s. s.

/R /R (VY o0daosdsdxdi| < lonllx, Noallx,, Ibslx,, sl - (33)

Hence (30) is obtained.
Setting

Q@) =l . Q) =l .
we have
01(8) < IHuroll ey + 8° 11(Q1(8)) + 871B1(Q2(8))° Qi (9),
0:(8) < IHuxll iy + 8 12(02(8))° + 871B1(Q1(8))° Qa(8).
Summing them up, we can obtain that
01(8) + 02(8) =< Hupoll g + 1zl ey + C8°(Q1(8) + 02(8)) . (34)

We emphasize that the above inequality is the analogue of the inequality (3.23) in
[6] related to the single Schrodinger equation. The framework of [6] yields the desired
result in Proposition 3.2. g

Now we give the proof of Proposition 3.1.

Proof of Proposition 3.1. Applying I to equation (1), we can obtain that

W E(luy, Iuy) = Re /w{mlx (rl g PTuy + BlTus Ty — Il Puy + BluaPuy))
+ Tu, (ol Ty + BT Py — Lo luz PPz + Bluy Pun)) v, (35)
Integrating (35) from 0 to §, we have
E(Tuy, Tuz)(8) — E(Tuy, 1u2)(0)

b M — o~ = o~
= /o /24 . (1 (&2 445+ 4) ) p L0,y (S Ty ()T (83) i (54)
=

 M(52) M(83) M(2a)
? M+ 83+ 2a) _ =~
1— /i
+/0 / o ( S M({3)M(§‘4)) BIOuy (&) uz(82)Tuz(83) 1 (84)
b M(n2 + n3 + n4) ) =~ =~
1— ¢
+/0 / - ( V(o) Mrs) M(n) w2l dua (i)l uz(m2)luz(n3)uz(na)
b M(n2 +n3 +n4) ) == o~ =~
1 — ¢ .
+/0 / - ( M) Mrs) M(n) BIowa(m)lur(n2)lur(n3)ua(ns)
(36)
Denote
M@ +3+8) )
L =(1- )
1©) ( M(2) M(t5) M(2)
M2+ 03+ 14) )
L =|1- .
) ( M(1s) Mns) M(ns)
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Using the equations of (1), we substitute for d,u; and 9,u, in (36) and we will show that

8

Z Term; < N3, (37)
Jj=1
where
8 —_— —_— o
Term; = /0 /24 . 1 L1 (§) ATuy (§1)Tui (22)Tuy (83)Tui (L4), (38)
=1 5=

—

) e —_
Term; = | /Z L LGl P+ Bl P )T e T @) 6o, (39)
j=1 &=

6 _/\ be— _—
Terms = [ [ BLUOBTn G R e i 6, (40)
j=1 5=

—

s e e
Termy = [ BL TGl + flePu)a) e e @, @
j=1 5=

6 —_— — o
Terms = / /Z . wa Lo(m) Aduy(n1)Tuz(n2)Tua(n3)1uz(n4), (42)
0 /:1{,’=0

—

b e —
Termg =/ /24 o Lo (2 luz|?uz + Blu [Puz) () Tua(n2)Tuzx(3)Tuz(na), (43)
0 =1 {,:0

—

6 — _ —_—
Termy = [ [ BLa) AT i T ) i), (44)
j=1 5=

—

s e P
Termg = / / BLy (I (12 |uPtt + Blu Pu2)(m)Tus () Tus (n3)Tur(na). (45)
0 Z?:l §=0

By the results of [6], we know that

? M+ 8+ )i I
[ (1= St ) e (eic)

3 _
< CNTHNINNND Nl Nallx, sl Ibsllx | (46)
2 7 51 2
for any functions ¢; (j =1, ..., 4) with positive spatial Fourier transforms supported
on
(&) ~ 25 = N (47)

for some k; € {0, 1,...}.
Letting ¢y = Alu (k=1,2), ¢ =ITux (j=2,3,4,k=1,2) in (46), we obtain
that
Term; + Terms; + Terms + Term; < CN -3, (48)

Now we need to estimate Term,, Termy, Termg, Termg.
First we consider Term,.
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It is easy to see that |Termy| < |Termy| 4+ | Termy;| with

4
=1 §=0

8 @ o — o
Termy, =f /Z o Ly () ([ [Py )(S)Tun (§2) Ty (83) 1 (84),
0

s e . — -
Term» =/0 /Z i Ly () I(Blua 2w ) (1) Tury (£2) Tuy (83)Tui (84).

4
=1 §=0

By the results of [6], we know that

6 —/\ — b —
L[ P T + &+ eI T es Tanco
j=1 5=

6
< CNigN‘?_l_[”I(p_/”X],%ﬂ )
J=1 )

where 0 < ¢; is supported for |&]| ~ N; = 2% and
N4> Ns>Ng and Ny > CN, (50)

while let Py,,, be the projection onto functions supported in the Nj»3 dyadic spatial
frequency shell.

Letting ¢; = ui(j=1,2,...,6) in Termy; and ¢y = ¢ = ur, ¢; = u; (j =3, 4,5,
6) in Term,,, using (49), and proceeding exactly as in [6], we finally obtain that

ITerm,| < CN 2. (51)
Similarly, we can get the bounds for Termy, Termg, Termg. Proposition 3.1 is

proved. O

4. The results in R?. Similar to the proof of Theorem 1, we only need to prove
the following proposition:

PROPOSITION 4.1. Assume thats > 5/6, N > 1, (ujg, ux) € CgO(IR3) X Cg"(R3) with
E(Inuyo, Inuny) < 1. Then there exists a universal constant § such that

(u, v) € C([0, 8], H*(R?)) x C([0, 8], H*(R?))

satisfies
E(Iyur, Iyup)(1) = E(Iyuy, Iup)(0) + O(N~'F) (52)
forallt €0, 8]
Recall too (u(l'\) (x, 1), u(z'\) (x, 1)) as the scaled solution defined in (17). For n = 3 and

all » > 0, we have

1
E(Iyuyy. Iniiyy) = 5 /R (VIvug P + VI P)dx

< CoM TENTE( A+ ol sy + Nluzoll sy (53)
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Moreover, we can choose

25-2

N 12 4
A= ———0+ lluoll @) + luollmrs)) ==} (54)
(2C) ™=
such that E(/, Nu(l%), 1 Nu(z%)) < 1/2. Reapplying Proposition 4.1 at least C; x N'~ times,
we get
E(Iyi?, Inl?)(CIN'™ x 8) ~ 1. (55)

Choosing NG=)~ ~ T, and re-scaling back to the original energy, and noticing
that in three dimensions

1
Bl Ity 020 = ~ (i, Ivils )0,
we can obtain that

1—s4

E(nu? Inu$")(To) < AE(Iyus”, Inu§") (32 To) < T

Hence we can achieve that
1-s
o | ey (T) + N2l o (T) < C(1 + T)&5. (56)

To prove Proposition 4.1, we need the following proposition:

PROPOSITION 4.2. Assume that 5/6 < s < 1 and (u19, uy) satisfies E(uyg, ux) < 1.
Then there exist a universal constant § > 0 such that

Vel
0.

"7

+ Vi, = C. (57)
+ 5+

Proof. Using Duhamel’s principle, we get that

IVIullys < IV Iuollmwe) + 8" IVIQi i un) | ys
! -

1
S+

2

+ 8 1BVl | (58)
19Tl < VTl + 8 pall Vo)l x|
2 2

+ 8 BIVI@ )l | (59)

By the definition of the restricted norm, we have

IV 1uy “Xf LS IV Tuioll g ey + 8° ||V1(¢11p1¢1)||xf

R
+ 8 BIIVIW Yyl xs " (60)
)
IVIuzllys | < IVIullmge) -lr58#2||V1(¢21/_f21/f2)||x;S -
4 !
+ 8 BIVIG YY) K (61)

2
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where the function v agrees with u; and v, agrees with u; for ¢ € [0, §) and

IVIurllys . ~IVIYilly , o (VIwly  ~IVIYaly, , - (62)
Lis Ly+ i Lot
By the results of [6], we know that
IVI@au)ly | < IVIuly , . (63)
0.~ ++ 0.5+
VIl | < IVinl,, - (64)
Now we only need to prove that

IVI@mw)lly < IVInly | IVIwly, , (65)

0,—5++ 0.5+ 3t
IVIGuu)llys < IVIuly | IVIwly, , - (66)

0.—5++ 0,5+ 3t

By the results of [6], and applying a Leibnitz rule for the operator VI and duality,
one can show that

(67)

L
.3+

3
VD@1 - 2+ 65 - Wl < Clvllx,, [T1Vllx,
S =l

Letting ¢; = ux (j=1,2,3,k=1,2) in (67) and proceeding as in [6], we can obtain
(65) and (66).
Setting

0i1(6) = IIVIurllys  » Qa) = IVIwzllys
L+ Ly+
we have

01(8) < IVIuoll ey + 8¢ 111(Q1(8))* + 8181(02(8))* Q1 (8),
02(8) < IIVIux |l g we) + 8 112(02(8))° + 8181(01(8))* 02(5).

Summing them up, we obtain
01(8) + 02(8) =< [IVIupoll ey + IV Tz |l ey + €87 (Q1(8) + 02(8)) . (68)
And by continuity we obtain

IVIulxo  +IIVIa|lyo - < C. u
Ly+ L+
Proof of Proposition 4.1. Applying I to equation (1), we can obtain

3

3 E(Iuy, Iuy) = Re f {Tur, (T 1P Ty + BlTua | Tuy — Iy |un Puy + Blual*uy))
R

+ Tuy, (pol Tuo P Tuy + BT P Tus — I(polua*us + Blur*un)) } dx.
(69)
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Integrating (69) from 0 to §, we have
E(Tuy, Tup)(8) — E(Tuy, Tu2)(0)
5 M+ 6+ =~ =~
:/ /24 (1 Lo k<) >M113ru1(El)lul(§2)1u1(§3)1u1(§4)
0 j=1 §f=0

 M(&) M(g3) M(Zs)
’ Mo+ + &) ) =~ =~
+ 1-— 1o I 4 4
/0 /‘Z?l ;,:o( M (@) M) M(G) BI3u1 (§1)Tux($2)Tur(83)uy(84)
b M(n2 + 13 + n4) )2 ~ =~
+ 1— 10 i 4 4
/0 /Z_?l n_,-=o( M(np) M) M(ra) () uz(n2)1ux(n3)1uz(na)
b M(n2 + n3 + n4) ) _ o~ =~
+ 1-— 10 I i ! . (70
[ /Z - (1= St D)) o )T ). (70)
Denote
M(& + &3+ &4) )
L =(1- ,
@) ( M(z2) M(cy) M(z)
M(n2 4 n3 + n4) )
L =11- .
201 ( M(n2) M(ns) M(na)
Using the equations given in (1), we substitute for d,u; and 9,u, in (70) and we will
show that
8
ZTermj <« N7, (71)
Jj=1
where
4 — _ —
Term; =/0 f24 OMlLl(C)Alul(Cl)1141(42)1”1(43)1”1({4), (72)
j=1 5=

—

s . e
Term, = /0 /24 . s Ly (s Pur + BluaPun)(€0)Tur (6)Tur (¢3)Tui(¢s), (73)
j=1 5=

§ — — _ —
Term; =/0 /4 OﬂLl(C)Alul(§1)1u2(§2)1u2(§3)1u1(C4), (74)
j=1 5=

—

8 e —_—
Termy = /0 /24 OﬁLl(C)I(Mllullzul + Blua [Pun) () ux(§2)ux(83)ur (&), (75)
j=1 5=

—

8 — P
Torms = [ [ oLy Tust) st T T (76)
0 j=1 (/:0

—

s —_
Termg = / /24 paLo(mI (paluaPus + Blur [Pu2) () Tuz(n2)Tuz(n3)Tuz(ns), (77)
0 =1 (/:0

5 —_— —
Term; = / /24 BLy () ALuz(n1)ur (n2)1ur(n3)1uz(na), (78)
0 =1 EJZO

$ C— — o~
Termg = [ [ AL Gralia e+ Bl P o) ()T ) (). (79
j=1 5=
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By the results of [6], we know that

S -~ —~ = o~
/ / 4 (1 M + 6 + ) >¢Tl(§1)¢2(§2)¢3(§3)¢4(§4)
0 Z,‘:ﬂ/:o

T M(5) M(53) M(2a)

N

< CN7'C(N1, Na, N3, Nolinlly [ IVl (80)
i 2

for sufficiently small C(Ni, N2, N3, Ns) and any functions ¢;(j=1,...,4) with
positive spatial Fourier transforms supported on

() ~25 = N; (81)

for some k; € {0, 1,...}.
Letting ¢y = Alug (k= 1,2), ¢; = Tur (j = 2, 3,4,k =1, 2) in (80), we obtain

Term; + Term; + Terms + Term; < CN L. (82)

Now we need to estimate Term,, Termy, Termg, Terms.
First we consider Term,. It is easy to see that |Term;| < |Termy;| + | Termy;| with

4
=1 §=0

8 - o — o
Term,, =/ /Z o Ly () (e [ [Py )(§)Tun (§2)Tuy (83) 1 (84),
0

$ e —, — = —
Term22=/0 /Z i Ly () I(Blua 2w ) (1) Tur (£2)Tur (83)Tur (84).

4
=1 5=0

By the results of [6], we know that

5 . o
[ L b@r,Teeee + o + el
0 JYmig=0

6
< CN73NY™ I1 il , - (83)

where 0 < qu is supported for || ~ N; = 2% and
Ns > Ns > Ng and N4 > CN, (34)

while let Py,,, be the projection onto functions supported in the Ni»3 dyadic spatial
frequency shell.

Letting ¢ = uy (j=1,2,...,6)in Termy; and ¢; = ¢y = uy, ¢ = uy (j=34,5,6)
in Termyy, using (83) and proceeding as in [6], we can obtain

|Term,| < CN~!. (85)

Similarly, we can get the bounds for Termy, Termg, Termg. Proposition 2 is
proved. O
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