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Abstract

We observe experimentally periodic proton beam filamentation in laser-produced dense
plasma using multilayered (CH–Al–CH) sandwich targets. The accelerated MeV proton
beams from these targets exhibit periodic frozen filaments up to 5–10 µm as a result of resis-
tive Weibel instabilities in the expanding plasma. The evolution of strong self-generated resis-
tive magnetic fields at the targets interface is attributed to such plasma effects, which are
supported, by our theory and simulations. We suggest that the resistive Weibel instability
could be effectively employed to understand the evolution of magnetic fields in laser-gener-
ated plasma in the astrophysics scenario or the advanced fast igniter approach of the inertial
confinement fusion.

Introduction

Remarkable progress in the field of intense laser-matter interaction has been witnessed with
the advent of a chirped pulse amplification (CPA) technique (Strickland and Mourou,
1985). Laser-driven ion acceleration is immensely important as it has the potential to over-
come the barrier faced by conventional accelerators. Amongst target normal sheath cceleration
(TNSA), radiation pressure acceleration (RPA), collisionless shock acceleration (CSA), and
other mechanisms of laser-driven ion acceleration, TNSA is the most widely accepted mech-
anism (Mora, 2003), in which the laser pulse ionizes the front surface of the target and the
electrons acquire energy from the peak of the pulse, these electrons are termed as fast electrons
as they have higher kinetic energy. Fast electrons advance through the material and extend into
the vacuum thereby creating a charge separation leading to a sheath electric field, which accel-
erates the ions in the vicinity. The accelerated ion energies are therefore dependent on the fast
electrons. In addition to ion acceleration, the laser-generated fast electrons and their propaga-
tion in the target medium are important in various other applications, such as fast ignition in
inertial confinement fusion (ICF) (Craxton et al., 2015; Betti and Hurricane, 2016), generation
of X rays (Gahn et al., 1998; Norreys et al., 1999; Yu et al., 1999; Ledingham et al., 2000), γ rays
(Cowan et al., 1999; Gahn et al., 2000; Chen et al., 2009), and positrons (Clark et al., 2000;
Maksimchuk et al., 2000; Snavely et al., 2000). When fast electrons propagate in a dense
solid target, the return cold electron currents are setup so that the requirement of charge neu-
trality is fulfilled in the plasma. Equilibrium between fast electrons and return electrons are
unstable due to electromagnetic perturbation leading to Weibel instability, which produces
strong filamentation of the fast electron beam. The efficiency of energy transport becomes
very poor and intense fast electrons cannot transport beyond the filament length (Bell and
Kingham, 2003). Instabilities have been modeled by connecting collisional and collisionless
plasmas (Bret, 2010) and also by considering quantum effects in the pre-compressed target
(Bret et al., 2009) in order to understand the effects on the energy transfer from beam to pellet
in the fast ignition scenario.

TNSA yields polyenergetic ions because the ions are accelerated by the sheath electric field,
which is Gaussian in shape. The divergence of laser-accelerated protons (10–30°) is also set
depending on the energy of the accelerated beam. Efforts have been made to gain control
over the ion beam profile by employing a photoresist (PR) (Metzkes et al., 2014), hydrocarbon
(CH) layer (Ramakrishna et al., 2015) on the rear surface of the target in order to reduce the
transverse modulations in the ion beam. In a multilayered target, the material boundary will
cause a change in resistivity, which affects the magnetic field generation, and growth thereby
affecting the flow of electrons as described in the theoretical work (Robinson and Sherlock,
2007) and a proof-of-principle experiment (Ramakrishna et al., 2010). Other methods like
using a shaped target, quadrupole magnets, and compact ion lens driven by a secondary
laser beam have been attempted to achieve geometrical focusing of the laser-driven protons
(Toncian et al., 2006; Kar et al., 2008, 2011; Nishiuchi et al., 2009). Since the typical laser
to proton conversion efficiency previously reported from many experiments is less than
10% (Fuchs et al., 2006; Robson et al., 2006), it is crucial to maintain maximum proton
flux for various applications, including hadron therapy and fast ignition. In the fast ignition
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approach, some proposals are currently being investigated to use
proton beams in addition to the fast electrons to heat the core of
the imploding capsule using CH layered targets. This design can
reduce the core arrival time lags due to different ion energies, and
ion beams with wide energy spectra can be accepted (Sakagami
et al., 2016). However, the plasma instabilities affect the energy
and beam profile of the ions and understanding such filamentary
effects in proton beam is important that is otherwise proven to be
detrimental for ICF.

Experimental details

The experiment was carried out at HZDR, Dresden, using the
150 TW Ti:sapphire laser system delivering 30 fs (FWHM) at
10 Hz repetition rate, at a central wavelength of 800 nm. The
p-polarized laser beam was focused to a focal spot of 8 µm diam-
eter (FWHM) with an off-axis parabolic mirror with a focal
length of 250 mm, reaching a peak intensity of the order of
∼3 × 1020 W/cm2 (Schramm et al., 2017). The dispersed ion

beam was detected by a micro-channel plate (MCP) detector cou-
pled to a 16-bit camera. A stack of radiochromic films (RCFs) was
placed at 5 cm behind the target to detect the ion beam profile.
RCF was used because it is an absolutely calibrated dosimetry
medium, which changes its color on exposure to ionizing radia-
tion. Protons of a given energy will traverse only through a well-
defined thickness of the film before depositing the energy at the
Bragg peak (Xu et al., 2019). Therefore, each layer of RCF stack
could be associated with a definite minimum proton energy
(Fig. 1).

Results and discussion

In this paper, we report the observation of proton beam filamen-
tation at relativistic laser intensities. The filamentary structures
observed in the proton beam are observed to uniformly evolve
as the ultrafast (ps) plasma channel expands, which is clearly evi-
denced by the proton beam distribution recorded on each layer
(6–10 MeV) of RCF stack as shown in Figure 2. The fast electron
beam generated at the critical density surface of the plasma is
observed to be divergent in the laser-plasma interaction (Santala
et al., 2000). Very large instantaneous currents (106–109 A) pro-
duced will lead to strong collective effects (Bell et al., 1997;
Davies et al., 1997), which results in fine structure (i.e., filaments)
(Bell and Kingham, 2003) and hence divergence of the beam. The
target chosen for the present experiment is CH–Al–CH and Al–
CH–Al multilayered targets. First, given the large resistivity
expected in dielectric materials, plastic targets are ideal candidates
to investigate the generation of resistive fields (Jung et al., 2005).
Second, using multilayers, it is possible to change the resistivity
gradient, which can have a direct impact on the magnetic fields
generated.

The theory behind collimation of fast electrons in a structured
target could be understood by combining ohm’s law with

Fig. 1. (Color online): A schematic diagram of the experimental setup showing the
RCF position behind the target.

Fig. 2. (Color online): Proton beam profiles (a) 10 MeV, (b) 8 MeV, and (c) 6 MeV recorded on RCF from the target rear surface CH–Al–CH (2.5 µm); (d) shows a
smooth beam recorded on RCF from the target rear surface of Al–CH–Al (2.5 µm).
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Faraday’s law for the growth rate of magnetic field resulting in the
following equation:

∂B
∂t

= h∇ × j+ (∇h)× j, (1)

where η is the resistivity and ј is the fast electron current density.
The first term corresponds to the magnetic fields that act to push
fast electrons toward regions of higher fast electron density, while
the second term corresponds to the magnetic fields that push the
fast electrons toward regions of higher resistivity. The first term of
Eq. (1) is the origin of electromagnetic instability. A fast electron
current density perturbation normal to the streaming direction
(i.e., normal to the direction of j) will generate the magnetic
field that would push more fast electrons into the high density
region from the low density region (the higher the density of
fast electrons is, the higher the current density is: j). More and
more fast electrons are constricted together, which further
strengthens the density perturbation. Consequently, the generated
field gets stronger further according to Eq. (1), and the density
ripple magnitude gets larger and larger. As a result, the Weibel
instability is created and filaments (a sequence of high and low
density structures) are formed.

Figure 2a–2c shows filamentation in the proton beam imprint
from the rear side of the CH–Al–CH target, as recorded on an
RCF arising due to self-generated resistive instabilities (Sentoku
et al., 2000, 2011). Figure 2d represents the proton beam profile
of a 6 MeV RCF observed from the Al–CH–Al target, which rep-
resents a smooth collimated beam with no net-like pattern.
Robinson and Sherlock (2007) have highlighted the potential
for harnessing these self-generated fields for guided electron
beam transport in targets specifically designed to give rapid mag-
netic field growth at a well-defined boundary.

The divergence of the beam calculated for the CH–Al–CH foil
is around 30° calculated from the recorded RCF data. The com-
mon inference from these figures is that whenever a low-Z thin
transport layer is present on the rear side, we can observe a fila-
mented proton beam imprint on the RCF. Similar experiments
were conducted on the HZDR DRACO Laser facility using thin
foil titanium (Ti) targets (2 and 3 µm), wherein they have
reported transverse modulations in the proton beam profile
(Metzkes et al., 2014). They have used a very thick hydrocarbon
transport layer (3.5 µm) at the rear side of 2-µm Ti foil to control
the spatial modulations in the beam. In this experiment, we have
used the advantage of inherent resistivity gradient of the targets to
control the filamentation without increasing the thickness of the
rear side transport layer.

Figure 3a represents the magnified proton beam profile, which
depicts an increasingly strong modulation for thinner targets.
Particularly, striking is the profile which exhibits a high-contrast
modulation with an elaborate net-like periodic uniform structure.
Inspection of consecutive films illustrates that the structure per-
sists deep into the stack with almost constant formation, indicat-
ing that it is formed well in advance of the detector surface. Also,
the filamentary structures are constantly present in all ranges of
energy as shown in Figure 2a–2c, indicating that the filamentation
has occurred well inside the target with the fast electrons and the
corresponding structure is mapped onto the protons through the
sheath electric field.

The typical structure size at the stack is 0.2 cm over a beam that
extends 5 cm on the stack. Assuming a beam originating from a
radial size of 100–200 µm (Borghesi et al., 2004) and that the

expansion of the structure is ballistic from the target surface
where it was generated to the detector, implies an instability wave-
length, of 6–8 µm or less. This is greater than the typical wave-
length of surface modulations on the foils, which is about
0.1 µm. We have further investigated the mechanism for the fila-
mentation of the beam observed in the experiment. Resistivity
(Gremillet et al., 2002; Debayle and Tikhonchuk, 2008;
Robinson et al., 2008), ionization (Krasheninnikov et al., 2005),
and Weibel (Fried, 1959; Weibel, 1959; Grassi et al., 2017) instabil-
ities are typically invoked to explain the filamentation of fast cur-
rents observed experimentally (Borghesi et al., 1999; Gremillet
et al., 1999; Tatarakis et al., 2003; Wei et al., 2004). In physical
terms, resistive filamentation occurs because any transverse pertur-
bation in the current density will resistively grow a magnetic field
that drives fast electrons into the perturbation. As this increases
the local current density, the magnetic field gets further enhanced
and a positive feedback is created. Our experimental observation
that the filamentation wavelength λ = 2π/k = 6–8 µm agrees well
with the reported wavelength for Weibel instability to be about
5–15 µm (Romagnani et al., 2019) using the proton probe tech-
nique. From our observations, we conclude that Weibel instabili-
ties at faster time scales may be the root cause to seed resistive
instabilities in the target leading to the filamentation.

PIC simulations

To investigate the filamentation and corresponding correlation to
the divergence of the proton beam from sandwich targets, 2D
particle-in-cell (PIC) simulation was carried out using the
EPOCH (Arber et al., 2015). The simulation domain was chosen
to be 40 µm × 40 µm along x- and y-directions with a grid resolu-
tion of 20 nm along each direction accommodating 32 macropar-
ticles per cell. The laser pulse of duration 30 fs, wavelength 0.8 µm
propagates along the positive x-direction with a transverse
Gaussian profile. The laser focal spot and intensity were taken
to be 8 µm and 3 × 1020 W/cm2 in accordance with the parame-
ters used during the experiment. The simulations were carried
out for sandwich targets Al–CH–Al (1–0.5–1 µm) and CH–Al–
CH (1–0.5–1 µm) with nAl = 10nc, and for the plastic CH layer,
we assumed ncarbon = 10nc, nH = 20nc, where nc = 1.74 ×
1021 cm−3. Both the targets were coated with a 50 nm proton

Fig. 3. (a) A zoom in the profile depicting a net-like pattern in the proton beam
imprint. (b) A line out of the pattern shows periodicity in the net pattern.
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layer on the rear side in order to account for the effect of contam-
inant layer in the experiment, structures of fast electrons are
mapped on to the sheath electric field, which is directly correlated
to the acceleration of protons. Therefore, protons accelerated from
the rear side of the target would also exhibit filamentation as
observed from the experiment.

Figure 4a represents that the magnetic field inside Al–CH–Al
cease to grow once the modulations reach the boundary of the
interface between CH–Al layers on the rear side, and therefore,
the modulations are not propagated through to the rear surface
of the target. Whereas in case of CH–Al–CH (Fig. 4b), it can
be clearly seen that the filaments do not get suppressed near
the boundary of the rear side layers and propagate through to
the rear surface of the target. Similarly, the number density of
electrons in Al–CH–Al (Fig. 4c) do not show filamentary struc-
tures in the layer corresponding to the rear side of the target,
but CH–Al–CH (Fig. 4d) clearly has the filamentary structure
in the layer at the rear side of the target. These filamentary struc-
tures of fast electrons are mapped on to the sheath electric field,

which is directly correlated to the acceleration of protons.
Therefore, protons accelerated from the rear side of the target
would also exhibit filamentation as observed from the experiment.

The parameter, which indicates the divergence of the proton
beam, is the spread in the transverse momentum Py of the pro-
tons. The spread in the transverse momentum Py is measured
at Px = 20 × 10−21 kg m/s for both the targets. Al–CH–Al
(Fig. 5a) has a spread of 2.98 × 10−21 kg m/s, whereas CH–Al–
CH (Fig. 5b) has a spread of 4.11 × 10−21 kg m/s, indicating
that the protons from CH–Al–CH are more divergent than that
from Al–CH–Al as observed from the experiment. The histogram
of the electric field over the entire simulation domain is shown in
Figure 6. The maximum value of the sheath electric field reached
for Al–CH–Al is about 10 TV/m, whereas for CH–Al–CH, the
maximum is about 6 TV/m. This implies that the formation of fil-
amentary structures inside the target rear surface may have caused
perturbation in the sheath field and, therefore, may have direct
correlation in the observed reduction in the sheath electric field
for the target CH–Al–CH.

Fig. 4. Magnetic field within the target for (a) Al–CH–Al and (b) CH–Al–CH. The electron number density within the target for (c) Al–CH–Al and (d) CH–Al–CH.
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In conclusion, we have shown that self-resistive fields are very
important to understand the transport of fast electron/ion beams,
which can control the flow of mega-ampere currents in the
intense laser-plasma interaction. This provides a direction to
understand the instabilities arising at the interface of resistivity
gradient targets that will otherwise lead to filamentation/pinching
of the electron beams. Our experimental findings are in good
agreement with the qualitative analysis performed using 2D PIC
simulations. This offers a route to control and investigate these
instabilities, which may otherwise prove detrimental for fast igni-
tion experiments. Also, the magnetic fields of about 104 T are
observed in the simulation, which may have implications in the

astrophysical scenario (Cassam-Chenai et al., 2008; Suzuki-
Vidal, 2015), that is, when a supernova collapses to form a neu-
tron star a similar counter streaming charged particles may give
rise to instability leading to generation of strong magnetic field.
Charged particles streaming in such high magnetic fields may
also contribute to gamma ray bursts.
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