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ON s-FINITE FAMILIES 

BYRON H. McCANDLESS 

Let % be a family of subsets of a topological space X. We do not require °ll 
to be a covering of X, nor do we assume that the members of °ll are necessarily 
open. In this paper we shall assume that ^ is of a special sort, which we call 
2-finite. We show that a 2-finite family is both locally finite and star-finite, 
and in particular that an open covering °i/ of X is 2-finite if and only if it is 
star-finite. We then prove that every 2-finite family °tt is cr-discrete, so that 
in particular, every star-finite open covering of X is (7-discrete. There seems to 
be some applications of this fact. 

We begin with some familiar definitions. A family % in a topological space 
X is called locally finite {discrete) if and only if every point of X has a neighbor­
hood which intersects at most finitely many (one) of the members of fy. °i/ is 
called star-finite if and only if each member of ^ intersects only finitely many 
other members of °tt. °tt is called o--locally finite (a-discrete) if and only if it is 
the union of at most countably many locally finite (discrete) subfamilies. 
Similarly, °lt is called a-star-finite if and only if °tt is the union of at most 
countably many star-finite subfamilies. 

Before giving the definition of a 2-finite family, we need some notation. 
Given a point x in the space X, and a neighborhood Vx of x, denote by °ttx the 
(possibly empty) family consisting of all members of °lt which intersect Vx. 
(More precisely, we should denote this family by &Vx, since it depends, in 
general, upon the neighborhood Vx. However, in the interests of simpler nota­
tion we prefer to use simply °U'Xf since this should lead to no confusion once 
this is understood.) 

Definition 1. A family ^ of subsets of a topological space X is called ^-finite 
(in X) if and only if the neighborhoods Vx can be chosen in such a way that for 
each U G °tt, the collection 

U { ^ : U G <%x) 

is finite. 

LEMMA 1. Every 2-finite family in a topological space is both locally finite and 
star-finite. 

Proof. Let °lt be a S-finite family in a topological space X. 
Then fy is locally finite. For the 2-finiteness of °lt implies that for each 

x £ X, the family °U'x is finite, which means that % is locally finite. 
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Next, we show that Ql is star-finite. Suppose on the contrary that fyl is not 
star-finite. Then there exists a U G °tt which intersects at least a countable 
number of distinct members of °tt', say { U\: i G N}, where N denotes the set 
of all positive integers. Choose an xt G U P\ Ut for each i. Then U G °U' xi for 
each i and so 

[Ut:ieN}CU {<%Xi: * G N) C U {<%x: U G <9t x) ; 

hence the latter family is infinite. Thus we conclude that °U is not 2-finite. 

The following example clarifies the position of the S-finite families: 

Example 1. Let X be the plane E2 with the usual topology, let U be the 
x-axis with the points (i, 0), (i G N) deleted, and for each i G N let U i be the 
vertical line intersecting the x-axis in the point (i, 0). Then the family °U 
consisting of U and the lines U\, i G N, is locally finite and star-finite but not 
2-finite. For U belongs to each of the families %xi, where x* is the point (i, 0) 
and hence 

U {<%x: U G <%x) 

is infinite. 
It follows that the collection of all 2-finite families in a space X is properly 

contained in the collection of all locally finite, star-finite families. However, if 
we restrict ourselves to open coverings of X, we find that the 2-finite open 
coverings of X coincide with the star-finite open coverings of X. 

THEOREM 1. Let % be an open covering of the space X. Then tf/ is 2-finite if 
and only if & is star-finite. 

Proof. By Lemma 1, every S-finite family is star-finite. Hence we need only 
to prove that if °U is a star-finite open covering of X, then °tt is 2-finite. 

For each x Ç I , define 

Vx = H {U: U G ^ a n d x G U). 

Since °U is a star-finite open covering of X, Vx is a neighborhood of x. With 
these neighborhoods Vx, °l/ is 2-finite. For consider any U G °tt. We will 
show that the family 

U \<%x\ U G <%x] 

is contained in the family 

{ V G ty\ there exists U" G <% with U" C\ U ^ 0, U" n [ / V 0 | . 

This will complete the proof, since the latter collection is finite by the star-
finiteness of °tt. 

Given any V G U \°à'x: U G &x}, there exists an x G X such that U' and 
U are both members of °ttx, that is, VXC\U ?*Q and Fz H U' ^ 0. By the 
definition of Vx, the required U" G ^ exists, and the proof is complete. 
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We now come to the main theorem of the paper. 

THEOREM 2. Every 2-finite family in a topological space is a-discrete. 

Proof. Let °tt be a 2-finite family in a topological space X. By Lemma 1, 
°tt is both locally finite and star-finite. Hence, given any point x £ X, there 
exists a neighborhood Vx of x which intersects at most finitely many members 
of °tt. As before, °tt x denotes the collection of all members of °tt which intersect 
Vx: 

®x= \Ux<a:a G Fx} 

where Fx is a finite set which indexes °lt x. 
Roughly speaking, we wish to choose the sets Fx to be collections of positive 

integers in such a way that if a set Ux<a appears in more than one of the collec­
tions °k'x, then it has the same index in all of these collections, and if a member 
Ux>a of °U'x intersects a member of a different collection °tty, but does not equal 
this member, then these two members have different indices. 

We shall use induction. Let (Xy < ) be a well-ordering of X, and let x0 be 
the first element of X with respect to this ordering. Consider the proposition 

P(x): Fx can be chosen to be a collection of distinct positive integers 
so as to satisfy the three conditions: 
(1) If Ux<i G °llx and UXti = UyJ for some y < x, then i = j . 
(2) If Ux'lt, U'Xii G <%x, then Ux,\ = UXti. 
(3) If for some y < x we have UXtt H UVtj 9e 0 and UXtt 9e UVtj, 

then i ?£ j . 

First, index the members of UXQ with distinct positive integers. Then P(x0) is 
true because x0 is the first element of X. Now suppose that P{y) is true for 
all y < x. We shall show that P(x) is true. 

Consider the family 

«f* = {Ux,a:a G Fx}. 

Let us decompose °ttx into three subfamilies: 

^* ( 1 ) = { Ux.a: Ux,a G °ày for some y < x], 
^* ( 2 ) = { Ux,a: Ux,a G <%v for all y < x but Ux,a H UVtj * 0 

for some y < x and j Ç N], 

We first assign positive integral indices to the members of ̂ V 1 } as follows: 
if Ux>a G &x(1\ then there exists a y < x and a 7 G iV such that £/x>a = [/y^. 
In this case, we replace a by j . Then the induction hypothesis insures that 
Uxj = Uyj for any y < x such that UXtj G <$V The remaining members of 
°àyi} are treated similarly. 

Next, we assign indices to the members of &x
{2). If Ux>a G °tiV2), then this 

member of °tt appears for the first time, so that it has not been indexed pre-
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viously. However, there exists at least one y < x and a j G N such that 
UXta r\ UVtj ^ 0. Let {ji, . . . , jn) be the collection of all indices 7* such that 
there exists a yk < x for which Ux,a H UVkjk 5̂  0 (fe = 1, . . . , n). This collec­
tion is finite because the family °i/ is star-finite. 

It is at this stage that the 2-finiteness of % is needed, for the following 
reason: Suppose at this point we assigned Ux>a some index r. Of course we 
would choose r ^ jk (k = 1, . . . , n), but this in general would not be enough 
to avoid later trouble. For, while indexing a collection °ttv, y > x, it could 
happen that Ux,r = Uy<a Ç °llv, but that °U'y has a member already having the 
index r by virtue of belonging to the collection %V

{1). This would put us in an 
untenable position. 

So instead of the just mentioned procedure, we proceed as follows: Since 
°ll is 2-finite, the family 

u {<%y: ux<a e °uv\ 
is finite. Hence, the collection 

U \°Uy\ y > x and Ux,a G <%y) C\ U [<%y: y < x) 

is finite (or empty). These members of °ll have already been indexed by, say, 
ki, . . . , km. We now replace a by any positive integer i different from j \ , . . . j n , 
ki, . . . , km, and different from the indices already chosen for other members 
of °ttx. The remaining members of &x

(2) are handled in the same way. 
It follows that no member of °U'x

{2) can have the same index as any member 
of a °a'v {y < x) which it intersects (but does not equal). 

Finally, we assign indices to the members of ^ x
( 3 ) . If Ux>a G &x

{3), then 
UXta appears for the first time in °ttx, and UXjU does not intersect any member 
of a previous family. For the same reasons as above, we again consider the 
collection 

U \<%y\ y > x and Ux,a ^°^y\r\\J \<%v\ y <x\ 

and replace a by any positive integer different from the indices occurring in 
this collection, and also different from any index already used for some other 
member of °léx. The remaining members of °U'x

{z) are handled in a similar 
manner. 

It should be clear from the description of the indexing procedure that at 
most one member of the family °ll'x will be assigned a given index. 

This procedure results in a new indexing set for tf/x, which we continue to 
call Fx. The new indexing set satisfies the proposition P(x), so the induction 
is complete. Therefore, the proposition is true for every x G X. 

Now define 

°Mn = {Ux<n: x £ Xn) for each n G N, 

where 

Xn = {x: UXtn exists}. 
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Then 

°ti = U {Wn: n£N} 

and each °ttn is discrete. For let n 6 N be fixed and consider any x £ X. 
Iî x d Xn, then there is no set indexed UXi7l, so Vx intersects no member of 

°i/n. For, if Vx C\ UViTl 9e 0 for some y 9e x then it follows tha t UVtn G ^ z , and 
therefore £/yi7l = [/xj for some j 9e n. However, property (1) of our indexing 
procedure shows t ha t this is impossible. 

If x £ Xn, then Vx intersects precisely one member of ty/n, namely UXiTl. 
For, suppose Vx C\ UVtn 9* 0 where Uy>n 9e Ux>n. Then y ^ x and Uy>n — UXti 

for some i 9e n. But again property (1) of our indexing procedures gives us a 
contradiction. The proof of the theorem is now complete. 

T h e following examples show tha t a family which is not 2-finite need not 
be (7-discrete. 

Example 2. Let X be the set of real numbers with the usual topology and let 

% = {{x}: x is irrational}. 

Then ^ is star-finite, bu t not locally finite. Hence, °U is not 2-finite. ^ can­
not be o--discrete, since every neighborhood of any point of X intersects un-
countably many members of °lt. 

Example 3. Let / be the closed unit interval with the discrete topology, and 
let X = I X / with the product topology. Let °tt consist of all T-shaped figures 
in X with vertex on the diagonal. Each pair of members of % intersect in just 
one point, which is an open set of X, so °U is locally finite. °tt is not star-finite 
because each member of ^ intersects infinitely many other members of %. 
Hence, % is not 2-finite. °U is not ©--discrète because there are uncountably 
many members of ^ , and each member intersects all the others. 

Let us call a family % in a topological space X a-^L-finite if and only if it is 
the union of a countable number of subfamilies °tt u each of which is 2-finite 
in the space X, i.e., 

% = u {<%t: i e N} 

where each fy t is 2-finite in X. Then we have 

COROLLARY 1. A family °tt in a topological space X is a-2-finite if and only if 
it is a-discrete. 

Proof. Suppose °tt is (7-2-finite. Then as above, 

% = u {^ii i 6 N} 

where each & t is 2-finite in X. By Theorem 2, each °i/1 is cr-discrete, so tft is 
^-discrete. 
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Conversely, a discrete family is S-finite, so a cr-discrete family is cr-S-finite. 

By Theorem 1, an open covering of a space X is 2-finite if and only if it is 
star-finite. Thus we have 

COROLLARY 2. Every star-finite open covering of a space X is a-discrete. 

Nagata [2, p. 201] calls an open basis Se for a topological space X a a-star -
finite open basis if and only if Se is the union of a countable number of star-
finite open coverings of X. Hence Corollary 2 gives us 

COROLLARY 3. Every a-star-finite open basis for a topological space is a-discrete. 

We next consider families of closed subsets of a topological space X. First, 
we show 

THEOREM 3. A family °U of closed subsets of a topological space X is ^-finite 
if and only if °tt is both locally finite and star-finite. 

Proof. By Lemma 1, every 2-finite family is both locally finite and star-finite. 
Hence we need only prove that if °tt is locally finite and star-finite, then °tt 
is 2-finite. 

Given any x £ X, there is a neighborhood Vx of x intersecting at most 
finitely many members of °tt. By the local finiteness of °lé, 

X - U { U: U £ <% and x g U\ 

is a neighborhood of x, so 

Vx= VJ C\ [X - U { U: U e <% and x £ U}] 

= Vx - U { U: U G <% and x g U) 

is a neighborhood of x. Let %'x be the family of all members of tyt which Vx 

intersect. Then clearly, °U'x is finite. Next, we note that for a given U £ °ll, 

U £ °tix if and only if x £ U. 

For if x G U, then Vx H U ^ 0, so U € <%x. Conversely, if x Q U, then 
Vx P\ U = 0, so U G ^ z . Hence a given [/ G °ll can belong to only a finite 
number of distinct collections °llx, because °tt is star-finite. Therefore 

U {<%x: U G <9tx\ 

is finite, i.e., °ll is S-finite. 

We immediately have, by Theorem 2, 

COROLLARY 4. Every star-finite, locally finite collection of closed subsets of a 
topological space is a-discrete. 

Let us now consider some applications of some of the above results. We first 
recall some terminology. A space X is called screenable if and only if every open 
covering of X has a (j-disjoint open refinement, i.e., a refinement which is the 
union of a countable number of subfamilies, each consisting of pairwise dis-
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joint open sets. X is said to be strongly screenable if and only if every open 
covering has a c-discrete open refinement, and X is called perfectly screenable 
if and only if X has a d-discrete open basis. Finally, X is called strongly para-
compact if and only if every open covering has a star-finite open refinement. 

Heath [1, p. 768] has proven that a space X is screenable if and only if every 
open covering has a cr-star-countable open refinement. By Corollary 2 we 
easily obtain the following special case of Heath's theorem. 

COROLLARY 5. A space X is screenable if and only if every open covering of X 
has a a-star-finite open refinement. 

Proof. Let °ll be an open covering of X, and suppose that °U has a o--star-
finite open refinement 

^ = U [V',: i e N} 

where each y t is star-finite. By Corollary 2, each ^ < is o--discrete (in U 
{ V: V G ^i})y and so a--disjoint. Therefore ,^ is a-disjoint, and we conclude 
that X is screenable. 

The converse is obvious. 

Among regular spaces, the following characterization of paracompact spaces 
is well-known (see [2, p. 153]). 

THEOREM 4. A regular space X is paracompact if and only if X is strongly 
screenable. 

Again by Corollary 2, we are able to obtain a characterization of strongly 
paracompact spaces (regularity not assumed). 

Let us call a covering of a space X star-a-discrete if and only if it is ^--discrete, 
and a member of any of the discrete subfamilies intersects at most a finite 
number of the members of the remaining discrete subfamilies. Call a space 
X star-strongly screenable if and only if every open covering of X has a star 
(7-discrete open refinement. 

THEOREM 5. A space X is strongly paracompact if and only if X is star-strongly 
screenable. 

Proof. Let X be strongly paracompact, and let tff be any open covering of X. 
By definition of strongly paracompact, °tt has a star-finite open refinement^. 
By Corollary 2,7^ is cr-discrete, so i ^ is star-o--discrete. 

The converse is clear. 

Finally, let us note that a restatement of Corollary 3 is 

THEOREM 6. Every space with a <J-star-finite open basis is perfectly screenable. 

This is well-known in the case of regular spaces, since such a space is metriz-
able. 
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