Can. J. Math., Vol. XXVII, No. 3, 1975, pp. 481-488

ON :=-FINITE FAMILIES
BYRON H. McCANDLESS

Let % be a family of subsets of a topological space X. We do not require %
to be a covering of X, nor do we assume that the members of % are necessarily
open. In this paper we shall assume that % is of a special sort, which we call
2-finite. We show that a Z-finite family is both locally finite and star-finite,
and in particular that an open covering % of X is Z-finite if and only if it is
star-finite. We then prove that every Z-finite family % is o-discrete, so that
in particular, every star-finite open covering of X is ¢-discrete. There seems to
be some applications of this fact.

We begin with some familiar definitions. A family % in a topological space
X is called locally finite (discrete) if and only if every point of X has a neighbor-
hood which intersects at most finitely many (one) of the members of %. % is
called star-finite if and only if each member of % intersects only finitely many
other members of %. % is called o-locally finite (o-discrete) if and only if it is
the union of at most countably many locally finite (discrete) subfamilies.
Similarly, % is called o-star-finite if and only if % is the union of at most
countably many star-finite subfamilies.

Before giving the definition of a Z-finite family, we need some notation.
Given a point x in the space X, and a neighborhood V, of x, denote by %, the
(possibly empty) family consisting of all members of % which intersect V..
(More precisely, we should denote this family by %y,, since it depends, in
general, upon the neighborhocd V.. However, in the interests of simpler nota-
tion we prefer to use simply % ,, since this should lead to no confusion once
this is understood.)

Definition 1. A family % of subsets of a topological space X is called Z-finite
(in X) if and only if the neighborhoods V', can be chosen in such a way that for
each U € %, the collection

U {02/1: U ¢ %z}
is finite.

LEMMA 1. Every Z-finite family in a topological space is both locally finite and
star-finite.

Proof. Let  be a =-finite family in a topological space X.
Then % is locally finite. For the Z-finiteness of % implies that for each
x € X, the family %, is finite, which means that % is locally finite.
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Next, we show that % is star-finite. Suppose on the contrary that % is not
star-finite. Then there exists a U € % which intersects at least a countable
number of distinct members of %, say {U;: ¢ € N}, where N denotes the set
of all positive integers. Choose an x;, € U N U, for each 7. Then U € %,, for
each 7 and so

(Up it E NV C UL WUt € NVC U WU UEU,
hence the latter family is infinite. Thus we conclude that % is not Z-finite.
The following example clarifies the position of the Z-finite families:

Example 1. Let X be the plane E? with the usual topology, let U be the
x-axis with the points (¢, 0), (+ € N) deleted, and for each ¢ € N let U; be the
vertical line intersecting the x-axis in the point (¢, 0). Then the family %
consisting of U and the lines U, ¢ € N, is locally finite and star-finite but not
Z-finite. For U belongs to each of the families % ,,, where x, is the point (4, 0)
and hence

U {OZ/z: U ¢ %z}

is infinite.

It follows that the collection of all Z-finite families in a space X is properly
contained in the collection of all locally finite, star-finite families. However, if
we restrict ourselves to open coverings of X, we find that the Z-finite open
coverings of X coincide with the star-finite open coverings of X.

THEOREM 1. Let U be an open covering of the space X. Then U is Z-finite if
and only if U is star-finite.

Proof. By Lemma 1, every Z-finite family is star-finite. Hence we need only
to prove that if % is a star-finite open covering of X, then % is Z-finite.
For each x € X, define

Ve=N{U: U € %andx € U}.

Since % is a star-finite open covering of X, V, is a neighborhood of x. With
these neighborhoods V,, % is Z-finite. For consider any U € . We will
show that the family

U U€ U
is contained in the family
{U’ € U: there exists U € U with U' N U =@, U’ N U # 0}.

This will complete the proof, since the latter collection is finite by the star-
finiteness of %.

Given any U’ € U {%U,: U € %}, there exists an x € X such that U’ and
U are both members of %,, thatis, V,N\ U # 0 and V., N\ U’ # @. By the
definition of V,, the required U’ € % exists, and the proof is complete.
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We now come to the main theorem of the paper.
THEOREM 2. Every Z-finite family in a topological space is o-discrete.

Proof. Let % be a Z-finite family in a topological space X. By Lemma 1,
% is both locally finite and star-finite. Hence, given any point x € X, there
exists a neighborhood V, of ¥ which intersects at most finitely many members
of % . As before, % , denotes the collection of all members of % which intersect
Ve

02/:;= {Uz,a:a € Fz}

where F, is a finite set which indexes %/,.

Roughly speaking, we wish to choose the sets F, to be collections of positive
integers in such a way that if a set U, , appears in more than one of the collec-
tions % ,, then it has the same index in all of these collections, and if a member
U... of  , intersects a member of a different collection %, but does not equal
this member, then these two members have different indices.

We shall use induction. Let (X, <) be a well-ordering of X, and let x, be
the first element of X with respect to this ordering. Consider the proposition

P(x): F, can be chosen to be a collection of distinct positive integers
so as to satisfy the three conditions:
W If U, €U, and U, = U, , for some y < x, then i = j.
2)If Uy, Ups € U, then U, = Uy,
(3) If for some y < x we have U, N\ U,,; # @ and U, , # U,
then ¢ # j.

First, index the members of U,, with distinct positive integers. Then P (x,) is
true because x, is the first element of X. Now suppose that P(y) is true for
all ¥ < x. We shall show that P(x) is true.

Consider the family

U, = {Usa: a € Fl.
Let us decompose % , into three subfamilies:

U, = {Upa: Upa € U, for some y < x},
US> = {Usa: Upa & U, forally < xbut Usa N\ U,,; # 0

for some y < x and j € N},
US> =Y, — [USNDD UMD

We first assign positive integral indices to the members of %, as follows:
if Uy € U,V, then there exists a y < x and a j € N such that U, . = U,,;.
In this case, we replace a by j. Then the induction hypothesis insures that
U, = U, for any y < x such that U, ; € %,. The remaining members of
U,V are treated similarly.

Next, we assign indices to the members of %, . If U, € %, ?, then this
member of % appears for the first time, so that it has not been indexed pre-
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viously. However, there exists at least one y < x and a 7 € N such that
Uea N Uy, # 0. Let {71, ..., ju} be the collection of all indices j; such that
there exists a y; < x for which U, . M\ Uy, ;, # 0 (k = 1,..., n). This collec-
tion is finite because the family % is star-finite.

It is at this stage that the Z-finiteness of % is needed, for the following
reason: Suppose at this point we assigned U,, some index r. Of course we
would choose 7 # j, (k = 1,...,n), but this in general would not be enough
to avoid later trouble. For, while indexing a collection %,, y > x, it could
happen that U,., = U, . € %,, but that %, has a member already having the
index 7 by virtue of belonging to the collection %,". This would put us in an
untenable position.

So instead of the just mentioned procedure, we proceed as follows: Since
% is =-finite, the family

U {%y: Ua:,a 6 %U}
is finite. Hence, the collection
U, y>xand Uy € U N U U, vy < x}

is finite (or empty). These members of % have already been indexed by, say,
ki, ..., kn. We now replace a by any positive integer ¢ different from j, . . . j,,
ki, ..., kn, and different from the indices already chosen for other members
of % .. The remaining members of %, are handled in the same way.

It follows that no member of % ,» can have the same index as any member
of a %, (y < x) which it intersects (but does not equal).

Finally, we assign indices to the members of %, ®. If U,, € %,®, then
U..« appears for the first time in %, and U, . does not intersect any member
of a previous family. For the same reasons as above, we again consider the
collection

U, y>xand Upa € U3 N U XUy y < x)

and replace a by any positive integer different from the indices occurring in
this collection, and also different from any index already used for some other
member of %,. The remaining members of % ,® are handled in a similar
manner.

It should be clear from the description of the indexing procedure that at
most one member of the family %, will be assigned a given index.

This procedure results in a new indexing set for %, which we continue to
call F,. The new indexing set satisfies the proposition P(x), so the induction
is complete. Therefore, the proposition is true for every x € X.

Now define
U, = {Uyn: x € X,} foreachn € N,
where

X, = {x: U,, exists}.
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Then
U = \J{U,: n € N}

and each %, is discrete. For let n € N be fixed and consider any x € X.

If x ¢ X, then there is no set indexed U, ,, so V, intersects no member of
U,. For,if V,N U,, # 0 for some y # x then it follows that U, , € %,, and
therefore U, , = U, ; for some j % n. However, property (1) of our indexing
procedure shows that this is impossible.

If x € X,, then V, intersects precisely one member of %,, namely U,.,.
For, suppose V, N\ U, # 0 where U, , # U, Theny # x and U, , = U,
for some 7 # n. But again property (1) of our indexing procedures gives us a
contradiction. The proof of the theorem is now complete.

The following examples show that a family which is not Z-finite need not
be o-discrete.

Example 2. Let X be the set of real numbers with the usual topology and let
U = {{x}: x is irrational}.

Then % is star-finite, but not locally finite. Hence, % is not Z-finite. % can-
not be o-discrete, since every neighborhood of any point of X intersects un-
countably many members of %.

Example 3. Let I be the closed unit interval with the discrete topology, and
let X = I X I with the product topology. Let % consist of all I'-shaped figures
in X with vertex on the diagonal. Each pair of members of % intersect in just
one point, which is an open set of X, so % is locally finite. % is not star-finite
because each member of % intersects infinitely many other members of %.
Hence, % is not 2-finite. % is not g-discrete because there are uncountably
many members of %, and each member intersects all the others.

Let us call a family % in a topological space X o-Z-finite if and only if it is
the union of a countable number of subfamilies % ;, each of which is =-finite
in the space X, i.e.,

U =\J{U,; i€ N}
where each % ; is Z-finite in X. Then we have

COROLLARY 1. A family U in a topological space X is o-2-finite if and only if
it 1s o-discrete.

Proof. Suppose % is o-Z-finite. Then as above,

where each % ; is Z-finite in X. By Theorem 2, each % , is o-discrete, so % is
a-discrete.
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Conversely, a discrete family is Z-finite, so a o-discrete family is ¢-Z-finite.

By Theorem 1, an open covering of a space X is Z-finite if and only if it is
star-finite. Thus we have

COROLLARY 2. Every star-finite open covering of a space X is o-discrete.

Nagata [2, p. 201] calls an open basis & for a topological space X a o-star-
finite open basis if and only if & is the union of a countable number of star-
finite open coverings of X. Hence Corollary 2 gives us

COROLLARY 3. Every a-star-finite open basis for a topological space is o-discrete.

We next consider families of closed subsets of a topological space X. First,
we show

THEOREM 3. A family U of closed subsets of a topological space X is Z-finite
if and only if U is both locally finite and star-finite.

Proof. By Lemma 1, every Z-finite family is both locally finite and star-finite.
Hence we need only prove that if % is locally finite and star-finite, then %
is Z-finite.

Given any x € X, there is a neighborhood V,” of x intersecting at most
finitely many members of %. By the local finiteness of %,

X —U{U:U€%andx ¢ U}
is a neighborhood of «x, so
Ve=V/N[X —U{U: U€%andx ¢ Ul}]
=V, - U{U:U€ % and x ¢ U}

is a neighborhood of x. Let %, be the family of all members of % which V,
intersect. Then clearly, %, is finite. Next, we note that for a given U € %,

U€ U, ifandonlyif x ¢ U.

For if x € U, then V,N\ U # @, so U € %,. Conversely, if x ¢ U, then
V.N\U=80,s0 U§¢ U, Hence a given U € % can belong to only a finite
number of distinct collections %,, because % is star-finite. Therefore
is finite, i.e., Z is Z-finite.

We immediately have, by Theorem 2,

COROLLARY 4. Every star-finite, locally finite collection of closed subsets of a
topological space is a-discrete.

Let us now consider some applications of some of the above results. We first
recall some terminology. A space X is called screenable if and only if every open
covering of X has a s-disjoint open refinement, i.e., a refinement which is the
union of a countable number of subfamilies, each consisting of pairwise dis-
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joint open sets. X is said to be stromngly screemable if and only if every open
covering has a o-discrete open refinement, and X is called perfectly screenable
if and only if X has a o-discrete open basis. Finally, X is called sirongly para-
compact if and only if every open covering has a star-finite open refinement.

Heath [1, p. 768] has proven that a space X is screenable if and only if every
open covering has a o-star-countable open refinement. By Corollary 2 we
easily obtain the following special case of Heath’s theorem.

COROLLARY 5. 4 space X 1s screenable if and only if every open covering of X
has a o-star-finite open refinement.

Proof. Let % be an open covering of X, and suppose that % has a o-star-
finite open refinement

where each ¥, is star-finite. By Corollary 2, each ¥, is o-discrete (in U
{V:V e€¥ ), and so o-disjoint. Therefore, ¥ is o-disjoint, and we conclude
that X is screenable.

The converse is obvious.

Among regular spaces, the following characterization of paracompact spaces
is well-known (see (2, p. 153]).

THEOREM 4. A regular space X is paracompact if and only if X 1s strongly
screenable.

Again by Corollary 2, we are able to obtain a characterization of strongly
paracompact spaces (regularity not assumed).

Let us call a covering of a space X star-g-discrete if and only if it is o-discrete,
and a member of any of the discrete subfamilies intersects at most a finite
number of the members of the remaining discrete subfamilies. Call a space
X star-strongly screenable if and only if every open covering of X has a star
a-discrete open refinement.

THEOREM 5. 4 space X s strongly paracompact if and only if X is star-strongly
screenable.

Proof. Let X be strongly paracompact, and let % be any open covering of X.
By definition of strongly paracompact, % has a star-finite open refinement %" .
By Corollary 2,7 is o-discrete, so?” is star-o-discrete.

The converse is clear.

Finally, let us note that a restatement of Corollary 3 is
THEOREM 6. Every space with a o-star-finite open basis is perfectly screenable.

This is well-known in the case of regular spaces, since such a space is metriz-
able.
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