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Discounting Procedures

Dean T. Jamison and Julian Jamison

Abstract
This paper introduces the concepts of amount and speed of a discounting procedure in order

to generate well-characterized families of procedures for use in social project evaluation.
Exponential discounting sequesters the concepts of amount and speed into a single parameter that
needs to be disaggregated in order to characterize nonconstant rate procedures. The inverse of the
present value of a unit stream of benefits provides a natural measure of the amount a procedure
discounts the future. We propose geometrical and time horizon based measures of how rapidly a
discounting procedure acquires its ultimate present value, and we prove these to be the same. This
provides an unambiguous measure of the speed of discounting, a measure whose values lie
between 0 (slow) and 2 (fast). Exponential discounting has a speed of 1. A commonly proposed
approach to aggregating individual discounting procedures into a social one for project evaluation
averages the individual discount functions. We point to serious shortcoming with this approach
and propose an alternative for which the amount and time horizon of the social procedure are the
averages of the amounts and time horizons of the individual procedures. We further show that the
social procedure will in general be slower than the average of the speeds of the individual
procedures. For potential applications in social project evaluation we characterize three families of
two-parameter discounting procedures – hyperbolic, gamma, and Weibull – in terms of their
discount functions, their discount rate functions, their amounts, their speeds and their time
horizons. (The appendix characterizes additional families, including the quasi-hyperbolic one.) A
one parameter version of hyperbolic discounting, d(t) = (1+rt)-2, has amount r and speed 0, and
this procedure is our candidate for use in social project evaluation, although additional empirical
work will be needed to fully justify a one-parameter simplification of more general procedures.

KEYWORDS: discounting, social discount rate, project evaluation, hyperbolic discounting
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Introduction

Discounting at a constant rate has the virtues of familiarity, analytic tractability,
time-consistency of preferences, and a well-understood axiomatic foundation. That
said, perceived shortcomings of discounting at a constant rate have led economists
in diverse fields increasingly to suggest procedures in which the discount rate varies
over time. Examples occur in contexts involving the full range of time horizons.

Giving noticeable weight to the far future with exponential discounting comes
at the cost of entailing virtually no discounting in the short- to medium-term. Hence
the literature on economic evaluation of long time-horizon environmental or health
projects increasingly contains proposals for use of discount rates that decline with
time, or slow discounting, in order to give a ‘reasonable’ weight to far-future out-
comes (e.g., Cline, 1999; Gollier and Weitzman, 2010; Newell and Pizer, 2003;
Summers and Zeckhauser, 2008). Current guidelines and practice for the most part
continue to use constant rates.1

A recent strand of work in economics imports findings from experimental psy-
chology into the understanding of economic behavior (Loewenstein, 1992; Shane,
Loewenstein and O’Donoghue, 2002). Psychologists – and the behavioral econo-
mists using their findings and methods – focus much of their interest on behavior
over relatively short periods, behavior that often seems consistent with discount
functions that decline slowly then rapidly. This generates interest in fast discount-
ing in a sense that we will make clear.

The time period of interest for financial markets – typically up to thirty years
– lies between that of the behavioral and environmental economists. The rising
yield curves that frequently characterize bond markets imply fast discounting, but
the empirically observed variation in yield curves includes discounting that is slow
as well as fast (Malkiel, 1998; Nelson and Siegel, 1987). Financial economics is
thus a third strand of analysis where non-constant rate discounting is relevant and,
indeed, is routine.

Our purpose in this paper is to provide a framework for the increasingly diverse
literature using non-constant rate discounting by exploring the implications of dis-
tinguishing the speed of discounting from the total amount by which the future is
discounted. Once these concepts are separated, the existing heterogeneous collec-

1Widely used guidelines for economic evaluation of health projects (Lipscomb, Weinstein and
Torrance, 1996) recommend a constant rate of 3% per year. Stern (2006), in an influential assess-
ment of the economics of climate changes, used 1.4% per year. Boardman et al. (2006, p. 236)
point to substantial variation across different national guidelines; examples range from up to 3.5%
in Britain through 7% for the U.S. federal government to 10% for the Canadian federal government.
Boardman et al (2006, pp. 261-269) join the British Treasury in arguing that the social discount rate
used in benefit-cost analyses should decline with time.
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tion of proposals about how to discount can be simply characterized and alternative
proposals for aggregation of multiple individual procedures into a social one can
be better evaluated. Important work continues on the nature of the factors (e.g.
time preference, the ethics of intergenerational comparison, the opportunity cost of
capital, the marginal utility of consumption, the magnitude of risk, and the degree
of imperfection in product and financial markets) that influence the amount of dis-
counting or the term structure of interest rates. Arrow (1965) provides a succinct
statement of the issues. There is a natural division of labor between these topics
and the tasks of characterizing the basic properties of discounting procedures and
of developing a reasonable framework for aggregating individual procedures into a
social one. This paper addresses these latter topics and provides families of discount
functions of practical utility for social benefit-cost analysis.

Section 1 provides examples of slow and fast discounting and introduces our
approach by providing definitions of the amount, the speed and the time horizon
of discounting procedures. It then proves several basic propositions concerning
these measures. Section 2 deals with aggregating multiple individual discounting
procedures into a socially representative one. It points to fundamental convergence
problems – akin to the use of a discount rate of 0 – that are associated with simple
averaging of discount functions as an aggregation procedure and suggests an alter-
native with the attractive property that the means of the amounts and of the time
horizons of the individual procedures equal the aggregate procedure’s amount and
time horizon. Our proposed aggregation procedure results in discount functions
which emphasize the preferences of impatient consumers in early years and patient
consumers in later years. Section 3 presents three two-parameter discount func-
tions and characterizes their amounts, speeds and time horizons. As special cases, it
identifies potentially attractive one-parameter fast and slow discount functions and
argues that a particular slow procedure, which we label the zero-speed hyperbolic
(ZSH) function, provides a good candidate for an alternative to the exponential for
social discounting with long time horizons. An appendix provides proofs of several
propositions and defines and characterizes four additional discounting procedures.

1 Measuring the Amount and Speed of Discounting
Two of the ways of defining a discounting procedure are by a discount func-

tion, d(t) – where d(0) = 1, d(t)≥ 0, and d(t) is nonincreasing for all t – or by a
present value function, pv(t), that gives the present value of a unit stream of benefits
accumulated to time t :

(1) pv(t) =
∫ t

0
d(x)dx.

2
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We define the ‘present value of d(t)’ to be pv(∞).
Table 1 lists several additional defining functions for a discounting procedure

and states the relation between each of the defining functions and d(t). The relation
to d(t) is given for both discrete and continuous time formulations. Row 1 shows
the relation of d(t) to the discount rate function r(t) by giving d(t) as a function
of r(t) and vice versa. Row 2 shows the relation of discount factors – the standard
representation of discounting in game theory, for instance – to d(t). Row 3 relates
the yield curve from the finance literature to d(t). The relation here is a useful
one for interpreting results in the health-related literature on assessment of discount
rates since they are frequently reported (implicitly) as yield curves.2 Row 4 relates
d(t) to the present value function. Finally, Row 5 results from the observation that
one minus the cumulative of any pd f defined on [0,∞) will, in fact, be a discount
function with a present value equal to the expectation of a random variable with that
pd f . Thus if f is a pd f on [0,∞), then

(2) d f (t)=1 −
∫ t

0
f (x)dx =

∫ ∞

t
f (x)dx

will be a discount function.
It is worth noting that the ‘survival curve’ of demography is formally equivalent

to d(t) and a survival curve’s ‘hazard function’ corresponds to r(t). Life expectancy
corresponds to pv(∞).

In this section we first provide examples that illustrate how, for a given pv(∞),
differing discounting procedures accumulate present value at different rates. We
use this to motivate two conceptually different definitions of speed of discounting
– a geometrical measure and a measure based on a concept of time horizon that we
will define. We next prove several basic propositions concerning speed: our two
distinct definitions of speed are equivalent; our measure of speed lies between 0
and 2; procedures with declining (increasing) discount rates have speeds less than
(greater than) 1; and exponential discounting has a speed of 1.

2See Malkiel (1998) or Cochrane (2001, Chapter 19) for discussions of yield curves and the term
structure of interest rates. Cropper, Aydede and Portney (1994), in an important early paper on
discounting of lives saved, report a 16.8% discount rate over 5 years declining to 3.4% over 100
years, a ‘yield curve’ formulation. Cairns and van der Pol (1997) provide further evidence for
declining yield curves in the context of saving lives.
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Table 1: Relations Between Discount Functions & Other Defining Functions

Defining function Discrete time Continuous time

1. discount rate, r(t) d(t) =
t

∏
i=1

[1+ r(i)]−1 d(t) = e−
∫ t

0 r(x)dx

r(t) = d(t−1)
d(t) −1 r(t) = −d′(t)

d(t)

2. discount factor, δ (t) d(t) =
t

∏
i=1

δ (i) d(t) = e
∫ t

0 lnδ (x)dx

δ (t) = d(t)
d(t−1) δ (t) = ed′(t)/d(t)

3. yield curve, y(t) d(t) = [1+ y(t)]−t d(t) = e−y(t)t

y(t) = [d(t)]−1/t−1 y(t) =− lnd(t)
t

4. present value, pv(t) d(t) = pv(t)− pv(t−1) d(t) = pv′(t)

pv(t) =
t

∑
i=0

d(i) pv(t) =
∫ t

0 d(x)dx

5. associated pd f , f (t) d(t) =
∞

∑
i=t

f (i) d(t) =
∫ ∞

t f (x)dx

f (t) = d(t)−d(t +1) f (t) =−d′(t)

Note: Our conventions here are the usual ones, namely that the
empty product is equal to 1 and the unit stream begins to accrue im-
mediately at time 0. In discrete time, r(t) refers to the discount rate
between time t−1 and time t, and similarly for δ (t). Also in discrete
time, pv(t) is the present value accumulated up through and inclusive
of time t.
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1.1 Examples and Definitions
Consider the following three discount functions:3

exponential: d(t) = e−rt , where r = 0.02;(3)

hyperbolic: d(t) =
[
1+(σ2/μ)t

]−μ2/σ2
,

where μ = .04 and σ = .029; and
(4)

fast Weibull: d(t) = e−rt1/s

where r = .000314 and s = 0.5.
(5)

Equation (3) is the discount function with a constant discount rate of 0.02 and,
hence, a present value [= pv(∞)] of .02−1 = 50. Equation (4) represents a parame-
terization of the hyperbolic family that Weitzman (2001) used as an aggregation of
the exponential discount functions elicited from a survey of economists, but with
one parameter modified slightly to reduce present value from the 54.8 his parame-
ters imply to 50. Read (2001) has suggested the formulation in equation (5), which
is an exponential with the value for time transformed – in this case by squaring it
– before being exponentiated. [As indicated in equation (2) any probability den-
sity function (pdf) on [0,∞] has an associated discount function, and for equation
(5) the pdf is the Weibull distribution, hence our nomenclature.] We have again
chosen parameters so that pv(∞) = 50 for the Weibull discount function.

Although each of these discount functions has a present value of 50 they differ
in how rapidly they acquire that present value. Figure 1 illustrates how each present
value function rises with time to its asymptote of 50.

Note several points: the hyperbolic function rises more slowly than the expo-
nential in the sense that pv(t) is strictly less than it is for the exponential for all
t > 0. It can thus, in this sense, be viewed as slower to acquire its present value than
the exponential with the same ultimate present value. Second, the Weibull with the
indicated parameters is in the same sense faster than the exponential. These dif-
ferences in speed could confound interpretation of comparative statics assessments
in the literature that, for example, examine the impact of replacing exponential
with quasi-hyperbolic discounting on portfolio allocation, which changes amount
as well as speed. A third point is that the differences among procedures with the
same present value translate into major differences in the weight given the far fu-
ture: while the Weibull has acquired essentially all of its present value within 150
years, and the exponential within 250 years, the hyperbolic has over 6% of its total
present value still to be acquired after 500 years. Finally, while one present value

3Continuous time formulations simplify most derivations and, with only occasional exception,
we use continuous time.
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function being less than another implies that it is slower, if two curves were to cross
neither could be considered strictly slower than the other by this criterion. Crossing
of Lorenz curves provides a close analogy. Just as the Gini coefficient provides
one way to complete the inequality ordering on income distributions generated by
Lorenz curves, so, too, will an area based measure allow one approach to measure-
ment and hence complete ordering of the speed of discount functions.

We turn now to our formal definitions of the amount, speed and time horizon of
discounting procedures.

The more that one discounts the future, the less a unit stream of benefits will
be worth now. Since all three discount procedures in figure 1 have a present value
of 50, it is natural to consider them as discounting the future by the same amount.
A procedure with a present value of 25 would discount the future more than the
procedures in figure 1. This suggests defining the amount of discounting for a
procedure, α(D), to be the inverse of its present value:

(6) α(D) =

[∫ ∞

0
dD(t)dt

]−1
.

If D is an an exponential procedure with constant discount rate r, then α(D) is,
of course, simply r. This makes sense insofar as we think of higher discount rates
as discounting away the future by a greater amount.

Figure 2 provides a geometrical motivation for a definition of the speed of a
discounting procedure.

The greater the area between the pv(∞) of a discounting procedure and its pv(t)
function the slower, intuitively, the procedure appears to be. We have denoted this
area for the exponential in Figure 2 as A, and the following expression gives its
value:

(7) A =
∫ ∞

0
[r−1−

∫ t

0
e−rxdx] dt,

where the inner integral is, of course, the expression for pv(t) for an exponen-
tial, and r−1 is pv(∞) for the exponential (illustrated by the horizontal line at 50).
Evaluating the integrals in equation (6) gives:

(8) A = r−2.

Likewise B is the area between the hyperbolic and the line r−1. The ratio A/B
provides a geometrical measure of the speed of this hyperbolic relative to that of an
exponential with the same present value.

More precisely, our geometrical measure of the speed of a discounting

7
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procedure, D, is ρ
1
(D) and the preceding discussion suggests the following:

A(D) = area between pvD(∞) and the exponential with the same(9)
present value as D, i.e. the exponential with r = pvD(∞)−1;

B(D) = area between pvD(∞) and pvD(t);(10)

=
∫ ∞

0
[pvD(∞)− pvD(t)] dt, if this integral converges; and

ρ
1
(D) = A(D)/B(D).(11)

Another characteristic of potential interest for a discounting procedure concerns
how long a time the procedure takes to build up present value. We refer to the time
required for accumulation of present value as the time horizon of a procedure and
introduce two distinct definitions. We define ‘median time to accumulation of
present value’ for a procedure to be the time required for it to accumulate 50% of
its present value. We label this τ(D), which is given by the following expression:

(12) τ(D) = t∗ such that
∫ t∗

0 dD(t) dt
pv(D)

= 0.5.

Just as there is a median time to accumulation of present value so, too, can
one define a mean time, which can be thought of as how far from time zero, on
average, the present value is being accumulated from. We label the mean time to
accumulation as θ(D), given by:

(13) θ(D) =

∫ ∞
0 tdD(t) dt

pv(D)
.

θ provides a more analytically useful definition of time horizon than does τ (equa-
tion 12) and from this point on we use the term time horizon to refer only to θ .4

Our second definition of the speed of a discounting procedure relates the
time horizon of the procedure, θ(D), to the time horizon of an exponential proce-
dure that discounts the future by the same amount as D , i.e. by α(D). The time
horizon for an exponential with rate r can be shown to be r−1, so the time horizon
for the exponential that has the same amount of discounting as D will be α(D)−1.
Our time horizon based definition of speed, ρ

2
(D), is the ratio of the horizon for

the equivalent exponential to the time horizon for the procedure being considered:

(14) ρ
2
(D) = α(D)−1 / θ(D).

4A physical analogy may be helpful. Think of d(t) as distributing mass along one arm of an
imaginary balance. A given total mass can be spread far along the arm or concentrated toward the
beginning. θ is the point such that if all the mass could be concentrated at that distance on the other
arm, it would exactly balance d(t).

9
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This reflects the intuition that if D has a longer time horizon than the exponential
with the same present value it can be viewed as slower.

Before proceeding further it is important to deal briefly with questions of con-
vergence. Initially proposed variants of hyperbolic discounting took the form:5

(15) dh(t) = 1/(1+at).

Like exponential discounting with a zero discount rate, dh(t) has infinite present
value. To put this slightly differently, an improved outcome in each time period by
a finite amount x, however large, up to time t∗, also arbitrarily large, would be more
than counterbalanced in present value terms, using the discount function dh(t), by a
decrement y, however small, to all outcomes after t∗. It is precisely this property of
making outcome changes over any finite time horizon irrelevant compared to tiny
but sustained changes in the extremely distant future – even without infinite time
horizons – that leads to objections to exponential discounting with a rate of 0.

The point of this example is simply to illustrate the importance of paying atten-
tion to the issue of convergence when selecting a discounting procedure for evalu-
ation of long time horizon investments.6 Even with a finite but long time horizon
present values can be quite sensitive to the discount rate in outer years – hence the
importance of explicit consideration of the total amount, α(D), by which a proce-
dure discounts the future.

Implications for r(t) – the discount rate function – are that it must go to zero
very slowly, or not at all, in order to ensure convergence.7 If

(16) lim
t→∞

r(t) = r∗, r∗ > 0,

then in the limit d(t +1)≤ d(t)
1+r∗ , which guarantees convergence. Analogous results

hold for continuous time. All exponential discount functions with r > 0, or ones
5See, for examples, Harvey’s (1986, 1994) early important work on nonconstant rate discounting

and work in the psychology literature of Herrnstein (1981). Loewenstein and Prelec (1992) discuss
and provide an axiomatic foundation for a ‘generalized hyperbolic’ that places an exponent, k, on
the denominator of equation (15). Many parameterizations are possible [e.g. equation (4)] and, in
this paper, we refer to the generalized hyperbolic family simply as hyperbolic. The hyperbolic will
have a finite present value if and only if k > 1.

6The issue of convergence assumes less importance in modelling phenomena over shorter pe-
riods as in the psychological literature or some areas of science and engineering. Sokolnikoff and
Redheffer (1958, p. 176) observe, for example, that “... divergent Fourier series often arise in
practice, for example in the theory of Brownian motion, in problems of filtering and noise, or in
analyzing the ground return to a radar system. Even when divergent the Fourier series represents
the main features of f (x) ...”.

7To take an example: if r(t) = r0e−kt then r will decline from an initial level of ro to 0 too rapidly
for the present value of the procedure to be finite.
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that are ultimately exponential – in the sense that equation (16) holds – will yield
finite present values. On the other hand, if for all t greater than some t∗, r(t) =
0 [but d(t) > 0 still] then the present value will be infinite (as is the case for
the discounting procedure proposed for practical application by Weitzman (2001),
Table 2).

Having a convergent discounting procedure, however, does not necessarily en-
tail convergence of the integrals defining our concepts of the speed of discounting
[equation (11) and equation (14)]. Equation (13) illustrates the question of conver-
gence more clearly since its integrand, td(t), is the product of a function going to
zero and a function going to ∞. Stronger conditions on d(t) must, obviously, obtain
for this integral to converge than for the integral of d(t) to converge.

We define a discounting procedure to be strongly convergent if the integrals both
of its related discount function, d(t), and of td(t) converge. We define a procedure
to be weakly convergent if d(t) converges but td(t) fails to converge. Weakly con-
vergent procedures have a speed of 0 and the potentially desirable property of giving
infinite weight to the future – in the sense that the average time to accumulation of
present value is infinite – while still having a finite present value. Weakly con-
vergent d(t)s can thus provide an alternative to zero rate discounting for those who
– like Ramsey (1928) – hold a preference for giving genuine weight to outcomes
in the extremely distant future. Among the discounting procedures discussed in
this paper only one, the hyperbolic, includes weakly convergent (or zero speed)
procedures within the family. In section 3.2 we pay particular attention to the
one-parameter procedure that we label the zero-speed hyperbolic (ZSH).

1.2 Main results concerning the speed of discounting
Concepts introduced in the preceding subsection are not independent of one

another, and our initial proposition identifies and proves the equality of our two
definitions of speed.

Proposition 1: For all D, ρ
1
(D) = ρ

2
(D).

Proof: We have already seen that the area A(D) is α−2, so starting from the
definition: ρ1(D) =

[
α2 ∫ ∞

0
(
α−1− pvD(t)

)
dt
]−1

=[
α2 ∫ ∞

0
(∫ ∞

0 d(x)dx− ∫ t
0 d(x)dx

)
dt
]−1

=
[
α2 ∫ ∞

0
∫ ∞

t d(x)dxdt
]−1. Changing the or-

der of integration, this is
[
α2 ∫ ∞

0
∫ x

0 d(x)dtdx
]−1

= α−1 [α
∫ ∞

0 d(x)(
∫ x

0 dt)dx]−1 =

α−1 [α
∫ ∞

0 xd(x)dx]−1 = α−1 [θ(D)]−1 = ρ2(D).

Because of the equivalence of ρ
1

and ρ
2
, from this point on we unambigu-

ously use ρ to denote speed, and the following corollary follows immediately from
Proposition 1 and equation (14):

11
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Corollary: α(D)ρ(D)θ(D) = 1.
The intuition behind ρ

1
and ρ

2
as definitions of speed was geometrical: ‘slower’

corresponds to either a present value function or a discount function that was more
spread out over time. Analogous notions from probability correspond to the spread
in cumulative distributions (second order stochastic dominance) or in pdfs (mean
preserving spreads). The log concavity or log convexity of pdfs or cumulatives also
indicates degree of spread (see Bagnoli and Bergstrom, 2005). We conjecture that
all of these concepts relate closely to our measure of speed, e.g. that the discount
function associated with a log concave pdf will be slow.

We now turn to the range of values possible for the speed of discounting:

Proposition 2: For all D, 0≤ ρ(D)≤ 2.

Proof: Fixing α , the mean time θ is minimized by concentrating as much
weight as possible as early as possible (i.e. onto small values of t in the integrand).
Given that d(t) must start at 1 and be weakly decreasing, this is accomplished by
setting d(t) = 1 for t ≤ 1/α and d(t) = 0 for t > 1/α . Such a discounting pro-
cedure has a θ = 1/(2α), while the equivalent exponential has θ = 1/α . Hence
the maximum possible ρ (corresponding to the minimum θ ) is 2. Meanwhile, the
maximum θ is infinite (even with a finite present value and thus α > 0), as occurs
for any weakly convergent procedure. This proves that the minimum ρ is 0.

Next we wish to relate the speed of a discounting procedure to its discount rate
function, r(t). In particular, intuition suggests that a decreasing discount rate yields
a procedure that is in some sense slow. It is obvious that such a procedure is ’slower’
in the sense of having a longer time horizon, θ , than the constant-rate procedure
that starts at the same discount rate and stays there, but on the other hand these two
will not have the same total present value. Our third proposition states that, even
relative to an exponential with the same amount of discounting, any decreasing-rate
procedure is slow.

Proposition 3: If the discount rate r(t) is weakly decreasing (resp. increasing),
then the corresponding discounting procedure is slow (resp. fast), i.e. ρ ≤ 1 (resp.
ρ ≥ 1). Furthermore, this result is tight in the sense that if r(t) is weakly decreasing
everywhere and strictly decreasing somewhere, then the inequality is strict.

Proof: Let d(t) be the discount function with decreasing rate r(t), and let
μ = pv(∞) =

∫ ∞
0 d(t)dt. We can think of d as the survivor function for a failure

density8, in which case r(t) decreasing is exactly the definition of a decreasing fail-
ure rate (and μ is the mean time to failure). Then for any strictly increasing function

8Failure analysis arises in the study of systems reliability. The primitive in these analyses is the
probability of no failures before time t; this is the role played by d(t) in our setting. In reliability
studies this is referred to as the survivor or reliability function, and it is the inverse cd f of the failure
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f on [0,∞),
∫ ∞

0 f (t)d(t)dt ≥ ∫ ∞
0 f (t)e−t/μdt by Theorem 4.8 (p. 32) of Barlow and

Proschan (1965), with equality only if d(t) = e−t/μ identically. So let f (t) = t:∫ ∞
0 td(t)dt ≥ ∫ ∞

0 te−t/μdt = μ2 = [
∫ ∞

0 d(t)dt]2, implying that

ρ =
[
∫ ∞

0 d(t)dt]2∫ ∞
0 td(t)dt

≤ 1,

as desired. Equality implies that d must be exponential with amount α = 1/μ . Like-
wise, r(t) increasing corresponds to an increasing failure rate, and all inequalities
are reversed.

We can alternately interpret this conclusion as saying that the exponential is the
fastest discounting procedure within the family of those with weakly decreasing
discount rates. As we have seen, the exponential discounting procedure d(t) = e−rt

also has a total present value equal to its mean time horizon: pvd(∞) = θ = 1/r.
Proposition 3 allows us to answer the question of whether or not it is the unique
discounting procedure with this property.

Corollary: If d(t) is a discount function with monotone discount rate r(t) and
satisfying pvd(∞) = θ(D), then d is exponential: d(t) = e−t/θ .

Proof: From the definitions, pvd(∞) = θ means
∫ ∞

0 d(t)dt =
∫ ∞

0 td(t)dt∫ ∞
0 d(t)dt , i.e.

[
∫ ∞

0 d(t)dt]2 =
∫ ∞

0 td(t)dt. But this again corresponds to equality in the proof of
Proposition 3, so d must identically equal the equivalent exponential.

Our definition of speed is as a characteristic of an entire discounting procedure.
The property is global. Proposition 3 suggests that a reasonable local definition
of speed could be in terms of dr(t)/d(t). If at time t this derivative is 0, speed at
time t would equal 1; and it would be locally fast or slow depending on whether
dr(t)/d(t) ≷ 0. This local notion of speed is of some use in thinking about quasi-
hyperbolic discounting (see Appendix Section 4.2).

2 Social Discounting
Suppose that we start with a population of individuals each of whom uses

some discounting procedure. The individual procedures may differ both in their
parameter values and in their actual functional forms. We wish to aggregate these
procedures to achieve a social discounting procedure that appropriately reflects the
preferences of all members of society. In this section we first discuss existing ap-
proaches to generating a social discounting procedure from individual ones and

density (i.e. the probability of failure at any given time). The failure rate as a function of time is
−d′/d, which is thus exactly our discount rate r(t).
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propose an alternative procedure, the average normalized discount function, that
avoids the shortcomings of those in the literature. We next prove results that relate
the amount, speed and time horizon of the social discount function to the amounts,
speeds and time horizons of the individual ones. We conclude by providing specific
examples for when all the individual discounting procedures are exponential.

2.1 Alternatives for generating a social discounting procedure
from individual ones

One obvious aggregation option is to average discount rate functions across
individuals (ADR). For example, if person A uses a standard constant-rate proce-
dure with d(t) = e−rt (i.e. a rate of r), and person B uses d(t) = e−st , then this
method would yield a social discounting procedure characterized by a constant rate
equal to 1

2(r + s). One advantage of ADR is that even if only one of the individu-
als uses nonconvergent discounting (e.g. if s = 0), the aggregate social procedure
will be convergent (a notion of robustness). As Weitzman (2001) has emphasized,
averaging rates has a down side: when society decides how to trade off between
two given time points in the future, it counts everyone’s opinion on that question
equally, even those who do not care much about the future. Thus while a procedure
that averages rates is able to successfully aggregate amounts of discounting (in the
sense that the amount of the aggregate procedure is the average of the amounts of
the individual procedures), it does less well on the shape over time that discounting
should take.

Another natural option is simply to average the discount functions of individ-
uals (ADF). In the example with two exponentially discounting individuals, this
would lead to a social discount function of 1

2(e
−rt + e−st). This aggregate proce-

dure has a discount rate that starts at 1
2(r + s) for t = 0, and then declines over time

to the minimum of r and s. To redress the inadequacy of aggregation by averaging
rates, Weitzman (2001) advocates using ADF and interprets this process as valuing
a dollar at time t according to any particular discounting procedure weighted by the
“probability of correctness” of that procedure. In our example, this probability is
0.5 for each of the two individual procedures in the domain and is 0 for all others.

One immediate concern about the ADF process is that if even one individual’s
discounting procedure is nonconvergent, then the social procedure will also be, no
matter how large the society (assuming it is finite). Indeed, even if no individual
in the population has an infinite present value (nonconvergent) procedure it turns
out to be quite possible for the aggregate procedure generated by ADF to have
infinite present value. This shortcoming alone makes ADF unviable as a general
aggregation procedure.
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The convergence problem could be avoided by arbitrarily ruling out noncon-
vergent procedures in the first place, but it speaks to a second important concern.
Basically, under ADF, individuals are weighted equally (in terms of either discount
functions or discount rates) at the beginning of time, after which those who discount
less are increasingly favored. ADF yields social discounting procedures whose dis-
count rate functions are both declining over time (as patient individuals are increas-
ingly favored) and that are low overall (since they start at the social average and
go down). At no point in time does ADF aggregation differentially reflect the pref-
erences of impatient individuals even though, as time goes on, the preferences of
patient indivuals become increasingly consequential. The shape of the ADF so-
cial discount function faithfully reflects a weighted average of the individual shapes
(weighted by their own sense of relative time preference), but it skews the amount
of discounting toward those who discount less.

We seek an aggregating process that avoids the problems associated with the
simple averaging of either discount rates or functions. That is, we feel an aggrega-
tion process should satisfy two criteria:

(i) the aggregate procedure should discount the future by an amount that is
the average of the individual amounts – as averaging the discount rates does9; and

(ii) the aggregate procedure’s discount rates in the future should place
greater weight on individuals who value the future more highly – as averaging
the discount functions does. (This implies, combined with criterion 1, that near
term discount rates will be weighted toward those of individuals who place greater
weight on the present.)10

Both criteria can be met by averaging the normalized discount functions for each
individual (the normalized function is αd(t) and has a total present value of 1). We
then divide by the value at 0 of this average function in order to un-normalize and
recover a valid discount function (with d(0) = 1, as is necessary). We label this the
average normalized discount function (ANDF) aggregation process. The ANDF
process results in a shape equal to the average shape, and we will prove that it has
an amount exactly equal to the average amount, α (and a mean time horizon equal
to the average mean time, θ ). In our running example, the normalized individual
discount functions are re−rt and se−st , respectively, so the ANDF social procedure
is

9Note that this criterion refers to aggregation of individual procedures into a social one. It has
less relevance for generating an expected value when there is underlying uncertainty in interest rates,
e.g. the situation considered in Newell and Pizer (2003).

10Gollier and Zeckhauser (2005) develop a market-oriented aggregation procedure for exponen-
tials that results in high discount rates (relative to the average) in early periods and low discount
rates in later periods. ANDF has this feature and we conjecture that any market-derived aggrega-
tion procedure will also.
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(17) dANDF(t) =
re−rt + se−st

r + s
.

Here α = (r + s)/2 and θ = (r−1 + s−1)/2. Figure 3 illustrates the d(t) and r(t)
resulting from each of the three ways of aggregating two exponentials, in this case
with r = 0.02 and s = 0.20.

For the ANDF process applied to these two exponentials, α = 0.11, θ = 27.5,
and ρ = 0.33 (so it is slow). Note in particular in Panel B of Figure 3 that the dis-
count rate function for averaging the discount functions (ADF) is below the average
discount rate for all t > 0 whereas ANDF falls from above the average to 0.02.

One interpretation of the ANDF is that it gives each individual a total weight
of 1 to spread across the future in a way that reflects his or her preferred time
path of consumption. ANDF averages those shapes and then un-normalizes, which
retrieves the average amount of discounting. This separation of amount and shape
ensures that there is no problem with convergence and that more patient members
of society are favored at later times relative to earlier times, but not overall.

2.2 The amount and time horizon of social discounting
Formally, assume that we have a collection of individuals with discounting

procedures parameterized by x ∈ X (possibly multivariate), with frequency distrib-
ution across parameters of f (x), so that in particular

∫
X f (x)dx = 1. Then if indi-

vidual x uses a discount function d(t;x) with associated amount α(x), we define the
ANDF aggregate procedure D by its discount function as follows:11

(18) dD(t) =

∫
X α(x)d(t;x) f (x)dx∫

X α(x) f (x)dx
.

Because
∫

X α(x)d(0;x) f (x)dx =
∫

X α(x)(1) f (x)dx =
∫

X α(x) f (x)dx, dD(0)= 1
as required. The definition in equation (18) leads to a convergent aggregate proce-
dure if there is a nonzero proportion of the population with convergent procedures.

To each individual discount function d(t;x) there corresponds a discount rate
function r(t;x) satisfying ḋ(t;x) =−r(t;x)d(t;x), where the superscript dot denotes
a time derivative. For the aggregate procedure D, since the d(t;x) in the numerator

11We require only that
∫

X α(x) f (x)dx> 0, i.e. that at least some nonzero fraction of the population
uses convergent discounting procedures. If

∫
X α(x) f (x)dx = 0, then there is no need to normalize

(essentially all individuals already have the same α , namely α = 0), so we define dD(t) as simply∫
X d(t;x) f (x)dx.
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Figure 3: Three Procedures for Aggregating Individual Discount Functions 
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is the only term involving time,

(19) ḋD(t) =
−∫

X α(x)r(t;x)d(t;x) f (x)dx∫
X α(x) f (x)dx

,

and therefore

(20) rD(t) =
−ḋD(t)
dD(t)

=

∫
X α(x)r(t;x)d(t;x) f (x)dx∫

X α(x)d(t;x) f (x)dx
.

We now prove three core results that relate the characteristics of the ANDF
aggregation procedure to the corresponding characteristics of the individual pro-
cedures that were aggregated. Let Y = {x ∈ X |α(x) = 0}, i.e. Y is the set of
parameters that correspond to nonconvergent discounting procedures.

Proposition 4: If
∫

Y f (x)dx = 0, then, for the ANDF process defined above, the
amount α(D) and mean time horizon θ(D) of the aggregate procedure D are the
average amount α and the average mean time θ respectively.12

Proof: Since α(x) = 0 for all x ∈ Y , anytime the integrand involves α(x) we
can switch the domain of integration between X and X\Y = X −Y as we wish. We
first verify that

∫ ∞
0
∫

X α(x)d(t;x) f (x)dxdt =
∫ ∞

0
∫

X\Y α(x)d(t;x) f (x)dxdt =∫
X\Y α(x) f (x) [

∫ ∞
0 d(t;x)dt]dx =

∫
X\Y α(x) f (x) 1

α(x)dx (α(x)> 0 on X\Y so 1
α(x) is

well-behaved) =
∫

X\Y f (x)dx =
∫

X f (x)dx− ∫
Y f (x)dx = 1− 0 = 1, which makes

sense since this was an average normalized function. Now note that the denomina-
tor of the aggregate function dD is constant in t, and thus, using the calculation we
just made, the aggregate amount is

α(D) =

[∫ ∞

0
dD(t)dt

]−1
=

[
1∫

X α(x) f (x)dx

]−1
=
∫

X
α(x) f (x)dx,

which is precisely the formula for the average amount α of discounting across the
population, as desired. For the mean time horizon, we compute θ for the aggregate
procedure as

12Thus the bar above a particular characteristic denotes expectation with respect to the density f .
Exactly because of the proposition, this will not prove to be confusing terminology.
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θ(D) = α(D)
∫ ∞

0
tdD(t)dt

= α(D)
∫ ∞

0
t
[∫

X α(x)d(t;x) f (x)dx
α(D)

]
dt

=
∫ ∞

0

∫
X

tα(x)d(t;x) f (x)dxdt

=
∫

X

[
α(x)

∫ ∞

0
td(t;x)dt

]
f (x)dx

=
∫

X
θ(x) f (x)dx

= θ .

In general, if
∫

Y f (x)dx > 0, α(D) will simply be the average over all strictly
positive α in the population: formally, α(D) =

∫
X\Y α(x) f (x)dx (with an analogous

outcome for θ ). The intuitive interpretation is that any individual who chooses
α = 0 (i.e. a nonconvergent procedure), effectively suggesting an infinite present
value, ends up spreading his/her normalized weight so thinly over time that it has
no effect at all on the aggregate13. We turn next to the speed of the aggregate
procedure.

Proposition 5: If the amount α(x) and the mean time θ(x) are negatively co-
variant within a population X , then the speed resulting from the ANDF process is
lower than the average speed, i.e. ρ(D) ≤ ρ , with equality only if all individuals
have the same amount of discounting α and all individuals have the same speed ρ .

Proof: By Propositions 1 and 4, ρ(D) = θ(DE)/θ(D) =
(
αθ

)−1, while ρ =∫
X ρ(x) f (x)dx =

∫
X (α(x)θ(x))−1 f (x)dx = (αθ)−1, where the bar continues to

denote expectation with respect to f , and DE refers to the exponential that dis-
counts by the same amount as D. But since (·)−1 (i.e. taking inverses) is a
convex function on R, Jensen’s inequality implies that the inverse of the average
is weakly less than the average of the inverses, i.e.

(
αθ

)−1 ≤ (αθ)−1. Now
cov(α,θ) = αθ −αθ by definition, and this is negative by assumption. Hence
αθ ≤ αθ , so ρ(D) =

(
αθ

)−1 ≤ (
αθ

)−1 ≤ (αθ)−1 = ρ . Furthermore, since (·)−1

13It is possible to construct an aggregate discounting procedure whose amount is always equal
to the average amount, inclusive of x such that α(x) = 0. In this case the shape of the aggregate
function is identical to the aggregate as defined, so the larger present value means that pv(t) does
not converge to pv(∞), and thus of course θ(D) = ∞ and ρ(D) = 0. Details are available upon
request.
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is in fact strictly convex, the inequality is strict unless both cov(α,θ) = 0 and
(αθ)−1 is constant across the population. But these cannot hold simultaneously
unless α and θ are themselves constant, which is equivalent to α and ρ being con-
stant.

In general, we do expect α and θ to have negative covariance, since placing
less total present value on the future often implies that that present value is reached
more quickly. This tendency is confirmed by looking at the expressions in Table 1,
but it need not hold for every possible choice of distributions f over the underlying
parameters. Thus we expect an aggregate procedure to be slower overall than its
components, but it is possible for it to be faster under certain circumstances.14 In
the special case of constant relative speed, however, we can rule out this possibility.

Corollary: If ρ(x) is constant across x, then ρ(D) ≤ ρ , with equality only if
α(x) is also constant.

Proof: From the corollary to Proposition 1, ρ = (αθ)−1, so ρ(x) constant im-
plies α(x)θ(x) = C for all x. Then we can compute cov(α,θ) = cov(α,C/α) =

α(C/α)−α(C/α) = C−αCα−1 = C
(

1−αα−1
)

. But Jensen’s inequality once

again implies that (α)−1 ≤ α−1, or 1 ≤ αα−1. Hence cov(α,θ) ≤ 0 and Propo-
sition 5 applies. The inequality is clearly strict unless α is constant across the
population.

We turn now to the relationship between the aggregate rate rD(t) and the indi-
vidual discount rates r(t;x). In particular, one variable of interest is the limiting
discount rate r∗(x) = lim

t→∞
r(t;x), if it exists, which gives the asymptotic discount

rate for individual x. For any potential social limiting rate r ≥ 0, let A(r) = {x ∈ X
s.t. α(x) > 0, r∗(x) exists, and r∗(x) ≤ r}; this is the set of individuals who use
convergent procedures and whose limit is no larger than r. Finally, we define
r∗min = inf

〈
r
∣∣∣∣∫A(r) f (x)dx> 0

〉
. This is the lowest rate r such that at least some

nonzero fraction of the population has a limiting rate no higher than r. Dybvig,
Ingersoll and Ross (1996) and Weitzman (1998) showed that if the social discount
function is constructed by simple averaging of a finite number of individual discount
functions, then r∗min is exactly the asymptotic discount rate for the aggregate.15 Our
next proposition states that the same is true, without assuming a finite number of

14Hara, Huang, and Kuzmics (2007) prove a conceptually similar result in the context of risk aver-
sion. Specifically, they show that the representative consumer exhibits strictly decreasing relative
risk aversion, ranging from that of the most risk averse individual to that of the least risk averse as
the aggregate consumption level increases.

15The analogous result concerning mortality has been standard in the demography literature for
some time. Just as the lowest discount rate becomes dominant in later years so, too, in a population
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individuals, for the ANDF process, i.e. that in the limit the social discount rate is in
some sense the smallest of any across the population:

Proposition 6: The asymptotic social discount rate for the ANDF aggregation
process is given by: lim

t→∞
rD(t) = r∗min.

Proof: See appendix, section 3.

2.3 Aggregation of exponential procedures
The aggregation processes defined above can be carried out no matter what

the underlying discounting procedures are. If, however, we hope for simple closed-
form outcomes, we will need to make some specific assumptions. For the remainder
of this section, we assume that each individual i uses a constant-rate procedure given
by d(t) = e−rit . This not only simplifies the analysis, but also allows us to compute
empirical results from the data collected by Weitzman (2001), who surveyed 2160
economists and asked for an exponential discount rate from each.

We first observe that when aggregating exponentials, all of which have ρ(x) =
1, the corollary to Proposition 5 applies, so the speed of the ANDF aggregate is
strictly less than 1 unless all individuals use the same constant discount rate, i.e. are
identical.

We begin by considering discrete aggregation of exponentials, i.e. the case when
there is a finite population. Let the number of individuals be n, with respective con-
stant rates r1, ...,rn (possibly with multiplicity, of course). We assume ri > 0 for all
i (or equivalently that there are n individuals with ri > 0 and the rest can be ignored;
see comment after Proposition 4). In this case the ANDF aggregate procedure re-
sults in

(21) α =
1
n

n

∑
i=1

ri,

(22) θ =
1
n

n

∑
i=1

r−1
i , and

(23) ρ(D) =
n2

(∑n
i=1 ri)

(
∑n

i=1 r−1
i
) .

that is an aggregate of distinct subpopulations, the cohort mortality rate in later years will approach
that of the subpopulation with the lowest mortality rate. See Vaupel, Manton and Stallard (1979) for
an early treatment of this subject.
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These results follow directly from Proposition 4, given that individual i’s amount
α i is ri and i’s mean time horizon θ i is r−1

i . Then, using Proposition 1, ρ(D) can

be computed as (αθ)−1 =
[

1
n2 (∑n

i=1 ri)
(
∑n

i=1 r−1
i
)]−1

, as stated.
We next study continuous populations by considering a specific but very general

density on the underlying distribution of discount rates, the gamma distribution, for
x> 0:

(24) f (x) =
ab

Γ(b)
e−axxb−1,

with a,b > 0. This has mean μ = b/a and variance σ2 = b/a2. Such a distribu-
tion fits the Weitzman data well (although, unless b = 1, it has the disadvantage
of putting no weight at 0, whereas almost 2.5% of the respondents chose discount
rates at or below 0). Weitzman, aggregating by averaging of the d(t)s, showed that
the gamma distribution16 on parameters leads to:

(25) dγ(t) =

[
1

1+ t/a

]b
.

Although Weitzman labels this function ’gamma discounting’ the procedure is gen-
erally known as hyperbolic, and we use the standard terminology.

Proposition 7: The ANDF aggregation process for individuals with exponen-
tial discount functions, whose parameters are distributed according to the gamma
distribution in equation (24), leads to a social discount function given by:

(26) dD(t) =

[
1

1+ t/a

]1+b
.

Proof: See appendix, section 3.
As with ADF aggregation the social discount function is hyperbolic, but with an

exponent that is greater by 1 than for dγ(t), which resolves the convergence issue.
We can compute α = b/a and ρ(D) = 1−1/b. In terms of the mean μ and variance
σ2 of the density f , we get

(27) α = μ and ρ(D) = 1− σ2

μ2 .

16Axtell and McRae (2008) obtain the same result as a special case of their much more general
findings on ADF aggregation of exponential procedures. They obtain their results very simply with
the observation that aggregation of exponentials involves taking the Laplace transform of the aggre-
gating distribution. They also underscore the importance of “potential problems" with convergence
in showing that averaging of exponential discount functions whose parameters are exponentially
distributed always leads to a nonconvergent aggregate procedure.
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The ADF aggregate – given in the parameterization of equation (3) – has

(28) αγ = μ− σ2

μ
and ργ = 1− σ2

μ2−σ2 .

These values imply, among other things, that even after ruling out individual dis-
count rates equal to zero (of which there were many in Weitzman’s sample), the
aggregate function dγ(t) fails to converge when σ ≥ μ , as it almost is in Weitz-
man’s sample (where σ is roughly 3% and μ is roughly 4%). If the ANDF aggrega-
tion process (which is always convergent) is used when σ ≥ μ , then the aggregate
discounting procedure D remains convergent, but only weakly so.

3 Specific Discounting Procedures
This section discusses a number of discounting procedures, some generalized

from the literature and some new. The appendix states and proves basic properties
of these and other procedures (in sections 1 and 2 respectively). Among the pro-
cedures characterized is the quasi-hyperbolic. Still additional procedures could be
derived from the demography literature on parametric survival curves (see Carrière,
1992). Subsection 3.1 summarizes the properties of the procedures we focus on.
Subsection 3.2 then examines in more detail a specific procedure, the zero-speed
hyperbolic (ZSH), which we argue to be particularly well-suited for discounting in
social decision-making.

3.1 The amount and speed of selected discounting procedures
This section states the properties of a number of familiar discounting proce-

dures as well as characterizing and stating the properties of several that are novel.
Three relatively general procedures require 2 parameters and are characterized in
Table 2. The 1st column of Table 2 provides a parameterization of the hyperbolic
discount function (HYP) that allows amount and speed to be expressed directly in
terms of its parameters r and s: α(HY P) = r and ρ(HY P) = s. The first row in
the table gives the discount function, and the second row gives the discount rate
function. Mean time to acquisition of present value for the hyperbolic is (rs)−1.
Note that the hyperbolic procedure is always slow and that its speed can take on the
value 0.

Each probability density function, f (t), defined on [0, ∞) forms the basis for a
discounting function through the formula:
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Table 2: Properties of Hyperbolic, Gamma and Weibull Discounting Procedures

Property Hyperbolic Gamma Weibull

1. discount function, d(t) [1+ r(1− s)t]−(1+ 1
1−s )

(r > 0; s< 1)

Γ(s+1,(s+1)rt)
Γ(s+1)

(r > 0; s>−1)
exp(−rt1/s)

(r,s> 0)

2. discount rate, r(t) r 2−s
1+r(1−s)t

[(s+1)r]s+1tse−(s+1)rt

Γ(s+1,(s+1)rt)
r
st(1−s)/s

r(0) r(2− s)

⎧⎨
⎩

∞ if s< 0
r if s = 0
0 if s> 0

⎧⎨
⎩

0 if s< 1
r if s = 1
∞ if s> 1

r(∞)

⎧⎨
⎩

0 if s< 1
r if s = 1
∞ if s> 1

r(s+1)

⎧⎨
⎩

∞ if s< 1
r if s = 1
0 if s> 1

3. amount, α r r rs/Γ(s+1)

4. speed, ρ s 2− 2
s+2 Γ(s)Γ(s+1)/Γ(2s)

(ρ < 1) (0< ρ < 2) (0< ρ < 2)

5. median time, τ r−1(21−s−1)/(1− s) no closed form no closed form

6. mean time, θ (rs)−1 s+2
2(s+1)r r−sΓ(2s)/Γ(s)
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(29) d(t) =
∫ ∞

t
f (x)dx,

as indicated in table 1. One such pdf, the gamma, forms the basis for procedures
that result in a strictly positive asymptotic value of r. Starting with a gamma, the
result for d(t) is

(30) d(t) =
Γ(s+1,(s+1)rt)

Γ(s+1)
with s>−1 and r > 0,

stated in terms of the incomplete gamma function Γ(·, ·); derivations are in the
appendix. The virtues of this procedure are that it allows both fast and slow speeds
and that amount and speed are simply given: α = r and ρ = 2− 2

s+2 . The slow
version has a limiting r(t) value of r(s+1).

Finally, we wish to include procedures that can be either fast or slow but that
can have a limiting discount rate of 0 as time goes to infinity. A procedure that falls
into this class was introduced by Read (2001):

(31) d(t) = e−rt1/s
.

This discount function’s associated pdf is Weibull and we denote this as Weibull
discounting. Here the parameter s either expands or contracts time relative to
constant rate exponential discounting.17 Characteristics of the Weibull discounting
procedure appear in Table 2; for derivations see the appendix. If s = 2 (which
corresponds to contracted time), then α = r2/2, ρ = 1/3 < 1, and θ = 6/r2; this
is an example of slow discounting (and more generally ρ < 1 exactly when s> 1).
We label this the ‘slow Weibull’ discounting procedure. Having s = 1/2 entails
squaring t in the formula for d(t) effectively expanding time. We label this the
‘fast Weibull’. For the fast Weibull, which appeared as an example in equation 5,
α =

√
4r/π , ρ = π/2, and θ = 1/

√
rπ .

Not surprisingly the procedures listed in Table 2 reduce to exponentials under
certain parameter values, namely when s = 1 for the Weibull and when s = 0 for
the gamma. Although we do not allow s = 1 explicitly in the hyperbolic procedure,
if we take the limit as s approaches 1 (from below) we get an exponential with
discount rate r, as expected. This can be shown directly, but it also follows from the
discount rate function for the hyperbolic.

17One can, in principle, transform time with a broad range of functions g(t) to get d(t) = e−rg(t).
For example, Roelofsma (1996) discusses Weber’s Law from psychology, for which g(t) = ln t. In
this case the resulting discounting procedure can be shown to be a member of the hyperbolic family.
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We reiterate that s > 0 is not required for the hyperbolic procedure. In fact,
s≤ 0 is perfectly legitimate; this corresponds to weak convergence in our terminol-
ogy. Technically, the speed as a ratio of areas will be identically 0 for any weakly
convergent procedure, but it is useful to allow s< 0 in the definition of a hyperbolic
without referring to this as a speed. That said, the case where s = 0 is of particular
interest in that it anchors one end of a spectrum of hyperbolic procedures that is
anchored at the other by the exponential (ρ = 1) . And, as with the exponential, the
zero-speed hyperbolic is a single parameter procedure: d(t) = (1+ rt)−2.

The preceding paragraphs have pointed to a number of special cases of the gen-
eral discounting procedures characterized in Table 2. Each case results from fixing
the speed of a general procedure so that the remaining parameter in the procedure
is the amount of discounting or a simple function of that amount. Table 3 presents
and characterizes 5 single parameter procedures with speeds ranging from ρ = 0
(zero-speed hyperbolic or ZSH) to ρ = π/2 (fast Weibull). In between are the slow
Weibull (ρ = 1/3), the exponential (ρ = 1), and the gamma with s = 1 (ρ = 4/3).
Among them these procedures present a menu of simple and analytically tractable
procedures that span a wide range of speeds. The fast procedures represent single
parameter alternatives to the 3-parameter quasi-hyperbolics (appendix, Section 2)
for use in psychology and behavioral economics.18 The slow procedures provide
approaches to discounting for long time horizon social investments, and the next
subsection further discusses the ZSH in that context.

3.2 Zero-speed hyperbolic (ZSH) discounting for social choice

The preceding subsection discussed the three very general discounting proce-
dures presented in Table 2 and provided 1-parameter special cases spanning a range
of speeds in Table 3. This offers a broad menu for choice of a social discounting
procedure. In selecting from this menu we would look for several things:

(i) Because the ANDF aggregation procedure yields a social procedure that is
slower than the average of the speeds of the individual procedures (Proposition 6)
it would in general be desirable for a social procedure to be slow (ρ < 1). While it
is possible that the individual procedures being aggregated would be fast it is more
likely that they would be exponential and in any case aggregation will result in a

18The basic observation in this literature is that individuals appear to discount very little over a
‘present’ period that extends a short but usually unspecified time into the future. After that the
discount function drops sharply and then resumes a slow decline. The fast Weibull with speed π/2
provides a natural single parameter alternative to the quasi-hyperbolic, which has three parameters
(one of which reflects the choice of units for time).
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Table 3: Properties of Five Single Parameter Discounting Procedures

Property Zero-speed hyperbolic
(s = 0)

Slow Weibull
(s = 2) Exponential Gamma

(s = 1)
Fast Weibull

s = 1
2

1. discount function, d(t) (1+ rt)−2 exp(−rt1/2) e−rt e−2rt(1+2rt) exp(−rt2)

2. discount rate, r(t) 2r
1+rt

r
2
√

t r 4r2t
1+2rt 2rt

r(0) 2r ∞ r 0 0

r(∞) 0 0 r 2r ∞

3. amount, α r r2/2 r r
√

4r/π

4. speed, ρ 0 1/3 1 4/3 π/2

5. median time, τ r−1 − (ln2)/r 2rτ = ln(2+2rτ) −

6. mean time, θ ∞ 6/r2 r−1 3/4r 1/
√

rπ
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slowing.19

(ii) It would be desirable for the social discounting procedure to be a single
parameter function and for that parameter to be simply related to the amount of
discounting.

Table 3 presents two candidates that meet these criteria – the zero-speed hyper-
bolic (ZSH) with ρ = 0 and the slow Weibull with ρ = 1/3. The ZSH is a slightly
simpler expression than the slow Weibull and its single parameter r is equal to the
amount of discounting whereas with the slow Weibull the amount of discounting is
r2/2. For these reasons we propose the ZSH as a simple yet flexible procedure for
social discounting.

We designate the discount and discount rate functions for the ZSH by dz(t) and
rz(t), and if the amount of discounting is r and the speed 0 we have:

(32) dz(t) = (1+ rt)−2 and

(33) rz(t) = 2r/(1+ rt).

Thus rz(t) declines from a value of 2r at 0 to a value of 0 at ∞, and equals
r when t = r−1, i.e. at the time by which half of the present value of the ZSH
has been accumulated. (Half the present value of an equivalent exponential will
have been accumulated earlier by a factor of 0.69.) Although the median time for
accumulation of present value for the ZSH is r−1, the mean time is infinite so the
procedure puts substantial weight on the far future.

Newell and Pizer (2002) used historical volatility of discount rates in bond mar-
kets to generate an expected value for a potential social discounting function and
Oxera (2002), in a study for the Office of the Deputy Prime Minister of the U.K.,
simplified their results into a proposed procedure for long horizon project analy-
sis in the U.K. The proposed procedure starts with a discount rate of 3.5% per
year which then declines in increments to 1% per year after 300 years. Figure 4
compares the discount and discount rate functions of the proposed U.K. procedure,
which has an amount α = 0.0318, to dz(t) and rz(t) and to the exponential with
the same amount. While there are broad similarities, rz(t) starts higher (at slightly
above 6%) and declines to zero rather than to 1%, which has the effect of placing
substantially greater weight on the far future.

Table 4 shows the amount of present value remaining to be accumulated at vari-
ous times for the proposed U.K. procedure and for ZSH and exponential procedures
with amount 0.0318. After 100 years the exponential has 4.2% of its present value

19For those who might prefer ADF it too will generate a slower aggregate procedure that the
average of the individual procedures.
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Figure 4: Comparison of Discounting Procedures with ���������	
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Table 4: Present Value Remaining as a Function of Time for Selected Exponential and Zero-Speed Hyperbolic
(ZSH) Procedures

Percent of present value remaining

α = 0.014 (Stern Report) α = 0.0318

After year Exp ZSH Exp ZSH Proposed U.K.
procedure

0 100 100 100 100 100
25 70.4 74.1 45.2 55.7 47.1
50 49.7 58.8 20.4 38.6 24.3

100 24.7 41.7 4.2 23.9 7.5
200 6.1 26.3 0.2 13.6 1.4
400 0.4 15.2 0 7.3 0.2
800 0 8.2 0 3.8 0

1. The amount of discounting is designated α . For exponential discounting d(t) = e−αt ; for ZSH discounting
d(t) = (1+αt)−2.
2. The Stern Report on climate change (Stern, 2006) effectively used a discount rate of 1.4% per year.
3. A procedure developed for the Office of the Deputy Prime Minister in the U.K. for the U.K. ‘Green Book’
(Oxera, 2002) prescribes discounting with rates fixed over time intervals, beginning at 3.5% per year and
declining to 1% per year after 300 years. For this procedure it turns out that α = 0.0318.
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still to be accumulated and the proposed U.K. procedure has 7.5%. The ZSH, how-
ever, has 23.9% remaining, and even after 400 years still has as much present value
to accumulate as the proposed U.K. procedure had at 100 years. The ZSH, with its
ultimately 0 value of rz(t), places more weight on the far future than does a proce-
dure with stepwise declining exponential rates that discounts by the same amount.
The recently published Stern report on climate change (Stern, 2006) provides an-
other example. It gives weight to the far future by (effectively) choosing a low
discount rate of 1.4% per year. But even that low rate leaves only 6.1% of present
value to be accumulated after 200 years whereas the ZSH with r = 0.014 has 26.3%
still to be accumulated. The ZSH has 8% to accumulate after 800 years whereas,
for the exponential, there is virtually nothing left by that time. In addition, short
term interest rates of 2.8% with the ZSH are, while low, still more reasonable than
1.4%.

A switch to ZSH discounting, with an r of about 0.03, gives far more weight
to the distant future than does exponential discounting at any reasonable rate. It
does this while preserving realistic discount rates over short horizons and with a
tractable functional form. The ZSH results from ANDF aggregation of individual
exponential discount functions whose parameters follow a gamma distribution with
its standard deviation equal to its mean (equation 27). [In Weitzman’s (2001) data
the standard deviation was 3% around a mean of 4%, and the gamma fit fairly well
except at 0%.] It would be worthwhile to conduct sensitivity analyses of long
horizon policy assessments such as those of the Stern report to the use of ZSH
discounting.

Important to selecting the parameter for the amount of a social discounting pro-
cedure is being clear about whether one is discounting utility or money. In a careful
experimental study, Andersen et al. (2008) find that joint elicitation of risk and time
preferences leads to substantially lower discount rates than when they are elicited
separately: expected utility is discounted less than money. This finding needs to be
incorporated when establishing social discounting procedures.

3.3 Conclusions
This paper proceeds from the observation that economists in a range of spe-

cialized fields use non-exponential discounting functions. Within the exponential
framework, alternative discounting procedures align along the single dimension of
discount rate. This simplicity, along with the intuitive appeal of the axiomatic for-
mulation of constant rate discounting and its analytic tractability, have ensured its
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dominance until recently.20 This paper develops a framework for nonconstant rate
discounting that arrays procedures along the two dimensions of amount and speed,
thereby facilitating systematic comparison of procedures without losing tractability.

A question that is antecedent to discounting in the context of assessing long-
term investments, addressed by Arrow (1999), concerns the extent to which deci-
sions made today will have their influence attenuated (or eliminated) by compen-
satory decisions of subsequent generations. This issue is very real, and arises also
in the design of other sequential decision procedures, such as foreign aid programs
and transfers across levels of government. It has not been our purpose in this paper
to address that issue but, more simply, to improve the tools available in circum-
stances where discounting is being used. Similarly, although we acknowledge the
existence and practical relevance of time-inconsistency issues with regard to vari-
able rate discounting – initially addressed by Robert H. Strotz (1956) – our focus
has been on a different facet of the problem.

Key results of the paper include:
(i) precise formulations for concepts of ‘amount’, ‘speed’, and ‘time horizon’

of discounting procedures;
(ii) proofs of key relations among the concepts of amount, speed, and time

horizon;
(iii) identification of inadequacies in existing approaches to aggregating indi-

vidual discounting procedures into a socially representative one and formulation of
an alternative process – averaging of normalized discount functions or ANDF – that
overcomes these inadequacies;

(iv) proof that under reasonable assumptions the ANDF aggregate procedure
will be slower than the average of the speeds of the individual procedures;

(v) descriptions of a range of existing and new discounting procedures and
provision of closed form characterizations relating amount, speed, and time horizon
to their underlying parameters; and

(vi) identification of a particular variant of hyperbolic discounting, which we
label the zero-speed hyperbolic or ZSH, would provide an analytically tractable way

20The axiomatic foundation for constant rate discounting goes back to Koopmans (1960) who
introduced a ‘stationarity’ axiom concerning preferences over time streams of outcomes that im-
plies discounting to be exponential. A number of authors have explored weaker axiom systems that
allow representation of intertemporal preferences by non-exponential discounting – see Jamison
(1969), Fishburn and Rubinstein (1982), Bleichrodt and Gafni (1996) and Bleichrodt and Johan-
nesson (2001). The existence of an axiomatic foundation, therefore, is no argument in favor of
constant- over variable-rate discounting; one must assess the descriptive, normative, and tractability
consequences of adding the strong stationarity axiom. In particular the normative appeal of station-
arity must be weighed against its implication that at, say, a 3% annual discount rate we should be
prepared to pay about 25 times as much to realize a given benefit in 200 rather than 300 years.
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of giving substantial weight to the far future in policy analyses while preserving
reasonable discount rates in the short term.

Frederick, Loewenstein and O’Donoghue (2002), Chapman (2003) and Groom
et al. (2005) provide valuable compilations of the recent literature on time prefer-
ence and discounting. Poulos and Whittington (2000) extend the literature on dis-
counting of lifes saved to several developing country contexts. Transforming the
empirical literature into discounting procedures for policy application will require
two additional steps. First, to the extent practical, data underlying the reported lit-
erature will need to be characterized in terms of estimates of the amount and speed
of individual discounting. Second, the ANDF aggregation algorithm can be used
to generate candidate social discounting procedures. We feel that the approach to
discounting that we propose both undermines many of the practical objections to
expanded use of nonconstant rate procedures and provides a needed framework for
integrating and comparing results in the existing literature.
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4 Appendix
This appendix has three sections. Section 1 derives properties of discounting

procedures found in the text. Section 2 presents derivations for the characteristics
of quasi-hyperbolic discounting, generalized to continuous time in two separate
ways, and then for two non-constant-rate extensions of exponential discounting.
Section 3 provides proofs for Propositions 6 and 7 in the main text.

4.1 Derivation of properties of discounting procedures charac-
terized in the text

Table 2 in the main paper provided formulas for discount rates, amounts, rel-
ative speeds, median time horizons, and mean time horizons for the hyperbolic,
Weibull and Gamma discounting procedures. The results not derived in the text are
derived below.

4.1.1 Hyperbolic Discounting

For the hyperbolic discount function, d(t) = [1+ r(1− s)t]−
1

1−s−1, the dis-
count rate is given by

r(t) =−(− 1
1− s

−1)r(1− s)
[1+ r(1− s)t]−

1
1−s−2

[1+ r(1− s)t]−
1

1−s−1
=

r(2− s)
1+ r(1− s)t

.

To obtain the amount, α , we first calculate
∫ ∞

0
d(t)dt =

1
r(1− s)

1
−1/(1− s)

[1+ r(1− s)t]−
1

1−s

∣∣∣∣∣∣∞
0

=
1
r

,

and so by definition α = r as claimed. For the speed, we begin by observing that
∫ ∞

0
td(t)dt =

∫ ∞

0

t

[1+ r(1− s)t]1+
1

1−s
dt =

1
r2(1− s)2

∫ ∞

0

x

[1+ x]1+
1

1−s
dx,

with the change of variable x = r(1− s)t. The beta function B(y,z) can be written

B(y,z) =
∫ ∞

0

xy−1

[1+ x]y+z dx,

so inserting y = 2 and z = 1
1−s −1 = s

1−s yields
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∫ ∞

0
td(t)dt =

1
r2(1− s)2 B(2,

s
1− s

).

But the beta function can be expressed in terms of the gamma function (Gradshteyn
and Ryzhik (1980), section 8.3841) as

B(y,z) =
Γ(y)Γ(z)
Γ(y+ z)

,

which itself has the property that Γ(y+1) = yΓ(y). Plugging in (and recalling that
Γ(n) = (n−1)! for integer n), we find that

B(2,
s

1− s
)=

Γ(2)Γ( s
1−s)

Γ( s
1−s +2)

=
1 ·Γ( s

1−s)

( s
1−s +1)Γ( s

1−s +1)
=

Γ( s
1−s)

( 1
1−s)(

s
1−s)Γ( s

r−s)
=

(1− s)2

s
.

Finally,

ρ =

[
α2

∫ ∞

0
td(t)dt

]−1
=

[
r2 1

r2(1− s)2
(1− s)2

s

]−1

= s

as desired. And of course θ is then (rs)−1. For the median time, we set pv(τ) =
pv(∞)/2:

1− [1+ r(1− s)τ]−
1

1−s

r
=

1
2r

=⇒
1+ r(1− s)τ = 21−s =⇒

τ =
21−s−1
r(1− s)

.

Note that, as expected, lim
s→1

τ = r−1 ln2 (use L’Hôpital’s rule), which is the value for
the standard exponential.

4.1.2 Weibull Discounting

For d(t) = exp(−rt1/s), we can immediately observe that r(t) = (r/s)t1/s−1.
To calculate amount and speed, we will use the following formula (Gradshteyn and
Ryzhik, 1980, section 3.4781):

∫ ∞

0
xy−1 exp(−rxz)dx =

1
z

r−y/zΓ(y/z)
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with z = 1/s. First substituting y = 1, we find
∫ ∞

0
d(t)dt =

1
1/s

r−sΓ(s) =
sΓ(s)

rs =
Γ(s+1)

rs

using the same identity Γ(y+ 1) = yΓ(y) as before. The inverse of this is then α ,
as claimed in the main text. To calculate the speed, we instead substitute y = 2,
implying that

∫ ∞

0
td(t)dt =

1
1/s

r−2sΓ(2s) =
sΓ(2s)

r2s

so that

ρ =

[
α2

∫ ∞

0
td(t)dt

]−1
=

s2[Γ(s)]2

r2s
r2s

sΓ(2s)
= s

[Γ(s)]2

Γ(2s)
=

Γ(s)Γ(s+1)
Γ(2s)

,

also as claimed. The mean time follows immediately:

θ = α
∫ ∞

0
td(t)dt =

Γ(2s)
rsΓ(s)

.

Unfortunately, there is no closed form integral for d(t) and thus no closed form
expression for the median time horizon.

We can further investigate several properties of the Weibull discounting proce-
dure. The binomial coefficient

(n
m
)

is by definition(
n
m

)
=

n!
m!(n−m)!

=
Γ(n+1)

Γ(m+1)Γ(n−m+1)
,

and the formulation in terms of gamma functions can be used to define a continu-
ous binomial coefficient for non-integer n,m. In that case, the relative speed is the
inverse of

Γ(2s)
Γ(s)Γ(s+1)

=
Γ((2s−1)+1)

Γ((2s−1)− s+1)Γ(s+1)
=

(
2s−1

s

)
,

which is strictly increasing in s for s > 0 (since it is an extension of the bino-
mial coefficient). Thus the speed is strictly decreasing in s, and of course it equals(2−1

1
)
= 1 when s = 1. This validates our claim that the transformed time discount-

ing procedure is slow (that is, ρ < 1) exactly when s> 1, and it is fast (ρ > 1) when
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s< 1. It also provides a simple way to calculate ρ when s is an integer. The claim
is also a direct consequence of Proposition 3, once we note that the derivative of the
discount rate has the same sign as 1− s:

r′(t) = (1− s)
r
s2 t(1/s)−2.

So when s > 1, the discount rate is declining over time (slow discounting), and
vice-versa.

Finally, we examine the limit cases for extreme values of s. As s → ∞, d(t)
starts to look almost constant at a value of e−r, so the procedure is less and less
convergent (though of course for any finite s there is no actual problem). This
means that α → 0. Since Γ(y) grows “factorially” in y, we find that ρ goes to 0 as
well (and θ grows without bound), which does not automatically follow from the
result for α . That is, the limit discounting procedure is slow even relative to the
equivalent exponential (which has, of course, a zero discount rate in the limit). In
the other extreme, as s→ 0, d(t) starts to appear constant at 1 until t = 1, where it
precipitously drops to 0. This suggests that α should be near 1, and indeed,

lim
s→0

α = lim
s→0

rs

Γ(s+1)
=

r0

Γ(1)
= 1

since both the numerator and denominator are continuous at s = 0. For the speed,
we make use of the doubling formula for the gamma function:

Γ(2y) =
22y−1
√

π
Γ(y)Γ(y+

1
2
),

from which we obtain

ρ =
Γ(s)Γ(s+1)

Γ(2s)
=

√
π

22s−1
Γ(s+1)

Γ(s+1/2)

and thus (using the known value Γ(1/2) =
√

π)

lim
s→0

ρ = lim
s→0

√
π

22s−1
Γ(s+1)

Γ(s+1/2)
=

√
π

20−1
1√
π

= 2,

again by continuity at s = 0 of all functions involved. This is the “fastest” that we
can get with this type of discounting procedure. Therefore, θ approaches 1/2, and
it is clear in this case that τ approaches 1/2 as well.
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4.1.3 Gamma

We start with a gamma formulation xse−(s+1)rx, so s = 0 is the basic expo-
nential case. Parameter restrictions are s>−1 and r > 0. We need to first turn this
into a legitimate pdf function:

∫ ∞
0 xse−(s+1)rxdx = Γ(s+1)

[(s+1)r]s+1 , so we normalize to get

f (x) =
[(s+1)r]s+1

Γ(s+1)
xse−(s+1)rx

as our starting point. We turn this pdf into a discount function as in the paper:

d(t)=
∫ ∞

t
f (x)dx =

[(s+1)r]s+1

Γ(s+1)

∫ ∞

t
xse−(s+1)rxdx =

[(s+1)r]s+1

Γ(s+1)
Γ(s+1,(s+1)rt)

[(s+1)r]s+1

(where Γ(x,z) =
∫ ∞

z e−yyx−1dy is by definition the incomplete gamma function),
ending up with

d(t) =
Γ(s+1,(s+1)rt)

Γ(s+1)
.

The discount rate function is thus

r(t) =
−d′(t)

d(t)
=

[(s+1)r]s+1 tse−(s+1)rt

Γ(s+1,(s+1)rt)
.

So r(0) = 0 for s> 0, r(0) = r for s = 0, and r(0) = ∞ for s< 0. To find r(∞), use
L’Hôpital’s Rule:

lim
t→∞

r(t)= lim
t→∞

[(s+1)r]s+1 ts−1e−(s+1)rt [s− (s+1)rt]
− [(s+1)r]s+1 tse−(s+1)rt

= lim
t→∞

[
(s+1)r− s

t

]
=(s+1)r

for any s.
We may now calculate the amount α and relative speed ρ .
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∫ ∞

0
d(t)dt =

∫ ∞

0

(
[(s+1)r]s+1

Γ(s+1)

∫ ∞

t
xse−(s+1)rxdx

)
dt

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0

∫ ∞

t
xse−(s+1)rxdxdt

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0

∫ x

0
xse−(s+1)rxdtdx

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0
xse−(s+1)rx

∫ x

0
dtdx

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0
xs+1e−(s+1)rxdx

=
[(s+1)r]s+1

Γ(s+1)
Γ(s+2)

[(s+1)r]s+2 =
1
r

so α = r quite simply. For the mean time and relative speed:

∫ ∞

0
tds(t)dt =

∫ ∞

0
t

(
[(s+1)r]s+1

Γ(s+1)

∫ ∞

t
xse−(s+1)rxdx

)
dt

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0

∫ ∞

t
txse−(s+1)rxdxdt

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0

∫ x

0
txse−(s+1)rxdtdx

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0
xse−(s+1)rx

∫ x

0
tdtdx

=
[(s+1)r]s+1

Γ(s+1)

∫ ∞

0
(
1
2
)xs+2e−(s+1)rxdx

=
[(s+1)r]s+1

Γ(s+1)
Γ(s+3)

2 [(s+1)r]s+3 =
(s+2)

2(s+1)r2 .

But θ is α times this integral, and therefore θ = s+2
2(s+1)r . Finally, ρ = (αθ)−1 so

ρ =

(
s+2

2(s+1)

)−1
= 2− 2

s+2
.

Thus the relative speed depends only on s (not r) and is increasing in s toward a
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limit of 2 (the maximum possible relative speed of any discounting procedure) as s
increases to infinity, with a lower limit of 0 as s goes to −1. Unfortunately, there
is no closed form for the median time τ , since one cannot analytically integrate the
incomplete gamma function in d(t).

4.2 Properties of other discounting procedures
4.2.1 Split function quasi-hyperbolic discounting

Another class of functions derives from continuous time versions of the quasi-
hyperbolic discount function. The discrete time quasi-hyperbolic has a value of 1
at t = 0 and of β (1+ r)−t for t � 1. This function can be generalized in a variety of
ways. First, and most obviously, the point of abrupt transition can be made to be at
any time, not just t = 1 (which was in any case already a parameter due to the need
to choose a time scale). Second, an option that we do not pursue is to introduce
transitions at multiple time points. Third, the generalization to continuous time
can be undertaken either by introducing a discontinuity in r(t)—and, hence, in the
derivative of d(t)—or by introducing a discontinuity in d(t) itself. We label these
the “split rate quasi-hyperbolic” and the “split function quasi-hyperbolic”. The
latter allows r(t) to remain constant [except for a Dirac delta function at the time
of the discontinuity in d(t))]. The most natural generalization of the discrete-
time quasi-hyperbolic is the split function version, and this subsection includes a
definition of this version and shows its properties. In the next subsection, we
explore properties of the split rate quasi-hyperbolic procedures.

We first consider the procedure that splits the discount function rather than the
discount rate:

d(t) =

{
e−rt if t ≤ t∗
λe−rt if t > t∗

where r > 0 and λ < 1. The discount rate for this procedure is constant at r except
at t = t∗, where it is infinite. If we again denote e−rt∗ by β , we see that

∫ ∞

0
d(t)dt =

∫ t∗

0
e−rtdt +λ

∫ ∞

t∗
e−rtdt = (1−β )

1
r
+λ

1
r

β =
1− (1−λ )β

r
,

and the amount of discounting is the inverse of this:

α =
r

1− (1−λ )β
.
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For the speed,
∫ ∞

0
td(t)dt =

∫ t∗

0
te−rtdt +λ

∫ ∞

t∗
te−rtdt

=
1
r
((1−β )

1
r
− t∗β )+λ

1
r
(t∗β +

1
r

β )

=
1
r2 [1− (1−λ )β (1+ rt∗)]

and so
ρ =

[1− (1−λ )β ]2

1− (1−λ )β (1+ rt∗)
.

From here, θ follows as always. To find bounds on ρ for this procedure, we first
consider the extreme case λ = 0: here ρ = f (β ) = (1−β )2/(1−β +β lnβ ). So the
maximum value for ρ is 2, achieved as β goes to 1 (i.e. as either t∗ or r goes to 0).
Note that if λ > 0, then ρ is maximized at an interior choice of β , but the argmax
goes to 1 (and the maximum value goes to 2) as λ goes to 0. On the other hand,
fixing λ > 0 and letting β go to 1, ρ is approximately λ—so we can make it as
small as we want (greater than 0). Thus the order of limits makes a big difference.
Finally, we point out that for any fixed λ � 0, ρ goes to 1 as β goes to 0.21

For the median time, we again distinguish two cases: either τ is smaller than t∗
(and τ occurs before the λ jump) or it is larger than t∗ (where the expression for
pv(t) is different due to the λ factor). The boundary case will be if τ = t∗, which
occurs exactly when pv(t∗) = pv(∞)/2, meaning if 1/r−β/r = [1− (1−λ )β ]/2r.
This is true when β = 1/(1+λ ), that is, for t∗ = r−1 ln(1+λ ). If t∗ is larger than
this (so that τ is in the initial range), pv(τ) = 1/r− e−rτ/r and we need to set this
equal to pv(∞)/2 = [1− (1−λ )β ]/2r. Solving,

1− e−rτ =
1− (1−λ )β

2
=⇒

e−rτ =
1+(1−λ )β

2
=⇒

τ = r−1 ln
2

1+(1−λ )β
.

21It may seem odd that the quasi-hyperbolic procedure can be either fast or slow, but in fact
it has elements of both. In the “short run” (where it is primarily used), it crosses the equivalent
exponential from above at t∗ and thus appears fast, which is how most practitioners think of it. In
most applications this happens within hours or days, so it has little effect on the overall amount.
Thus the eventual rate r for a quasi-hyperbolic procedure is going to be lower than for the equivalent
exponential, since it has to overcome the downward scaling factor, meaning it will eventually cross
again from below and is overall slow for most reasonable parameter choices.
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If t∗ is smaller than the cutoff value (so that τ > t∗), then pv(τ) =
∫ t∗

0 e−rtdt +
β
∫ τ

t∗ λe−r(t−t∗)dt = (1−β )/r +λ (β − e−rτ)/r and we solve

1−β
r

+
λ (β − e−rτ)

r
=

1− (1−λ )β
2r

=⇒

λ
(
β − e−rτ) =

1
2
[λβ − (1−β )] =⇒

e−rτ =
λβ +(1−β )

2λ
=⇒

τ = r−1 ln
2λ

1− (1−λ )β
.

4.2.2 Split rate quasi-hyperbolic discounting

If d(t) = e−rt for t ≤ t∗ and d(t) = βe−s(t−t∗) for t > t∗ (where β = e−rt∗),
then the discount rate is immediate (it is in fact the defining characteristic for this
procedure), though it is undefined at t = t∗ where d is not differentiable22. For the
amount,

∫ ∞

0
d(t)dt =

∫ t∗

0
e−rtdt +β

∫ ∞

t∗
e−s(t−t∗)dt = (1−β )

1
r
+β

1
s

,

from which it is clear that the inverse is indeed a [weighted] harmonic mean:

α =
rs

β r +(1−β )s
.

For the discounting speed, we calculate
22If s> r, say, we can think of r(t) as having a Dirac delta function spike at t∗.
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∫ ∞

0
td(t)dt =

∫ t∗

0
te−rtdt +β

∫ ∞

t∗
te−s(t−t∗)dt

=

[
−1

r
te−rt− 1

r2 e−rt
]∣∣∣∣∣∣t∗

0
+β

∫ ∞

0
(t + t∗)e−stdt

=
1
r
(−t∗β − β

r
+0+

1
r
)+β

∫ ∞

0
te−stdt +β t∗

∫ ∞

0
e−stdt

=
1
r
((1−β )

1
r
− t∗β )+β

1
s2 +β t∗

1
s

=
1
rs

[
(1−β )

s
r
− t∗β s+β

r
s
+β t∗r

]

so that the relative speed is the inverse of

α2
∫ ∞

0
td(t)dt =

β r2 +(1−β )s2 +β t∗rs(r− s)
[β r +(1−β )s]2

,

as claimed. The formula for θ also follows from this computation. It is easy to cal-
culate that ρ ≷ 1 as s≷ r. To find bounds for ρ , we first consider s>> r: in this case,
ρ is approximately f (β )≡ (1−β )2/(1−β +β lnβ ). The function f is monoton-
ically increasing in β , with lim

β→0
f (β ) = 1 and lim

β→1
f (β ) = 2 (use L’Hôpital’s rule

twice), so ρ can get arbitrarily close to 2. On the other side, for r >> s, ρ is ap-
proximately β/(1 + st∗), which is obviously minimal for β near 0 (meaning rt∗
very large), and hence ρ near 0.

For the median time, we need to distinguish two cases: either τ is smaller than
t∗ (in which case τ occurs while the discount rate is still r and we can use the ap-
propriate expression for pv(t)) or it is larger than t∗ (where the rate is s and the
expression for pv(t) is different). The boundary case will be if τ = t∗, which occurs
exactly when pv(t∗) = pv(∞)/2, i.e. if 1/r−β/r = [β r +(1−β )s]/2rs. This is
true if β r = (1− β )s (which is intuitively reasonable), i.e. for β = e−rt∗ = s

r+s .
Thus the cutoff value for t∗ is r−1 ln r+s

s . If t∗ is larger than this (so that τ is in the
initial range), pv(τ) = 1/r− e−rτ/r and we need to set this equal to pv(∞)/2 =
[β r +(1−β )s]/2rs. Solving,
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1− e−rτ =
1
2

β r +(1−β )s
s

=⇒

e−rτ =
s−β (r− s)

2s
=⇒

τ = r−1 ln
2s

s−β (r− s)
.

If t∗ is smaller than the cutoff value (so that τ > t∗), then pv(τ) =
∫ t∗

0 e−rtdt +
β
∫ τ

t∗ e−s(t−t∗)dt = (1−β )/r +β
(

1− e−s(τ−t∗)
)
/s and we solve

1−β
r

+
β
(

1− e−s(τ−t∗)
)

s
=

1
2

β r +(1−β )s
rs

=⇒

β re−s(τ−t∗) =
1
2
[β r +(1−β )s] =⇒

e−s(τ−t∗) =
β r +(1−β )s

2β r
=⇒

τ = t∗+ s−1 ln
2β r

β r +(1−β )s
.

4.2.3 Blended-rate exponential discounting

For this procedure, we begin with r(t) =
( a

a+t
)

r +
( t

a+t
)

s as our defining charac-
teristic, and must first derive an expression for the discount function itself:∫ t

0
r(x)dx =

∫ t

0

(
a

a+ x

)
rdx+

∫ t

0

(
1− a

a+ x

)
sdx

= [ar ln(a+ x)+ sx+as ln(a+ x)]|t0
= st +a(r− s)(ln(a+ t)− lna)

= st− ln
(

a
a+ t

)a(r−s)
.

Thus

d(t) = exp
(
−
∫ t

0
r(x)dx

)
= e−st

(
a

a+ t

)a(r−s)
.

In order to calculate the amount we need to integrate this, so we make the change
of variable y = s(a+ t), implying that dt = 1

s dy and
∫ ∞

0
d(t)dt =

∫ ∞

as
e−(y−as)

(
as
y

)a(r−s) 1
s

dy =
(as)a(r−s)

se−as

∫ ∞

as
e−yya(s−r)dy.
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But the definition of the incomplete gamma function is Γ(x,z) =
∫ ∞

z e−yyx−1dy, so

∫ ∞

0
d(t)dt =

(as)a(r−s)

se−as Γ(a(s− r)+1,as)

and α is simply the inverse of this, as claimed. Calculating the speed is similar but
slightly more involved:

∫ ∞

0
td(t)dt =

∫ ∞

as
(
y
s
−a)e−(y−as)

(
as
y

)a(r−s) 1
s

dy

=
1
s
(as)a(r−s)

se−as

∫ ∞

as
e−yya(s−r)+1dy−a

(as)a(r−s)

se−as

∫ ∞

as
e−yya(s−r)dy

=
(as)a(r−s)

se−as

[
1
s

Γ(a(s− r)+2,as)−aΓ(a(s− r)+1,as)
]

but Γ(x+1,z)= xΓ(x,z)+zxe−z [see Gradshteyn and Ryzhik (1980), section 8.3562],
so when we apply this simplification and multiply through by the α above, we get

α
∫ ∞

0
td(t)dt

=
1

Γ(a(s− r)+1,as)

[(
a(s− r)+1

s
−a

)
Γ(a(s− r)+1,as)+

(as)a(s−r)+1e−as

s

]

=
1
s

[
a(s− r)+1−as+

ase−as

(as)a(r−s)
1

Γ(a(s− r)+1,as)

]

=
1
s
[1−ar +aα] ,

which is therefore θ . The relative speed ρ is then (αθ)−1 as always. Unfortunately,
since there is no closed form indefinite integral available for d(t), we cannot solve
explicitly for τ , though of course it always exists and can be computed numerically
for any given parameters.

4.2.4 Blended function exponential discounting

This is a discounting procedure with initial rate r ≥ 0, asymptotic rate s > 0, and
parameter a≥ 0 (a = 0 is again the standard exponential with rate s):

d(t) =

(
a

a+ t

)
e−rt +

(
t

a+ t

)
e−st .
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Here we find∫ ∞

0
d(t)dt =

∫ ∞

0

(
a

a+ t

)
e−rtdt +

∫ ∞

0

(
1− a

a+ t

)
e−stdt

= a
∫ ∞

ar

1
x

e−(x−ar)dx+
∫ ∞

0
e−stdt−a

∫ ∞

as

1
x

e−(x−as)dx

= aear
∫ ∞

ar

e−x

x
dx+

1
s
−aeas

∫ ∞

as

e−x

x
dx

=
1
s
−aear Ei(−ar)+aeas Ei(−as),

using a change of variable in the second line, where Ei(x) is the exponential-integral
function Ei(x) = −∫ ∞

−x(e−y/y)dy for x < 0. The amount of discounting is then the
inverse of this:

α =

[
1
s
+a(eas Ei(−as)− ear Ei(−ar))

]−1
.

For the speed,∫ ∞

0
td(t)dt =

∫ ∞

0

(
at

a+ t

)
e−rtdt +

∫ ∞

0

(
t− at

a+ t

)
e−stdt

= a
∫ ∞

0

(
1− a

a+ t

)
e−rtdt +

∫ ∞

0
te−stdt−a

∫ ∞

0

(
1− a

a+ t

)
e−stdt

= a
[

1
r
+aear Ei(−ar)

]
+

1
s2 −a

[
1
s
+aeas Ei(−as)

]

=
1
s2 +

a
r
−a

[
1
s
+a(eas Ei(−as)− ear Ei(−ar))

]
so that

ρ =

[
α2

∫ ∞

0
td(t)dt

]−1
=
[
α2(s−2 +a/r)−aα

]−1
=

α−1

αs−2 +a(α− r)/r
and the mean time is

θ =
α
s2 +

a(α− r)
r

.

Once again, the median time cannot be computed in closed form.

4.3 Proofs of Propositions in the Main Text
4.3.1 Proof of Proposition 6

Proposition 6 relates the limiting value of the ANDF social discount rate func-
tion to the minimum of the limiting values of the individual discount rate functions.
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Recall that

rD(t) =

∫
X α(x)r(t;x)d(t;x) f (x)dx∫

X α(x)d(t;x) f (x)dx
,

which we can rewrite as a weighted average

rD(t) =
∫

X
β (t;x)r(t;x)dx

with time-dependent weights β (t;x) given by

β (t;x) =
α(x)d(t;x) f (x)∫

X α(x)d(t;x) f (x)dx
.

Obviously,
∫

X β (t;x)dx = 1 for any t.
For any ε > 0, let us partition X into A1, A2(ε), and A3(ε) as follows: A1 =

{x ∈ X s.t. r∗(x) < r∗min}; A2(ε) = {x ∈ X s.t. r∗min ≤ r∗(x) ≤ r∗min + ε}; and
A3(ε) = {x∈X s.t. r∗min+ε < r∗(x)}. Then we can write lim

t→∞
rD(t) = lim

t→∞

∫
X β rdx =

lim
t→∞

∫
A1

β rdx+ lim
t→∞

∫
A2(ε) β rdx+ lim

t→∞

∫
A3(ε) β rdx.

For any x with α(x) = 0, β (t;x) = 0 identically. So ignoring any such x and
noting that

∫
A(r∗min)

f (x)dx = 0 by definition of r∗min, we see that
∫

A1
β (t;x)dx = 0 as

well (for all t), since α(x) and d(t;x) are finite (and α,d, f are all weakly positive).
But then lim

t→∞

∫
A1

β (t;x)r(t;x)dx = 0, so these values of x have no effect on lim
t→∞

rD(t).
This establishes that lim

t→∞
rD(t)≥ r∗min; it remains to show that lim

t→∞
rD(t)≤ r∗min.

Also by definition of r∗min,
∫

A(r∗min+ε) f (x)dx > 0 for all ε > 0. But, as we just
saw,

∫
A1

f (x)dx = 0. Hence, for any ε , we can pick x2 ∈ A2(ε) with α(x2)> 0 and
f (x2)> 0; now take any x3 ∈ A3(ε). Then

β (t;x3)

β (t;x2)
=

α(x3)d(t;x3) f (x3)

α(x2)d(t;x2) f (x2)

Rewriting d(t;x) as exp
(−∫ t

0 r(τ;x)dτ
)
, we get

β (t;x3)

β (t;x2)
=

α(x3) f (x3)

α(x2) f (x2)

exp
(−∫ t

0 r(τ;x3)dτ
)

exp
(−∫ t

0 r(τ;x2)dτ
) = M exp

(
−
∫ t

0
[r(τ;x3)− r(τ;x2)]dτ

)
,

where M = α(x3) f (x3)
α(x2) f (x2)

is constant in t (and is finite by the choice of x2). Therefore

lim
t→∞

β (t;x3)

β (t;x2)
= M lim

t→∞
exp

(
−
∫ t

0
[r(τ;x3)− r(τ;x2)]dτ

)
.
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But of course x2 ∈A2(ε) and x3 ∈A3(ε) imply that lim
t→∞

r(t;x3)> r∗min+ε ≥ lim
t→∞

r(t;x2),

from which it is clear that lim
t→∞

∫ t
0 [r(τ;x3)− r(τ;x2)]dτ = ∞ and thus

lim
t→∞

β (t;x3)

β (t;x2)
= 0.

This implies that, for any x3 ∈ A3(ε), we must have lim
t→∞

β (t;x3) = 0. This
in turn yields lim

t→∞

∫
A3(ε) β (t;x)dx = 0 (so that lim

t→∞

∫
A2(ε) β (t;x)dx = 1), but it also

implies the stronger conclusion that lim
t→∞

∫
A3(ε) β (t;x)r(t;x)dx = 0. Therefore only

x ∈ A2(ε) influence lim
t→∞

rD(t), and in particular lim
t→∞

rD(t) ≤ r∗min + ε for any ε > 0.
But that means exactly that lim

t→∞
rD(t)≤ r∗min, as needed.

4.3.2 Proof of Proposition 7

Proposition 7 states that the social discounting procedure arising from ANDF
aggregation of exponentials whose parameters are gamma distributed is hyperbolic.
We first start with an underlying gamma distribution for the parameter of the indi-
vidual exponential discount functions:

f (x) =
ab

Γ(b)
e−axxb−1,

where x ∈ (0,∞) denotes the discount rate parameter in a standard exponential, and
a,b> 0. Thus α(x) = x, d(t;x) = e−xt , and f (x) is as above. Then

∫ ∞

0
α(x)d(t;x) f (x)dx =

ab

Γ(b)

∫ ∞

0
xbe−(a+t)xdx =

ab

Γ(b)
Γ(b+1)
(a+ t)b+1 =

b
a

[
a

a+ t

]b+1
.

But

α =
∫ ∞

0
α(x) f (x)dx =

ab

Γ(b)

∫ ∞

0
xbe−axdx =

ab

Γ(b)
Γ(b+1)

ab+1 =
b
a

,

so dD(t) = [1+ t/a]−(1+b) as claimed. This is the same form as in the hyperbolic
column of Table 2, substituting r = b/a and s = 1−1/b. The speed of this procedure
is therefore also 1−1/b, as proved in Section 4.1.1.
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