ON \Sigma-FINITE FAMILIES

BYRON H. McCANDLESS

Let \mathscr{U} be a family of subsets of a topological space X. We do not require \mathscr{U} to be a covering of X, nor do we assume that the members of \mathscr{U} are necessarily open. In this paper we shall assume that \mathscr{U} is of a special sort, which we call Σ -finite. We show that a Σ -finite family is both locally finite and star-finite, and in particular that an open covering \mathscr{U} of X is Σ -finite if and only if it is star-finite. We then prove that every Σ -finite family \mathscr{U} is σ -discrete, so that in particular, every star-finite open covering of X is σ -discrete. There seems to be some applications of this fact.

We begin with some familiar definitions. A family \mathscr{U} in a topological space X is called *locally finite (discrete)* if and only if every point of X has a neighborhood which intersects at most finitely many (one) of the members of \mathscr{U} . \mathscr{U} is called *star-finite* if and only if each member of \mathscr{U} intersects only finitely many other members of \mathscr{U} . \mathscr{U} is called σ -*locally finite* (σ -*discrete*) if and only if it is the union of at most countably many locally finite (discrete) subfamilies. Similarly, \mathscr{U} is called σ -*star-finite* if and only if \mathscr{U} is the union of at most countably many locally finite (ω -*discrete*) is the union of at most countably many locally finite (ω -*discrete*) at most countably many star-finite if and only if \mathscr{U} is the union of at most countably many locally finite.

Before giving the definition of a Σ -finite family, we need some notation. Given a point x in the space X, and a neighborhood V_x of x, denote by \mathscr{U}_x the (possibly empty) family consisting of all members of \mathscr{U} which intersect V_x . (More precisely, we should denote this family by \mathscr{U}_{V_x} , since it depends, in general, upon the neighborhood V_x . However, in the interests of simpler notation we prefer to use simply \mathscr{U}_x , since this should lead to no confusion once this is understood.)

Definition 1. A family \mathscr{U} of subsets of a topological space X is called Σ -finite (in X) if and only if the neighborhoods V_x can be chosen in such a way that for each $U \in \mathscr{U}$, the collection

 $\cup \{ \mathscr{U}_x : U \in \mathscr{U}_x \}$

is finite.

LEMMA 1. Every Σ -finite family in a topological space is both locally finite and star-finite.

Proof. Let \mathscr{U} be a Σ -finite family in a topological space X.

Then \mathscr{U} is locally finite. For the Σ -finiteness of \mathscr{U} implies that for each $x \in X$, the family \mathscr{U}_x is finite, which means that \mathscr{U} is locally finite.

Received September 24, 1973.

481

Next, we show that \mathscr{U} is star-finite. Suppose on the contrary that \mathscr{U} is not star-finite. Then there exists a $U \in \mathscr{U}$ which intersects at least a countable number of distinct members of \mathscr{U} , say $\{U_i: i \in N\}$, where N denotes the set of all positive integers. Choose an $x_i \in U \cap U_i$ for each *i*. Then $U \in \mathscr{U}_{x_i}$ for each *i* and so

 $\{U_i: i \in N\} \subset \bigcup \{\mathscr{U}_{x_i}: i \in N\} \subset \bigcup \{\mathscr{U}_x: U \in \mathscr{U}_x\};\$

hence the latter family is infinite. Thus we conclude that \mathscr{U} is not Σ -finite.

The following example clarifies the position of the Σ -finite families:

Example 1. Let X be the plane E^2 with the usual topology, let U be the x-axis with the points (i, 0), $(i \in N)$ deleted, and for each $i \in N$ let U_i be the vertical line intersecting the x-axis in the point (i, 0). Then the family \mathscr{U} consisting of U and the lines U_i , $i \in N$, is locally finite and star-finite but not Σ -finite. For U belongs to each of the families \mathscr{U}_{x_i} , where x_i is the point (i, 0) and hence

 $\bigcup \{ \mathscr{U}_x : U \in \mathscr{U}_x \}$

is infinite.

It follows that the collection of all Σ -finite families in a space X is properly contained in the collection of all locally finite, star-finite families. However, if we restrict ourselves to *open coverings* of X, we find that the Σ -finite open coverings of X coincide with the star-finite open coverings of X.

THEOREM 1. Let \mathcal{U} be an open covering of the space X. Then \mathcal{U} is Σ -finite if and only if \mathcal{U} is star-finite.

Proof. By Lemma 1, every Σ -finite family is star-finite. Hence we need only to prove that if \mathscr{U} is a star-finite open covering of X, then \mathscr{U} is Σ -finite.

For each $x \in X$, define

 $V_x = \bigcap \{ U: U \in \mathscr{U} \text{ and } x \in U \}.$

Since \mathscr{U} is a star-finite open covering of X, V_x is a neighborhood of x. With these neighborhoods V_x , \mathscr{U} is Σ -finite. For consider any $U \in \mathscr{U}$. We will show that the family

 $\bigcup \left\{ \mathscr{U}_x : U \in \mathscr{U}_x \right\}$

is contained in the family

 $\{U' \in \mathscr{U}: \text{ there exists } U'' \in \mathscr{U} \text{ with } U'' \cap U \neq \emptyset, U'' \cap U' \neq \emptyset\}.$

This will complete the proof, since the latter collection is finite by the star-finiteness of \mathscr{U} .

Given any $U' \in \bigcup \{\mathscr{U}_x: U \in \mathscr{U}_x\}$, there exists an $x \in X$ such that U' and U are both members of \mathscr{U}_x , that is, $V_x \cap U \neq \emptyset$ and $V_x \cap U' \neq \emptyset$. By the definition of V_x , the required $U'' \in \mathscr{U}$ exists, and the proof is complete.

We now come to the main theorem of the paper.

THEOREM 2. Every Σ -finite family in a topological space is σ -discrete.

Proof. Let \mathscr{U} be a Σ -finite family in a topological space X. By Lemma 1, \mathscr{U} is both locally finite and star-finite. Hence, given any point $x \in X$, there exists a neighborhood V_x of x which intersects at most finitely many members of \mathscr{U} . As before, \mathscr{U}_x denotes the collection of all members of \mathscr{U} which intersect V_x :

 $\mathscr{U}_x = \{ U_{x,\alpha} : \alpha \in F_x \}$

where F_x is a finite set which indexes \mathscr{U}_x .

Roughly speaking, we wish to choose the sets F_x to be collections of positive integers in such a way that if a set $U_{x,\alpha}$ appears in more than one of the collections \mathscr{U}_x , then it has the same index in all of these collections, and if a member $U_{x,\alpha}$ of \mathscr{U}_x intersects a member of a different collection \mathscr{U}_y , but does not equal this member, then these two members have different indices.

We shall use induction. Let (X, <) be a well-ordering of X, and let x_0 be the first element of X with respect to this ordering. Consider the proposition

P(x): F_x can be chosen to be a collection of distinct positive integers so as to satisfy the three conditions:

- (1) If $U_{x,i} \in \mathscr{U}_x$ and $U_{x,i} = U_{y,j}$ for some y < x, then i = j.
- (2) If $U_{x,i}$, $U'_{x,i} \in \mathscr{U}_x$, then $U_{x,i} = U'_{x,i}$.
- (3) If for some y < x we have $U_{x,i} \cap U_{y,j} \neq \emptyset$ and $U_{x,i} \neq U_{y,j}$,

then $i \neq j$.

First, index the members of U_{x_0} with distinct positive integers. Then $P(x_0)$ is true because x_0 is the first element of X. Now suppose that P(y) is true for all y < x. We shall show that P(x) is true.

Consider the family

 $\mathscr{U}_x = \{ U_{x,\alpha} \colon \alpha \in F_x \}.$

Let us decompose \mathscr{U}_x into three subfamilies:

We first assign positive integral indices to the members of $\mathscr{U}_x^{(1)}$ as follows: if $U_{x,\alpha} \in \mathscr{U}_x^{(1)}$, then there exists a y < x and a $j \in N$ such that $U_{x,\alpha} = U_{y,j}$. In this case, we replace α by j. Then the induction hypothesis insures that $U_{x,j} = U_{y,j}$ for any y < x such that $U_{x,j} \in \mathscr{U}_y$. The remaining members of $\mathscr{U}_x^{(1)}$ are treated similarly.

Next, we assign indices to the members of $\mathscr{U}_{x^{(2)}}$. If $U_{x,\alpha} \in \mathscr{U}_{x^{(2)}}$, then this member of \mathscr{U} appears for the first time, so that it has not been indexed pre-

viously. However, there exists at least one y < x and a $j \in N$ such that $U_{x,\alpha} \cap U_{y,j} \neq \emptyset$. Let $\{j_1, \ldots, j_n\}$ be the collection of all indices j_k such that there exists a $y_k < x$ for which $U_{x,\alpha} \cap U_{y_k,j_k} \neq \emptyset$ $(k = 1, \ldots, n)$. This collection is finite because the family \mathscr{U} is star-finite.

It is at this stage that the Σ -finiteness of \mathscr{U} is needed, for the following reason: Suppose at this point we assigned $U_{x,\alpha}$ some index r. Of course we would choose $r \neq j_k$ $(k = 1, \ldots, n)$, but this in general would not be enough to avoid later trouble. For, while indexing a collection \mathscr{U}_y , y > x, it could happen that $U_{x,r} = U_{y,\alpha} \in \mathscr{U}_y$, but that \mathscr{U}_y has a member *already* having the index r by virtue of belonging to the collection $\mathscr{U}_y^{(1)}$. This would put us in an untenable position.

So instead of the just mentioned procedure, we proceed as follows: Since \mathscr{U} is Σ -finite, the family

 $\bigcup \{ \mathscr{U}_{y} : U_{x,\alpha} \in \mathscr{U}_{y} \}$

is finite. Hence, the collection

 $\bigcup \{ \mathscr{U}_y : y > x \text{ and } U_{x,\alpha} \in \mathscr{U}_y \} \cap \bigcup \{ \mathscr{U}_y : y < x \}$

is finite (or empty). These members of \mathscr{U} have already been indexed by, say, k_1, \ldots, k_m . We now replace α by any positive integer *i* different from j_1, \ldots, j_n , k_1, \ldots, k_m , and different from the indices already chosen for other members of \mathscr{U}_x . The remaining members of $\mathscr{U}_x^{(2)}$ are handled in the same way.

It follows that no member of $\mathscr{U}_{x}^{(2)}$ can have the same index as any member of a \mathscr{U}_{y} (y < x) which it intersects (but does not equal).

Finally, we assign indices to the members of $\mathscr{U}_{x}^{(3)}$. If $U_{x,\alpha} \in \mathscr{U}_{x}^{(3)}$, then $U_{x,\alpha}$ appears for the first time in \mathscr{U}_{x} , and $U_{x,\alpha}$ does not intersect any member of a previous family. For the same reasons as above, we again consider the collection

$$\bigcup \{ \mathscr{U}_y : y > x \text{ and } U_{x,\alpha} \in \mathscr{U}_y \} \cap \bigcup \{ \mathscr{U}_y : y < x \}$$

and replace α by any positive integer different from the indices occurring in this collection, and also different from any index already used for some other member of \mathscr{U}_x . The remaining members of $\mathscr{U}_x^{(3)}$ are handled in a similar manner.

It should be clear from the description of the indexing procedure that at most one member of the family \mathscr{U}_x will be assigned a given index.

This procedure results in a new indexing set for \mathscr{U}_x , which we continue to call F_x . The new indexing set satisfies the proposition P(x), so the induction is complete. Therefore, the proposition is true for every $x \in X$.

Now define

$$\mathscr{U}_n = \{ U_{x,n} : x \in X_n \}$$
 for each $n \in N$,

where

 $X_n = \{x: U_{x,n} \text{ exists}\}.$

Then

 $\mathscr{U} = \bigcup \{ \mathscr{U}_n : n \in N \}$

and each \mathcal{U}_n is discrete. For let $n \in N$ be fixed and consider any $x \in X$.

If $x \notin X_n$, then there is no set indexed $U_{x,n}$, so V_x intersects no member of \mathscr{U}_n . For, if $V_x \cap U_{y,n} \neq \emptyset$ for some $y \neq x$ then it follows that $U_{y,n} \in \mathscr{U}_x$, and therefore $U_{y,n} = U_{x,j}$ for some $j \neq n$. However, property (1) of our indexing procedure shows that this is impossible.

If $x \in X_n$, then V_x intersects precisely one member of \mathcal{U}_n , namely $U_{x,n}$. For, suppose $V_x \cap U_{y,n} \neq \emptyset$ where $U_{y,n} \neq U_{x,n}$. Then $y \neq x$ and $U_{y,n} = U_{x,i}$ for some $i \neq n$. But again property (1) of our indexing procedures gives us a contradiction. The proof of the theorem is now complete.

The following examples show that a family which is not Σ -finite need not be σ -discrete.

Example 2. Let X be the set of real numbers with the usual topology and let

 $\mathscr{U} = \{\{x\}: x \text{ is irrational}\}.$

Then \mathscr{U} is star-finite, but not locally finite. Hence, \mathscr{U} is not Σ -finite. \mathscr{U} cannot be σ -discrete, since every neighborhood of any point of X intersects uncountably many members of \mathscr{U} .

Example 3. Let I be the closed unit interval with the discrete topology, and let $X = I \times I$ with the product topology. Let \mathscr{U} consist of all Γ -shaped figures in X with vertex on the diagonal. Each pair of members of \mathscr{U} intersect in just one point, which is an open set of X, so \mathscr{U} is locally finite. \mathscr{U} is not star-finite because each member of \mathscr{U} intersects infinitely many other members of \mathscr{U} . Hence, \mathscr{U} is not Σ -finite. \mathscr{U} is not σ -discrete because there are uncountably many members of \mathscr{U} , and each member intersects all the others.

Let us call a family \mathscr{U} in a topological space $X \sigma$ - Σ -finite if and only if it is the union of a countable number of subfamilies \mathscr{U}_i , each of which is Σ -finite in the space X, i.e.,

 $\mathscr{U} = \bigcup \{ \mathscr{U}_i : i \in N \}$

where each \mathscr{U}_i is Σ -finite in X. Then we have

COROLLARY 1. A family \mathscr{U} in a topological space X is σ - Σ -finite if and only if it is σ -discrete.

Proof. Suppose \mathscr{U} is σ - Σ -finite. Then as above,

 $\mathscr{U} = \bigcup \{ \mathscr{U}_i : i \in N \}$

where each \mathscr{U}_i is Σ -finite in X. By Theorem 2, each \mathscr{U}_i is σ -discrete, so \mathscr{U} is σ -discrete.

Conversely, a discrete family is Σ -finite, so a σ -discrete family is σ - Σ -finite.

By Theorem 1, an open covering of a space X is Σ -finite if and only if it is star-finite. Thus we have

COROLLARY 2. Every star-finite open covering of a space X is σ -discrete.

Nagata [2, p. 201] calls an open basis \mathscr{B} for a topological space X a σ -starfinite open basis if and only if \mathscr{B} is the union of a countable number of starfinite open coverings of X. Hence Corollary 2 gives us

COROLLARY 3. Every σ -star-finite open basis for a topological space is σ -discrete.

We next consider families of *closed* subsets of a topological space X. First, we show

THEOREM 3. A family \mathscr{U} of closed subsets of a topological space X is Σ -finite if and only if \mathscr{U} is both locally finite and star-finite.

Proof. By Lemma 1, every Σ -finite family is both locally finite and star-finite. Hence we need only prove that if \mathscr{U} is locally finite and star-finite, then \mathscr{U} is Σ -finite.

Given any $x \in X$, there is a neighborhood V_x' of x intersecting at most finitely many members of \mathscr{U} . By the local finiteness of \mathscr{U} ,

 $X - \bigcup \{U: U \in \mathscr{U} \text{ and } x \notin U\}$

is a neighborhood of x, so

$$V_x = V'_x \cap [X - \bigcup \{U: U \in \mathscr{U} \text{ and } x \notin U\}]$$

= $V'_x - \bigcup \{U: U \in \mathscr{U} \text{ and } x \notin U\}$

is a neighborhood of x. Let \mathscr{U}_x be the family of all members of \mathscr{U} which V_x intersect. Then clearly, \mathscr{U}_x is finite. Next, we note that for a given $U \in \mathscr{U}$,

 $U \in \mathscr{U}_x$ if and only if $x \in U$.

For if $x \in U$, then $V_x \cap U \neq \emptyset$, so $U \in \mathscr{U}_x$. Conversely, if $x \notin U$, then $V_x \cap U = \emptyset$, so $U \notin \mathscr{U}_x$. Hence a given $U \in \mathscr{U}$ can belong to only a finite number of distinct collections \mathscr{U}_x , because \mathscr{U} is star-finite. Therefore

 $\cup \{ \mathscr{U}_x : U \in \mathscr{U}_x \}$

is finite, i.e., $\mathscr U$ is Σ -finite.

We immediately have, by Theorem 2,

COROLLARY 4. Every star-finite, locally finite collection of closed subsets of a topological space is σ -discrete.

Let us now consider some applications of some of the above results. We first recall some terminology. A space X is called *screenable* if and only if every open covering of X has a σ -disjoint open refinement, i.e., a refinement which is the union of a countable number of subfamilies, each consisting of pairwise dis-

486

 Σ -finite families

joint open sets. X is said to be *strongly screenable* if and only if every open covering has a σ -discrete open refinement, and X is called *perfectly screenable* if and only if X has a σ -discrete open basis. Finally, X is called *strongly para-compact* if and only if every open covering has a star-finite open refinement.

Heath [1, p. 768] has proven that a space X is screenable if and only if every open covering has a σ -star-countable open refinement. By Corollary 2 we easily obtain the following special case of Heath's theorem.

COROLLARY 5. A space X is screenable if and only if every open covering of X has a σ -star-finite open refinement.

Proof. Let \mathscr{U} be an open covering of X, and suppose that \mathscr{U} has a σ -star-finite open refinement

 $\mathscr{V} = \bigcup \{ \mathscr{V}_i : i \in N \}$

where each \mathscr{V}_i is star-finite. By Corollary 2, each \mathscr{V}_i is σ -discrete (in \bigcup { $V: V \in \mathscr{V}_i$ }), and so σ -disjoint. Therefore, \mathscr{V} is σ -disjoint, and we conclude that X is screenable.

The converse is obvious.

Among *regular* spaces, the following characterization of paracompact spaces is well-known (see [2, p. 153]).

THEOREM 4. A regular space X is paracompact if and only if X is strongly screenable.

Again by Corollary 2, we are able to obtain a characterization of strongly paracompact spaces (regularity not assumed).

Let us call a covering of a space X star- σ -discrete if and only if it is σ -discrete, and a member of any of the discrete subfamilies intersects at most a finite number of the members of the remaining discrete subfamilies. Call a space X star-strongly screenable if and only if every open covering of X has a star σ -discrete open refinement.

THEOREM 5. A space X is strongly paracompact if and only if X is star-strongly screenable.

Proof. Let X be strongly paracompact, and let \mathscr{U} be any open covering of X. By definition of strongly paracompact, \mathscr{U} has a star-finite open refinement \mathscr{V} . By Corollary 2, \mathscr{V} is σ -discrete, so \mathscr{V} is star- σ -discrete.

The converse is clear.

Finally, let us note that a restatement of Corollary 3 is

THEOREM 6. Every space with a σ -star-finite open basis is perfectly screenable.

This is well-known in the case of *regular* spaces, since such a space is metrizable.

BYRON H. MCCANDLESS

References

- 1. R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces, Can. J. Math. 16 (1964), 763–770.
- 2. J. Nagata, Modern general topology, (Wiley Interscience, New York, 1968).

Kent State University, Kent, Ohio