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1. Introduction

Freudenthal [5,7] defined a compactification of a rim-compact space, that is,
a space having a base of open sets with compact boundary. The additional points
are called ends and Freudenthal showed that a connected locally compact non-
compact group having a countable base has one or two ends. Later, Freudenthal
[8], Zippin [16], and Iwasawa [11] showed that a connected locally compact group
has two ends if and only if it is the direct product of a compact group and the reals.

Using Freudenthal's theory, Hopf [10] introduced a parallel theory of ends of
finitely generated infinite discrete groups. Hopf showed that the number of ends
is one, two, or is infinite and he characterised groups with two ends as being in-
finite cyclic by finite. Freudenthal [6] expressed the theory in combinatorial
terms and this approach was used by Stallings [14] to characterise finitely gene-
rated groups with infinitely many ends. By formulating the theory algebraically,
Specker [13] extended it to groups which are not finitely generated and showed
that such groups have one or infinitely many ends.

Specker [13] also developed a theory of ends of locally compact Hausdorff
groups, which generalises the theory for discrete groups and also the topological
theory, when the group is sufficiently nice. We consider a generalisation of Spec-
ker's theory to right coset spaces X = GjH where G is locally compact Hausdorff
and if is a closed subgroup. A Q-end of AT is defined as an ultrafilter of non-compact
closed subsets S of X such that SV\S is relatively compact for all relatively com-
pact neighbourhoods V of 1 in G. In the discrete case, the Q-ends of G are the
group ends of G. For connected G, we show that the g-ends of X = GjH coincide
with the Freudenthal ends of X. Our proof depends on a result of Abels [1] that
a connected locally compact group has a compact connected neighbourhood of
the identity. We show that, for any X, the g-ends of X are the additional points
in a zero-dimensional compactification X* of X belonging to a general class dis-
cussed by Freudenthal [7].
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Most of our results on the number of g-ends are proved by analogy with
corresponding results for discrete groups (see Cohen [3]). In Theorem 3.7, we char-
acterise those X = G/H having two Q-ends, under the assumption that N/H is
non-compact, where N is the normaliser of H in G. In Section 4 we show that
if G is compactly generated and N/H is non-compact then the number of g-ends
is one, two, or infinite. If the connected component of 1 in NjH is not compact,
then X has one or two g-ends. Finally, if G is locally compact and has a closed
compactly generated subgroup D such that D and G/D are not compact, then G
has one g-end if D is a normal subgroup, and otherwise has one or infinitely many
g-ends.

I am grateful to the referee for his comments, in particular, for informing
me of the related work of Abels [1]. I thank Dr. Abels for a preprint of his paper
and for drawing my attention to the paper of Specker [13].

Throughout the paper, all spaces considered will be Hausdorff.

2. Compactifications

We begin by describing a class of compactifications of a rim-compact space X,
introduced by Freudenthal [7]. Suppose A is a base of open sets with compact
boundary such that if S, Te A then SVT,S n T and X\SeA. A family of sets in
A is a binding family if the intersection of the closures of the sets in any finite
subfamily is non-empty. We define X* to be the set of maximal binding families
and take as a base for the open sets of X* all sets ip(S) = {JC* e X* : 0 £ S for
some U e x*}, where S e A. Then X* is a compact Hausdorff space and the map
x -»<j)(x) = {S e A : x e S} is a topological embedding of X in X*; the space X*\X
is zero-dimensional. In the case where A consists of all open sets with compact
boundary, X* = FX is called the Freudenthal compactification of X.

We find it useful to give a different description of the compactification X*
defined above. Let C be the base for the closed sets of X consisting of the comple-
ments of all sets in A.

LEMMA 2.1. The compactification X* of X associated with A is homeomor-
phic to the set Y of C-ultrafilters with topology given by taking as a base for
the closed sets all sets 6(T) = {eeY:Tee), where Te C. Each xeX corresponds
to the ultrafilter of sets in C containing X. In the case X* = FX, C consists of
all closed sets with compact boundary.

PROOF. If I(T), F(T) denote respectively the interior and boundary of a closed
set T, then T = I(T) U F(T) and for Te C, I(T) e A and F(T) is compact. For
x* eX* let a(x*) = {TeC:T n D"=i^i * 0 f«r all subfamilies {Ult-, Un} of
x*}. We show <x(x*)e Y. Suppose firstly that for some Tex(x*), V= I(T)$x*.
By Lemma 2 of Fan and Gottesman [4], there exists We x* such that V(~\W = 0.
Thenforall Uu -,Un ex*, Vc\W r\ n?=i^,- = 0 ;bu t Tr\Wc\ n " = i # i ^ 0
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so D n n"=i^j # 0 where D = F(T). Thus the family of all subsets of form
D n P|"=! U( of the compact space D has the finite intersection property and so
for some x e D, x e U for all U e x*. Since x* is a maximal binding family,
x* = (/>(x) and a(x*) is the C-ultrafilter consisting of all sets Te C which contain
x. In the remaining case, if Tea(x*) then J(T)ex*. Thus if TuT2e<x{x*) then
7\ n T2 2 7(77) n7(7y and 7(77) >̂ 7(77) n n"-i^i * 0 fo r all
t/j, •••, [/„ ex* so 7\ n T2 e<x(x*). Hence a(x*) is clearly a C-filter and if Se C
and S O T ̂  0 for all Te a(x*) then, since f|"= I ̂  e <*(**) for all t/j , • • •, C/B e x*,
we have S e <x(x*) and so <x(x*) is a C-ultrafilter. Conversely, given a C-ultrafilter
e, let / denote the family of open sets with closure in e. Clearly / is a binding
family. If e contains a compact set then f | T e e T= {x} for some xeX and
/ = </>(x), e = off). Otherwise if T = f(f) U F(T) e e then 7(T) e e. It follows that
/ is maximal and clearly e = oe(/). Thus we have a bijection between X* and the
set Y of C-ultrafilters. This becomes a homeomorphism when we take as an open
base for Yall sets a\j/{S) = {eeY:T^ S for some Te e}, where SeA. The result
now follows.

Similar results have been obtained by Banaschewski [2] and Njastad [12]
with C replaced by the set of finite intersections of closures of, respectively, the
regular open sets in A and the sets in A. Their methods apply to the more general
compactifications of Fan and Gottesman [4], whereas our method does not.
Suppose C is any base of closed sets of X with compact boundary such that if
S, Te C then S U T, S n T, and X\fe C. Then the set A of complements of sets
in C satisfies Freudenthal's conditions and so we have an associated compactifica-
tion Y as defined in Lemma 2.1. In fact one can show that C is a Wallmann basis,
in the sense of Banaschewski [2], and then Y is the associated Wallmann-type
compactification. It is then straightforward to check directly that Y\X is zero-
dimensional.

Let G be a locally compact group and denote by B = B(G) the set of all
relatively compact neighbourhoods of 1 in G. Let H be a closed subgroup of G
and let X be the right coset space G/H. We define Q = Q(X) to be the set of all
closed S £ X such that SV\S is relatively compact for all VeB. Then Q contains
all compact subsets of X and all closed subsets with relatively compact comple-
ments.

THEOREM 2.2. The sets in Q have compact boundary and form a base for
the closed sets of X. If S,Te Q then SuT, SnT, and X\Se Q.

PROOF. For SeQ and VeB,(X\S)VnS c (SV'^V, which is relatively
compact. Then

F(S) = S nx\S = S n n (X\S)V= n (X\S)VnS,
VeB VeB

so F(S) is compact. Since Q contains all closed sets with compact complements,
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itis a base for the closed sets of Z. If S,TeQ and Ve B then (S U T)V = SVVJTV
and (S n T)V £ SFOTF so (S U T)F\(S u T) £ (SV\S) U(TF\T) _and
(S n T)F\(S n r ) g (SF\S) U (rF\T). Finally, if SeQ and VeB, ~X\S
= (X\S)VF(S) so (X^F/(I \S) g p \ S ) K n S ) UF(S)F, which is relatively
compact.

From now on, let X* denote the compactification of X associated with Q.
Thus X* is the space of Q-ultrafilters with a base for the closed sets given by all
0(T) = {eeX* :Tee} , where TeQ. The embedding of X is given by
x -> {Te Q : x e T}, and X*\X is zero-dimensional. We call the elements of X*\X
the Q-ends of X and denote X*\X by E(X). Since X is locally compact, the 2-ends
consist precisely of those g-ultrafilters containing no compact sets. The elements
of FX\X will be referred to as F-ends and, in the same way, they consist of those
ultrafilters of closed sets with compact boundary which contain no compact sets.

If G is discrete and H is trivial then a subset S of G is in Q if and only if
SV\S is finite for all finite subsets V of G containing 1. This is equivalent to the
condition that (Sg O(G\S)) ^(Sg'1 n(G\S))g = (Sg U S)\(Sg C\S) is finite for
all g e G. Then £(G) consists of all ultrafilters of infinite sets of this type, and
this is precisely the usual definition of the set of ends of a discrete group (see
Cohen [3]). At the other extreme, the next theorem shows that when G is connected
the Q-ends and F-ends of G/H coincide. This generalises to coset spaces the result
of Specker [13] for H = 1. In our proof we use the result of Abels [1] that a
connected locally compact group has a compact connected neighbourhood of 1.

THEOREM 2.3. Let G be a connected locally compact group with closed sub-
group H. Then X* = FX, where X = G/H.

PROOF. It is sufficient to show that if S c X is closed and has compact boundary
then SeQ. Let We B and suppose Fis a symmetric compact connected neighbour-
hood of 1. Then V1 is connected for all i and, since G is connected, G = U ^ i ^
and W £ F1' for some i. Then SW\S £ SV'\S and the result will follow provided
SU\S is relatively compact for any symmetric compact connected neighbourhood
U of 1. But, for some xu-,xneX, F(S) £ lU"=i*i£7- KxeSU\S then xU n S
*0 ¥= xU n(X\S) so xUnF(S) ^ 0 and xe \J"=iXiU2, which is relatively
compact.

THEOREM 2.4. Let K be a closed subgroup of G containing H and such that
KjH is compact. Then the natural map n : GjH^> G/K = Yinduces a continuous
map from E{X) onto E{Y) which is a homeomorphism if K is normal in G and
H = 1.

PROOF. We note that n and 7c"1 preserve relative compactness and that n is
a closed map. If SeQ(X) and VeB then n(S)V\n(S) = n(SF)\ji(S) £ n(SV\S)
so n(S)eQ(Y). Conversely if TeQ(Y) then, for VeB,
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n-\T)V\n~\T) = n-\TV)\n~\T) £ n~\TV\T),

which is relatively compact, so n~1(T)eQ(X). If eeE(X) and S,Tee, then
n(S)nn(T) 2 n(S n T)en(e) and it follows that n(e) is a subbase for a Q(7)-
filter rc^e). If TeQ(Y) and Tr>n(S) # 0 for all See, then T C ^ T ) OS # 0
for all See and so n-1(T)ee. Then re7r(e) and hence nx(e) = n(e) is a g(Y)-
ultrafilter which clearly contains no compact sets. If/e£(Y)then n~1(f) is a sub-
base for a 2(X) -filter and / is then the image under n of those g(X)-ultrafilters
containing n~1(f). Thus n :X -> Y extends to a map from X* onto Y* which is
clearly continuous and takes E(X) onto E(Y).

Suppose K is normal in Gand H = l; so X = G. For/e£(Y), 7i~1(f) is a sub-
base for a g(G)-filter. Suppose SuS2e Q(G) and Sx O rc" '(T) # 0 ^ S2 n TT" \T)
for all Te/. Then niSJ O T # 0 ^ rc(S2) n T so reCSi), 7t(S2) e / and hence
^(SJnrtCSa) is not compact. Then StX nS 2 X = ^"'(^(S!)) nTr-^^Sa))
= n~1(7r(S1) n TI(S2)) is not compact. Since K is compact, K £ Kfor some FeB.
Then S^Si E S ^ ^ and S2K\S2 £ S2F\S2 so S ^ ^ i and S2K\S2 are rel-
atively compact and S1 nS2 ¥= 0 . Thus 7r-1(/) is contained in a unique Q(G)-
ultrafilter and the restriction of n to E(G) is injective. Let a : E(Y) -* £(G) denote
the inverse of the restriction of n to E(G). A base for the closed sets of £(G) is
given by all fi(S) = {ee£(G) : S e e } , where Seg(G), and then n(ji(S))
z{feE(Y):n(S)ef}. Given/e£(Y)such that n(S)ef, then7t"1«S))= SKe<7(/).
Now iC E Ffor some VeB, and then S/C\S s SF\S, which is relatively compact.
Hence S e <r(/) and/e TT(KS)). Thus TT(/Z(S)) = {/e £(7): n(S) ef}, which is closed
in E(Y). Hence c is continuous and so £(G) and £(Y) are homeomorphic.

The assumption that K is normal is essential for the last part. For let G be
the discrete infinite dihedral group (a,b :b2 = b~1aba = 1> and let K = <b>.
Then (see Cohen [3] or Theorem 3.7 below) G has 2 Q-ends but it is straightforward
to check that any set in Q{GjK) is finite or has finite complement and so GjK has
just 1 Q-end.

THEOREM 2.5. Let Lbe a closed subgroup of G containing H such that GjL
is compact. Then E{X) and E(L/H) are homeomorphic.

PROOF. Let Z = LjH. Since GjL is compact, there is a compact subset C of
G such that G = LC. If Ve B(G) is closed and symmetric, then W = VuCUC'1

is a closed symmetric member of B(G) and G = LW, X = ZW.lt UeB(G), then
U = U HLWc {UWC\L)W and clearly UWnLeB(L). Thus if TeQ(Z) and
Fe£(G), T H ^ r W E T(WVWnL)W\TWs (T(WVW C\L)\T)W, which is rel-
atively compact, so TWeQ(X).

If SeQ(X) and KeB(L) then FsFWeB(G) and (SnZ)Vl(SnZ)
SZn(SV\S) so SC\ZeQ(Z). Now S = S nZH^c {SWr\Z)W£ ((SW\S)

so, if SnZ is compact, S is also compact. Thus if eeE(X),
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{S n Z : S e e) is a subbase for a Q(Z)-filter. Suppose 7\, T2 e Q(Z) and Tx n S n Z
# 0 # T2 OS OZ for all See. Then T ^ n S ^ 0 # r 2 l f r iS and so T̂ W,
T2fFee and 7 ^ 0 T2Wis not compact. Now T^WnT2W £ (T, n T2ff

2)PFand
since the cosets in Tx and T2 are contained in L, we have

Ti n r2w2 = 7\ n T2(W
2 n i ) = (T, n T2) u(T t n (T 2 (^ 2 nz,)|T2)).

Thus (7\ O T2)Wis not compact and 7\ n T2 ^ 0 . Hence {S n Z : S e e} is con-
tained in a unique Q(Z)-ultrafilter x(e). If Ter(e) then TWee so r(e) contains
no compact sets and r(e)e£(Z).

For/e£(Z), {TW: Tef} is a subbase for a Q(X)-filter. Suppose S^ S2 e Q(X)
and Si n TfF # 0 # S2 n TWfor all Te/. Then Sj WO T ^ 0 # S # n T, so
SiWnZ, S2 WC\ Z e/and thus StWnS2Wn Z is not compact. Now St Wr\S2W
S(S1W2nS2)^c((S1W2\S1)U(S1 nS2))W, so Si OS2 # 0 . Thus { T W I T E / }

lies in a unique Q(Z)-ultrafilter CT(J). If Se<r(/) then SWnZ e/socr(/) contains
no compact sets and a(J)eE(X). If Te/then (TWO Z)\T s (TO ZW){WC\ L)\T
= T(WnL)jT, which is relatively compact, so TWOZe/and hence xa(J) = / .
Similarly, if esE(X) and See then SWee and, since (SWnZ)W\S £ SPF2\S is
relatively compact, (SWC\Z)Wee and hence at{e) = e. Given SeQ(X) and
eeE(X), See if and only if SWnZei(e), so % is a closed map. Given TeQ(Z)
and / e £(Z), T G / if and only if TWe o(j) and so a is a closed map. Thus E(X)
and £(Z) are homeomorphic.

3. Coset spaces with two ends

In this section we assume that G is compactly generated and hence there is
a compact symmetric neighbourhood V of 1 such that G = Ur=i^'- Then if
WeB,W^ V1 for some i. Also X = G/H = {Hg :ge U.™ i*"'} where, as before,
H is a closed subgroup of G.

LEMMA 3.1. In this situation, a closed subset S of X is in Q if and only if
SV\S is relatively compact.

PROOF. For ij ^ 1, SVi+j\S s (SV'\S)VJ KJ(SVJ\S), so if SV\S is relatively
compact, SV'\S is also relatively compact, for ( ^ 1. If WeB then W ^ V1 for
some i and SW\S s SF'\S. The result now follows.

If Wis a symmetric neighbourhood of 1 in G, we say S ^ I i s W-connected
if, given any two elements x,yeS, there is a W-chain in S joining them, that is,
there exist wlt •••, wne W such that y = xwt ••• wn and xw, ••• w m eS for m ^ n.

LEMMA 3.2. / / KGB is symmetric and G = ( J ^ i ^ ' f / i e " eacn SeQis VJ-
connected for some j .

PROOF. If R = (X\S)VnS then R £ (SV\S)V, so /? is relatively compact.
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Now X is F-connected so we may assume S ^ X. Let The a maximal F-connected
subset of S. Then there is a F-chain from a point in T to a point in Z\S and, by
the maximality of T, for some y e T, v e F we have yu E X\S. Then )> e R so T n i?
# 0 . Let (7 eB be symmetric and such that U2 £ V. Since i? is relatively compact,
R £ \J1=ixiU f°r s o m e xte X. If Tu T2 are maximal F-connected subsets of S
and for some xt, 7\ O x;[/ ^ 0 =£ T2(~\ xtU then 1 ^ 0 7 2 ^ 0 . Thus the num-
ber of maximal F-connected subsets of S is finite. If Hyu ••• ,Hym are represen-
tatives of the different ones, with yt e G, then for some;, yj 1yi e VJ'for i = 1, • • •, m,
and so S is F-'-connected.

LEMMA 3.3. Let G be compactly generated and let N be the normaliser of
H in G. Suppose SeQ. For TeQ, let Ls N consist of those geN such that
gTsS or X\gT c s. If n:G-*G\H = X denotes the natural map, then
S n n(N\L) is relatively compact.

PROOF. Let U = X\S. Then U e Q and, by Lemma 3.2, we may assume U is
F-connected, where FeB is symmetric and G = [JfL^'. If g eM = N\L, then
gTr^U 5^0 ^ (X\gT) O U and, since U is F-connected, there are elements
ye0rn l / , i>eFsuch that yve(X\gT) n U. Thus if R = TV/T, gRnU # 0 .
Now i? is relatively compact so R s 7r(F;) for some i. Thus for g eM, 0 #
n [/ = TT(0F') n t/ and n(g) £ t/F1'. Thus TT(M) S [/Ff and, since S =
U(S n [/), S nn(M) £ (t/F'\C/) U(S O [/), which is relatively compact.

LEMMA 3.4. Let G be compactly generated and let n:G-+ G/H = X be
the natural map. Suppose SeQ is such that S and U = X\S are not compact
and let K^N = NG(H) consist of those geN for which (gSriU) U(gUnS) is
compact. Ifn(K) is not relatively compact then G = HCW, where C is a discrete
infinite cyclic subgroup of N with H O C = 1 and W is a compact symmetric
neighbourhood of 1. Then | E(X) | = 2.

PROOF. Changing the roles of S and U if necessary, we may assume n(K) O U
is not relatively compact. Since F(S) is compact, I(S) # 0 . Take xeS and an
open symmetric VeB such that x F £ S. Then T= S n(X\xV)eQ. By Lemma
3.3, with U replacing S, there is an element c~1eK such that c~1Tz U or
X\c~xT^ U.~&x\tc-yTC\U s c ^ S n l / , which is compact, so c~1T 2 X\U and
c - ^ a X\[7 = S. Then c S c S and c"Sc S for all n > 0, so cn£# and, if
C = <c>, C is infinite with C n H = 1 and C 5£ N. Suppose R is a relatively
compact subset of X and c"xeR for infinitely many n. For some *!,••• ,xre^r,
R £ XiFu--- UxrFand hence for some m,n,i with m > n, cmx,c"xeXiV. Then
c m x F n c " x F # 0 and c m ~ " x F O x F ^ 0 . But cm~nxV£ cm"nS £ cS £ T
£ X\xF. This contradiction shows that any relatively compact subset of X con-
tains only finitely many c"x. Hence C is not relatively compact and so is a discrete
subgroup of G.
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For « > 1 , c"S £ X\xV so c"Sr\xV=0 and c~nxeX\S. Suppose
z e f|"=1c"S. Then z = xg'1 for some geG and c~"xeSg for n > 1. Now
{1,0} £ Fo, for some VoeB, and, for n > 1, c~"xeSg n(X\S) £ SF0\S, which
is relatively compact. This contradicts a previous remark and we conclude that
nr=ic"S = 0 . If n > 0, c".xK£ S and, since S n [/ = F(S) is compact, for
some k, c"x eX\U for n ^ /c. An argument similar to the previous one now shows
n?=*c-"l/ = 0 . For « ^ 0, c"S £ s so X\S £ c\X\S) and

x = s u u = u (s\cs) u u (u\c-nu)
n=0 n=0

n=0 n=0

£ C((S\cS) U(c[/\t/)) £ C(S Ocl/).

Since c e K, S n cU is compact and so for some compact symmetric neighbour-
hood Wof 1 in G, S O cU = ?r(W0 and hence G = #CW. Since C is discrete, it is
a closed subgroup of G and so HC is closed in G. Now HC/H is a discrete infinite
cyclic group and so has 2 Q-ends and, since G/ifC is compact, G/H has 2 g-ends,
by Theorem 2.5.

The results of Freudenthal [8], Zippin [16], and Iwasawa [11], characterise
a connected locally compact group with two F-ends as being the direct product
of a compact group and the reals. Hofmann and Mostert [9] consider the class
of locally compact groups which can be compactified by adding two non-isolated
points and they characterise those for which the connected component of 1 has
compact coset space. Groups with two Q-ends are in this class, but so are all
discrete groups. We use the following result.

THEOREM 3.5. (Hofmann and Mostert [9, p. 63,64]). Let G be a locally com-
pact group such that the component of the identity is not compact. Suppose G
has a discrete infinite cyclic subgroup with compact coset space. Then either G
or a subgroup of index two in G is a direct product of the reals and a normal
compact subgroup Lof G. In the second case GjL is topologically isomorphic to
the split extension of the reals by the involution x -> — x .

To complete the description of groups with two Q-ends we use the character-
isation of discrete groups with two ends and the following weak form of a result
ofWu.

THEOREM 3.6. {Wu [15]). Let G be a locally compact totally disconnected
group containing a discrete free abelian subgroup having compact coset space.
Then G has normal subgroups K, Lwith K^L such that GjK and L are compact
and KjL is discrete.
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THEOREM 3.7. Let H be a closed subgroup of a compactly generated group
G. Suppose N/H is not compact, where N = NG(H), and let No/H be the con-
nected component of I inNjH. Then \E{GjH)\ = 2 if and only if N/H has normal
subgroups M/H and LjH, with M ^ L, such that GjM and LjH are compact and
(i) if No/H is compact, MjLis discrete infinite cyclic or infinite dihedral,
(ii) if No/H is not compact, either MjH or a subgroup of index 2 in MjH is the
dirct product of LjH and a group topologically isomorphic to the reals; in the
latter case, M/Lis isomorphic to the split extension of the reals by the involution
x -» — x.

PROOF. If G/H has the described form then, by Theorems 2.4 and 2.5,
|E(G///)| = |E(M/L)|. NOW M/L has a discrete infinite cyclic subgroup having
compact coset space and so | E{GjH) | = 2. Conversely, if X = GjH has 2 g-ends
e and/ then for some SeQ, See and U = X\Sef, so S and U are not compact.
The left action of N on X* clearly permutes e and / and, if K consists of the
elements of N leaving the ends fixed, | N/K\ = 1 or 2. If g eK and gS n U is not
compact, then gS nUef and S r\g~lUef. Then / contains the compact set
S n g r ' l / n c / , which is impossible. Thus for geK, (gS nU)u(gU OS) is
compact. If n : G -»• X is the natural map then n(K) is not compact so, by Lemma
3.4, G = HCWwith C a discrete infinite cyclic subgroup of N and ^compact. Then
G/N is compact and the group n(N) has a discrete infinite cyclic subgroup with
compact coset space. In case (ii), the result, with M = N, is now immediate from
Theorem 3.5 since n(N) has 2 g-ends.

In case (i), 7r(iV0) is compact and JVt = n(N)ln(N0) is a totally disconnected
locally compact group having a discrete infinite cyclic subgroup with compact
coset space. By Theorem 3.6, Nt has normal subgroups N2, N3, with N2 ^ N3,
such that N1/N2 and N3 are compact and N2IN3 is discrete. By Theorems 2.4
and 2.5, \E(N2IH3)\ = \E(X)\ = 2 and so (see Cohen [3]) N2IN3 has a finite
normal subgroup NJN3 such that N2/N4 is infinite cyclic or dihedral. Taking
M and L as the inverse images of N2 and N4 respectively under the natural map
7i(iV) —»• JVj, we obtain the result.

4. The number of ends

THEOREM 4.1. Let G be compactly generated with closed subgroup H and
let X = G/H, N = NG(H). If N/H is not compact, then \E(X)\ = 1, 2, or is
infinite.

PROOF. Suppose E(X) is finite. Then the left action of N on E{X) induces a
finite group of permutations of E{X) so N has a normal subroup M, with JV/M
finite, such that M leaves the Q-ends fixed. Let S e Q be non-compact and put
U = YfS. Then, as in the proof of Theorem 3.7, for meM, (mS O 17) U (ml/ n S)
is compact. Now M/H is not compact so, by Lemma 3.4, if U is not compact,
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E{X)
E(X)

= 2. Otherwise, X\S is compact for all non-compact SeQ and so

THEOREM 4.2. Let G be compactly generated with closed subgroup H. Sup-
pose that the connected component of 1 in NjH is not compact. Then | E(X) | = 1
or 2.

PROOF. Let n : G -» GjH be the natural map; we note that n restricted to N
is a homomorphism. Abels [1] shows that a connected locally compact group has
a compact connected neighbourhood of 1. Thus we may choose a symmetric
neighbourhood W of H in JV such that n(W) is compact and connected. If
L = \J?=0W', then n(L) = U," o*(W') = \JT^o<W)1, which is the component
of 1 in N/H. Let geL. Then g e W\ for some i, and if S e Q and x e gS O (X\S)
then W'xnS # 0 # W'x n (X\S). Now if x = 7r(fc), W'x = jr(W'fc) = n(W')k
= TT(W)'/C which is connected since n(W) is connected. Then W'x C\F(S) # 0
and xe 0"f(S). Thus if U = T\S, gSnU z (gS n(X\S)) uF(S) S
Since F(S) is compact, F(S) = n(V) for some compact F = C and
= ^(W'K) = n{W)'V, which is compact. Thus for all geL, gS (~\U is compact
and similarly gll HS is compact. Since n(L) is not compact, Lemma 3.4 implies
\E(X)\ = 1 or 2.

So far we have assumed G is compactly generated. The final result holds for
more general locally compact groups.

THEOREM 4.3. Let G be a locally compact group having a closed compactly
generated subgroup D such that D and GjD are not compact. Then \E{G) — 1
or is infinite. If D is a normal subgroup then \E(G)\ = 1.

PROOF. Suppose E(G) is finite. As in the proof of Theorem 4.1, G has a normal
subgroup M of finite index whose left action fixes the Q-ends of G. By Theorem 2.5,
\E(G)\ = |£(M£>)| and from the proof, M fixes the Q-ends_of_K = MD.

Suppose S is in Q(K) and is not compact and let U=K\S. Then (mS O U)
U(m[/OS) is compact for all meM. Let D = Ui = o^' w h e r e VeB- T n e n

R = (SV\S)V(UV\U) is relatively compact. For keK, kD is F-connected so
either kD £ S, kD £ U or kD r\R # 0 and k e RD. Since GjD is not compact,
neither is KID and we may assume gD £ S for some g e M. If h e M then
hD r\U = hg~l(gD r\gh~lU) £ hg~\S r\gh~lU), which is compact. Thus for
/ceX, either kD £ S or keRD and kD nU is compact. Since i? is relatively
compact, R s U"=iJci^ f o r s o m e xieR a n d s o U = Kr\U = RDC\U
£ U"=i(xi^ n t/)> which is compact. Thus \E(G)\ = 1.

We now consider the case where D is normal and impose no restriction on
J£(G)|. Suppose Se Q(G) is not compact and let U = G\S. If R=(SV\S)U(UV\U)
then, as above, for g e G, either gD <=, S, gD c. U or g e RD. Since G/D is not
compact, we may assume gD c s for some # e G. If /) e G, then hD C\U = Dh nU
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= (Dg O Uh~1g)g-ih £ (S O Uh~1g)g-1h, which, s compact. As above, it fol-

lows that U is compact and hence | £(G) | = 1.

For X = GjH, the argument we have used where D is not necessarily normal

can only be extended to the case in which G/NG(H) is compact. But, in that case,

it follows anyway fron the theorem and Lemma 2.5 that | E(X) | = 1 or is infinite.

In the case where D is normal, the argument extends to show that | E(X) | = 1 if

we have D g Na(H) and neither DH/H nor GjD is compact.

Finally, we note that if G is a locally compact group having a closed compactly

generated non-compact subgroup, then either G satisfies the hypotheses of Theo-

rem 4.3 or it is compactly generated. Thus |£(G)| = 1, 2 or is infinite, the case

I £(G) | = 2 being determined in Theorem 3.7.
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