STRONGLY REGULAR EXTENSIONS OF RINGS

CARL FAITH"

As defined by Arens and Kaplansky [2] a ring A is strongly regular (s..)
in case to each a= A there corresponds x=2x,=A4 depending on a such that
ax=a. In the present article a ring A is defined to be a s.r. extension of a
subring B in case each a< A satisfies ’x—a< B with x=x,= A. Sr. rings
are, then, s.r. extensions of each subring. A ring A which is a s.r. extension
of the center has been called a ¢-ring (see Utumi [13], Drazin [3], Martindale
[11], and their bibliographies).

Arens and Kaplansky showed that a s.r. ring is a subdirect sum of divison
rings. Since any s.r. ring is semisimple, a later result stating that any semi-
simple ¢-ring is a subdirect sum of division rings (see [11]) contains this
result.” In §2 of the present article, a further generalization is obtained: (1)
If a semisimple ring A is a s.r. extension of a commutative subring B, then A
is a subdivect sum of division vings. For the proof, the ‘reduction to the case
A is primitive is immediate, but at this stage an innovation is made. Instead
of specializing B, as has been done in the previous work along these lines, a
structure theorem (Theorem 2.1) for a primitive s.r. extension A of an arbitrary
ring B is obtained first of all: (2) If A is a primitive ring, not a division
ring, and if A/B is s.r., then B is dense in the finite topology on A. Of course,
(1) is an immediate consequence, but more can be squeezed out of (2). For
example, (2) shows that in order that a primitive ring A be a s.r. extension
of a subring B, it is necessary that B be a primitive ring, or an integral domain,

(A bit of duality can be introduced here, since in §1 it is shown that a directly
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irreducible s.r. extension of an integral domain is necessarily an integral
domain.) A fairly easy consequence of this is that in order that a semisimple
ring A be a s.r. extension of a subring B, it is necessary that B be a subdirect
sum of primitive rings and integral domains (Corollary 2.2 ff.).

Another consequence of (2) is that any s.r. extension of a division ring is
a subdirect sum of division rings. This fact is also implied by the theorem of
Arens and Kaplansky inasmuch as a s.r. extension of a s.r. ring is a s.r. ring.
However, this and the above results are all obtained in a new way independently
of the previous results for &-rings and s.r. rings.

The structure of A is not known in the general case when A is a sr. ex-
tension of a commutative subring B. However the centralizer of B in A is a
¢-ring, so that some information on the structure of A is available.

In § 3 the results on s.r. extensions are applied in extending the results of
Nakayama [12] on the commutativity of rings, continuing a program which I
began in [4]. Any future improvements in the theory of s.r. extensions will
net corresponding improvements in this direction also.

A simple computation shows that a ring is regular (axa =a) in the sense
of von Neumann if and only if every principal one-sided ideal has an idempotent
generator. Arens and Kaplansky introduced the notion of strong regularity
(a’x = a), whereby not only are these idempotent generators demanded but
also nilpotent elements are banished. Here, and more generally in £-rings, the
emphasis has shifted from the manufacture of idempotents to the disposition
of the nilpotent elements of index two: they must all lie in the center. In §5
the position in a primitive ring A of the subring T(A) generated by the
nilpotent elements of index two is investigated. One finds in important special
cases (e.g, if A is an algebraic algebra, or if A has a minimal left ideal) that
the subring T(A), and also the subring E(A) generated by the idempotents
of A, is dense in A, if A is not division. This clearly illustrates my allusion
above to the extent to which the structure of an s.r. extension A/B is influenced
by the fact that B contains the subring T(A).

1. Directly irreducible strongly regular extensious. If A is a {-ring with

center Z, and if @, x€ A satisfy a’x — a < Z then [11, Theorem 1] states that
ax = xa. The verbatim proof (accredited to Herstein) given there establishes
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this implication for CN-rings”, a fact which is stated in the proposition below.
By reproducing its proof here, I have been able to make this section, and the

section following, relatively self-contained.

ProrosiTion 1.1. In any CN-ring, any two clements a and x which satisfy

ax—a<s Z are commutative, that is, then ax = xa.

Proof. Since a’x—acZ, (a°x—a)a=ala*x— a), and so (1) a*(ax — xa) = 0.
Using (1), it follows that [a(ax—xa)al* =0, so that, since A is CN, (2)
alax —xa)ac Z. Commuting this with a and using (1), there results (3)

alax— xa)a®=0. Since d’x - a€ Z, one easily verifies that
(4) ax—xa="Lalax — xa) + (ax — xa)alx.

If (4) is multiplied on the left by a, using (1), the result can be simplified to

alax— xa) = a(ax — xa)ax, so that, by (2), one has
(5) alax—zxa) =alax — xa)ax = xalax — xa)a.

Multiplying (5) on the right by a produces (6) a(ax — xa)a= xalax — xa)d’,
which is =0 by (3). Reapplying this latter fact to (5) yields (7) a(ax— xa)
=0. .Thus, (4) can be simplified to (8) ax— xa = (ax— xa)ar. From (7)
[(ax— xa)al =0, so that (ax—xa)acsZ. Commuting this with ¢, and using
(7), one obtains (9) (ax — xa)a® =0. Since (ax— xa)a < Z, (8) becomes (ax — xa)
= x(ax — xa)a, and so, by (9), one has (10) (a@x — xa)ax = x(ax — xa)a’x=0. Then

(8) reduces to ax = xa, which is the desired result.

CoroLLARY 1.2. If a and x are elements of a ring A, and if the element
a’x—a and all nilpotent elements of A commute with both a and x, then a and x

commute.

Proof. Let @ denote the subring of A generated by @ and x, and let i
denote the center of @ Then the condition of the corollary implies that @ is
a CN-ring, and that @a®x—a <3, so that the corollary follows from the pro-
position.

An element a of a ring A is (von Neumann) regular if axa = a, and strongly

% A CN-ring is a ring in which every nilpotent element belongs to the center. It
seems that in each case where I assume that a ring is CN, I actually require only that

the center contains all nilpotent elements of index two. I do not know whether this
latter condition is equivalent to the CN hypothesis.
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regular (Arens and Kaplansky) if a’x = a, for suitable ¥ A. The next corol-
lary in the case # =1 shows that in CN-rings strong regularity of an element
a implies its regularity. The corollary follows from the proposition by observ-

ing that a""'x=a" implies (a")’s" = a".

CoroLLARY 1.3. If A is @ CN-ring, then the equation a"*'x=a" for two
elements a and x in A, and a natural number n, implies the equation a*x"
=x"a".

LemMma 1.4. A directly irreducible CN-ring A has an identity element 1x0

if and only if there exist @, < A such that @’x=a=0. Then ax=xa=1.

Proof. By the corollary a’x=a implies ax = xa, so that e = ax is a nonzero
idempotent when a=0. Since the sets eA(1 —e), (1—e)Ae are central, they
commute with e, whereby they are =0. By the direct irreducibility of 4,e=1.
The converse is trivial.

In a s.r. extension of a division ring, to each element @ there corresponds
an element x such that a’x — @ has certain regularity properties. This situation
for directly irreducible rings is slightly generalized directly below, and follow-
ing this a similar generalization of s.r. extensions of integral domains is con-

sidered.

Tarorem 1.5. Let A be a directly irreducible CN-ring containing a left
identity 10, and such that to each a< A there correspond b€ A and a natural
number n = ng such that either a"*'b—a"=0, or else a*"'b—a" has a right
inverse in A. Then the totality N of nilpotent elements of A is an ideal, and
A — N is a division ring.

Proof. By Lemma 1.4, 1 is a two-sided identity. If a"*'b— a” has the right
inverse «x, then @ has the right inverse a"bx—a" 'x. If a""'b=a" then, by
Corollary 1.3, a@"8" = b"a", so that e =a"d" satisfies e*=¢. Then, by Lemma
1.4, either e =1, whence @ has right inverse 4"7'0”, or else 0=¢=eqa" = a"
Thus, every nonnilpotent element has a right inverse. It is easy to see that
this means that every nonnilpotent element has a two-sided inverse. Then

(e.g., [9, p. 21]), since N is a {(central) ideal of A, A — N is division.

Remark. One can show in general that in a ring A with identity such that

every nonnilpotent element has an inverse, that N is a two-sided ideal such
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that A — N is division (cf. the proof of Lemma 1.9 below.)

CoroLLARY 1.6. If A is directly irreducible with a left ideniity 1x0 such
that to each a< A there corresponds b A such that either a°b—a=0, or else

a’b—a has a right inverse, then A is division.

Proof. It is trivial to show that N=10, so that A is CN, and the theorem
applies.

The corollary shows that a nonzero directly irreducible s.r. ring is division
if only if there exists a left identity. In such a ring a two-sided identity exists,

according to Lemma 1.4.

CoroLLArY 1.7. A monzero directly irreducible ring is s.r. if and only if
it 1s division.

TueoreM 1.8. If A is a directly irreducible CN-ring, and if to each a< A
there correspond be A and a natural number n = nq such that a”*'b— a” is not
a proper right divisor of zero in A, then the set N of nilpotent elements of A

is a nil ideal, and A — N is an integral domain.

Proof. In a way completely analogous to the proof of the last theorem,
one sées that N coincides with the set D of all right divisors of 0in A. Thus,
the theorem is a consequence of the following lemma. The lemma no doubt
is known, but I have not been able to find a published proof. For this reason,

I include one here.

LemMma 1.9. If N=D in a ring A, then N is an ideal of A, and A — N is

an integral domain.

Proof. 1If N=0, there is nothing to prove. Now let 0 x= N have index
of nilpotency = m. Then, since (ax)x™ =0, ax= D =N, for all a< A, that is,
Ax E N, for all x= N. Since (ax)"” =0 implies that (xa)"*' =0, this shows that
Ax € N implies that xA £ N, so that AxA S N, for allx = N. In order to show
that IV is an ideal, it renains to show that N is closed under addition. If
%, ¥y E N, then, since (x+y)’€AxA+ AyA, it follows that (x+¥)eN. It
remains to show that A — NV is integral. It suffices to show that a& N, b€ N,
ab=gq< N leads to a contradiction. Clearly, g=0, so ¢ is nilpotent of index
m=2. Since (ab)"=[(ab)" 'alb=0, b D implies that (ab)” 'a=0. But

a< D implies that (ab)” ' =0, which is the desired contradiction.
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A consequence of Corollary 1.6 is that a directly irreducible s.r. extension
of a division ring is a division ring. In analogy with this fact one has

CoroLLARY 1.10. A directly irreducible s.r. extension of an integral domain

is an integral domain.

Proof. If A is the extension, and B the integral domain, then A contains
no nilpotent elements 0. Thus, if ¢, y= A, then ay =0 if and only if ya=0.
Since A is a CN-ring, by the theorem it suffices to show that a—a’b& B is
not a proper right divisor of zero in A. Hence assume that 0xyc A
is such that y(a—a®b) =0, and a—a*b%0. Then (a—da’b)y=0, so that
(a—a’b)(y —y*c) =0, where ¢ can be chosen such that y —y*c< B. Since B is
integral, y = y°c, so that, by Lemma 1.4, yc=cy is the ring identity, which
contradicts the choice of ¥ as a proper left divisor of 0.

Since a s.r. ring is a s.r. extension of every subring, it would seem that
the hypothesis “A is a s.r. extension of B” would have more force if one as-
sumes at the outset that A is not an s.r. ring. (Then B is not s.r.!) For
these rings the structure theory can be reduced in some cases to that of directly

irreducible s.r. extensions.

ProrosiTioN 1.11. Let B be a simple ring with identity e, and let A be a
s.r. extension of B, A not a s.r. ring. Then A=Q® P, where Q is a directly
irveducible s.r. extension of B having the identity e, and P is a s.r. ring.
Conversely, Q DR is a s.r. extension of B, if @ is any s.r. extension of B, and

P is any s.7r. ring.

Proof. The sufficiency is clear. The necessity requires the following lemma

which is also of interest in more general situations.

LemMmAa. If B is a ring with a central idempotent e, and if A/B is a s.7.

extension, then e is a central element of A.

Proof of the Lemma. B contains all nilpotent elements of index two, so
that B contains the sets eA(1—e), (1 —e)Ae. Since e is central in B, these
sets =0, so A=eAe®(1—e) A(1—e), and e is central.

Going back to the proof of the proposition, since (1—e)A(l—e)NB=0,
P=(1-¢)A(1—e) is sr. as required. It remains to show that Q =ede is
directly irreducible. To this end assume that @ = M@ N, where M and N are
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ideals. MN B =0 implies that M is s.r. If both M and N were s.r., then so
would @, whence A, be s.r., contrary to assumption. On the other hand, if
MNB=0, then M2B, so that M=Q, N=0, and @ is directly irreducible.

The existence of directly irreducible s.r. proper extensions, not division
rings, of simple rings is guaranteed by the example in §4 of [4].

§2. Semisimple strongly regular extensions. The next theorem shows
that in order that a ring B possess a primitive s.r. extension, it is necessary

that B be a primitive ring, or an integral domain.

2.1. StrucTurE THEOREM. Let A be a primitive ring, not a division 7ing,
which is represented as a dense ring of lt's in a vector space V over a division
ring D. Then: if B is any subring of A such that A/B is s.r., then B is

isomorphic to a dense ring of lt’s in V.

Proof. Let V, be a vector subspace of V of finite dimension #n, let
U={ac A|V,aSVa}, and let K={a= A|Vs,a=0}. Then, as is well known
[9], the difference ring U = U— K is isomorphic to D., the complete ring of
n X n matrices over D. First assume that #>1, and let € U be such that
# =K. Then, if ce A is such that  — #*c € B, then, since #’c € K, it follows
that u—u’ce @ = BNU. Thus, the subring @ determined by @ under the
canonical homomorphism U~ U contains every #& U satisfying #*=0. By [7,
p. 602, Proposition 1], @ = U, that is, U=Q+ K, and, consequently, every Lt.
of V, is induced by an element of B, in case #>1. Now V; is contained in
a subspace V,, and if @ is any lt. in V;, there exists a Lt. @ in V, such that
a, induces @;. Then, if b € B induces @, then b also induces @. Thus, in all
cases, the l.t’s in V, can be induced by elements of B. This establishes that

B is isomorphic to a dense ring of lt’s in V.
(1) of the next corollary is immediate.

CorOLLARY 2.2. Let A be a s.r. extension of a ring B. (1) If A is a
primitive ring, not a divison ring, then B is a primitive ring, and so is any
intermediate ring of A/B. (2) If A is semisimple, then B is a subdirect sum

of primitive rings, and integral domains.

Proof. (2) Let {P} denote the collection of primitive ideals in A. Since
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N P=0, necessarily N(PNB) =0, so that B is a subdirect sum of the rings
{B—(PNB)}. Now A— Pis a s.r. extension of (P+ B)— P, so that by the
theorem: if A— P is not a division ring, then (P4 B)—P is primitive;
(P+ B) — P is an integral domain, otherwise. (2) is completed by observing
that (P+ B) — P is isomorphic to B— (PN B), for each P={P}.

CoroLLARY 2.3. Let A be a semisimple ring which is a s.r. extension of a
commutative subring B. Then A is a subdirect sum of division rings, and B
is a subdirect sum of (commutative) integral domains. (If in addition A is

subdirectly irreducible, then A is a division ring).

Proof. Let A' be any primitive homomorph of A, and let B’ denote the
corresponding map of B. Since A//B’ is s.r., and B' is commutative, density
of B' in A’ would imply commutativity of A', which in turn would imply that
A' is a field. Thus, by the theorem, A’ is a division ring, so that A is a sub-
direct sum of division rings. By the corollary, B must be a subdirect sum of
(commutative) primitive rings and integral domains. Since a commutative
primitive ring is a field, B has the desired struture. (The parenthetical remark

is obvious).

3. Commutativity theorems. If S is a nonempty subset of a ring A, then
[S] denotes the subring generated by S. If R is a subring, then R[S] denotes
the subring generated by R and S. If A is a division ring, and if R is a divi-
sion subring, R(S) is the division subring generated by R and S.

Let @ be a commutative ring with identity. A ring A is a ¢-ring (in the
sense of Jacobson [8, p. 55]) if A is a unitary left @-module satisfying
c(xy) = (cx)y = x(cy) for all ce @, and all %, y< A.

DeriniTiON. Let @ be a commutative ring with identity which contains a
(possibly 0) subring K with the property that (1) a nonzero homomorph X'
of K is an integral domain if and only if K’ is an algebraically closed field,
and (2) there exist finitely many ¢;, ..., ¢, 0 such that 0 =K[ey, ..., ¢rl.
Let A be a O-ring, and B a @-subring of A subh that to each e A there

corresponds a polynomial Pa(x) in the polynomial ring #[x] such that

a"—a"pa)eB

for some natural number n depending on @. Then A/B is an N-extension. If
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A/B is an N-extension, then it is an Nr-extension if n=1 for all a€ A, and it
is an N:extension if B contains all idempotents of A.

N-extensions have been studied extensively by Nakayama [12] (and others,
see [12, References]) where the main result states that any ring A which is
an NVy-extension of its center Z is commutative (or, more generally, any CN-
ring which is an N-extension of its center is commutative.) This result had
been obtained earlier by Nakayama in the case K=0. In this case it is also
true that a division ring A is commutative if it is an N-extension of a division
®-subring = A (Faith [4, Theorem 11), a result which is extended to the K0

case below.

TueoreM 3.1. Let A be a division O-ring, @ as in the definition, and let
B be a O-subring such that A/B is an N-extension. Then: if B is commutative,
or if B is a division subring = A, then A is a field.

Proof. If B is commutative, so is the division subring (B) generated by
B. If (B) =A, then A is a field as required. Hence, it suffices to consider
only the case where A (% Z) is an N-extension of the division ring B= A.
Let 1 be the identity of A, and set ¢ =@1. Since ¢ %0, A and B are algebras
over the field ¢ of quotients of ¢. In this case the results of [6] are applicable.
The hypotheses imply that to each a= A there corresponds p.(x) with coef-
ficients in ¢(<S¢) such that a"—a""'p.(a) € B, Under these conditions [6,
Theorem 1.5] asserts that to each b A there corresponds a polynomial Fp(x)
over ¢ such that (i) F»(b) € Z, and (ii) Fs(x) is the composition of finitely

many of the polynomials in the set
("= 2" pox)|lac A, n=1,2,...}.
Clearly, then, the polynomial Fy(x) has the form
Fo(x) =x™— x™ gp(x),

with » = m(b) >1, and gs(x) € ¢[x]. (It is important to note that the Fy(x)
are polynomials over ¢.) The effect of all of this is to show that A/Z is an
N-extension, as defined above, so that A = Z by the result of Nakayama.

THEOREM 3.2. Let A be a O-ring, ® as in the definition, and let B be a

commutative O-subring such that A/B is an Ni-extension. If either A is semi-
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simple, or BN J(A) =0, where J(A) denotes the Jacobson radical of A, then A

is commutative.

Proof. Since A is semisimple (if BNJ(A) =0, then J is s.r., so J=0), A
is a subdirect sum of division rings A’ by Corollary 2.3. Each A’ can be
regarded as a @-ring, and it follows that each A’ is an NNV;-extension of a com-
mutative subring, so that each A’ is commutative by Theorem 3.1. Then A
is commutative.

Below, if a ring is an Nj-extension of 0, then it is an Ni-ring. By
Nakayama’s result, every N;-ring is commutative. If A is an Ny-extension of
a simple subring B, and if B has an identity e, it follows from the lemma to
Proposition 1.11 that A =ede®(1—e) A(1—¢). Since (1—e)A(l1—¢) is an
Ni-ring, it is commutative. Now suppose that eAe= M® N, where M and N
are ideals. If both M and N are disjoint from B, then both M and N are Ni-
rings, whence they are commutative. Thus, if ¢Ae is noncommutative, it can
be assumed that, say, BN M=0. . Then, by the simplicity of B, BE M, and,
since M now contains the identity e of ede, M=eAe, N=0, so that ede is

directly irreducible. This establishes the lemma.

LemMa 3.3. If A is an Ny-extension of a simple O-subring B, and if B

contains an identity element e, then
A=Q]P,

where Q =eAe, and P=(1—e) A(1—e) is a (commutative) Niring. Further-

more, either A is commutative, or else eAe = Q is directly irreducible.

Now suppose that B in the lemma is a division @-subring. Then, if A is
noncommutative, @ is a directly irreducible N;-extension of B. Since Corollary
1.7 shows that @ is a division ring, it follows from Theorem 3.1 that either

B=@Q, or else @ is a field. This completes the proof of the next theorem.

TueoreM 3.4. Let A be a 0-ring, and B a division O-subring such that
A/B is an Ny-extension. Then, either A is commutative, or else A=B®P,
where P is a (commutative) Ni-ring. Furthermore, if A is directly irreducible,
and Bx A, then A is a field.

The theorem and the discussion preceding have the corollary.
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CoroLLARY 3.5. If A is a ®-ring which is an Ny-extension of a O-subfield

B, then A is commulative.

§4. &-extensions. The extension A/B is a £-extension in case to each
a € A there exist ¥ = x; € A and a natural number » = n, such that a” — a”"'x< B.
If x can be chosen such that x” commutes with &”, for every a< A, then a
&-extension is a &'-extension. A £-extension is &, if B contains all idempotents
of A, and £ if it is both & and &

If A is a 0-ring, where @ is a commutative ring with identity, and if B is
a O-subring such that to each a= A there correspond p.(x) <= 0[x] and a
natural number 7 = n, such that ¢” — a”*'p.(a) € B, then A/B is a &'-extension ;
it is £; if pe(e) =0 for each idempotent e= A. Thus, the results of this section
are applicable to these extensions; in particular, they are applicable to N-
extensions.

A ring A is a &-ring if it is a £-extension of 0. It is trivial to verify
that any £;-ring is a nil ring, and conversely. If A/Bis &, and if L is any
left ideal disjoint from B, then L is nil. To see this, if a€ L, and if a" —a""'x
€B,then0=a"—a""'xeBNL=0. Since a"x" = x"a", this implies that e = a"x"
is idempotent. Since e LN B =0, then a" = ea” = ¢=0, so that L is nil. This

fact is used several times below.

THEOREM 4.1. If A is a %i-extension of a simple ring B, and if J(A) =% A,
then J(A) is nil, and A — J(A) is primitive.

Proof. Suppose for the moment that J(A)2B. Then A—J(A) would be
a &yring, whence it is a nil ring. This would imply that A4 =J(A), which is
excluded by hypothesis. Hence J(A)=2 B, so that J(A) N B =0, whence J(A)
is nil. Now B cannot be contained in every primitive ideal of A, since the
intersection of these is J(A). Hence there exists a primitive ideal P which is
disjoint from B. Then P is nil, whence P= J(A), and A —J(A) is primitive.

Now suppose that A is a ring with no nil ideals = 0 which is a £;-extension
of a division subring B. By the theorem, A is primitive, but, as a matter of
fact, A is division. The proof of this is similar to the proof of the theorem,
except that one considers the modular maximal left ideals (m.m.l.-ideals) of A
instead of the primitive ideals. Since A contains no nil left ideals, one concludes
that 0 is a m.m,l-ideal, that is, that A is a division ring. This fact is stated
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in the next theorem.

THEOREM 4.2. If A is a ring with no nil ideals =0, and if A is a &

extension of a division subring, then A is a division ring.
The corollary below is a consequence of the theorem, and of Theorem 3.1.

CoroLLARY 4.3. If A is a ring with no nil ideals =0, and if A is a N-

extension of a division subring B=x A, then A is a field.

The last two results can be restated as follows: If A is a ring containing
no nonzero idempotents =1, and containing no nonzero nil ideals, and if A
is a &'-extension (resp. N-extension) of a division subring Bx A, then A is a
division ring (resp. field.)

The corollary generalizes results on radical extensions of [4] and [51.

If A is a radical extension of an integral domain, then to each a € A there
corresponds a natural number » such that @” has certain regularity properties.

The situation is generalized below.

THEOREM 4.4. Let A be a ring wiith the property that to each ac A there
corresponds a natural number n = n, such that a" is not a proper right divisor
of zero in A. Then the set N of nilpotent elements is an ideal, and A — N is
an integral domain.

Proof. Let D denote the set of all right divisors of zero in A. The condi-

tion of the theorem implies that N= D, so that the theorem follows from
Lemma 1.9.

Remark. If A is a ring with a nil ideal N such that A— N is integral,
then, of course, D=N in A, and A has the property of the theorem.

Now let A be a radical extension of an integral domain B, that is, such
that to each a= A there corresponds a natural number » = n, such that ¢” € B.
Assume that A contains no nil left ideals =0, let x= A be nonnilpotent, and
let ye Ly={ac Alax=0}. Then, since y"x" =0, m=my. n=n,, since B is
integral, and since x” =0, then " =0. L, is therefore nil, so L,=0. This
shows that each a< A has the property stated in the theorem, and completes
the proof of the corollary.

CorOLLARY 4.5. If A is a ring with no nil left ideals %0, and if A is a

radical extension of an integral domain, then A is an integral domain.
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A commutative integral domain A can be radical over a subring B only
under very special circumstances. For then, if A* and B* denote the respective
quotient fields of A ard B, then A* is radical over B* It follows from the
work of Kaplansky [Canad. J. Math. vol. 3 (1951) 290-292] that either A™ = B,
or else, A* has characteristic >0, and either A*/B* is purely inseparable, or
else A* is algebraic over GF(p). It would be interesting to know the cor-
responding situation for noncommutative integral domains (cf. [51 for some

results with added hypotheses on A and B).

5. Generation of primitive rings. If A is a ring, let T(A) denote the
subring generated by all nilpotent elements of index two, and let E(A) be the
subring generated by all idempotents. If A is primitive, and A/B is s.r., then
by Corollary 2.2, B is dense in the finite topology on A4, if A is not division.
In view of the fact that B contains T(A) when A/B is s.r., it would be in-
teresting to know if any subring of A which contains 0% 7(A) is dense in A.

Positive results abound in special cases, making a counterexample hard to find.

TueoreM 5.1. If A is a primitive ring with a minimal left ideal, and if
A is not a division ring, then T(A) and E(A) are dense in the finite topology
on A. (Then T(A) and E(A) are primitive rings).

Let S denote the socle of A. It suffices to show that T(S)=E(S) =S,
since then density follows from the inclusions T(A)=2S, E(A)=2S. Thus, the
theorem is a consequence of the lemma below. (In case A does not satisfy the
minimum condition, then the theorem follows immediately from Rosenberg’s
generalization [Proc. Amer. Math. Soc. vol. 7 (1956) p. 897, Corollary 5] of a
theorem of Kasch [10]).

Lemma 5.2, (a) If A is a simple ring containing a nontrivial idempotent,
then T(A) = A. If, in addition, (b) A is an algebra over a field ® = GF(2), or
(c) if A contains a minimal left ideal, then E(A) = A.

Proof. (a) Let .7 denote the additive subgroup generated by all nilpotent
elements of index two, and let, for any subset S of 4, [S, S] denote the additive
subgroup generated by all [, bl =ab—ba, a, b€ S. 1If u, v .7 are nilpotent

of index two, then so is

w=(14u)o(l—u),
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Then,

[u, vl=w+uvu—ve. 7.

It easily follows from this that .7 is a Lie ring with respect to [a, #]. Then
Amitsur’s [1, Lemma 2] shows that .7 2[4, A], so that T(A) 2[4, Al. If ¢
is any nontrivial idempotent in A, then e¢A f,‘ fAeS .7 ST(A), where (formally)
f=1—e. But T(A) also contains the product

eAe=e(AfA)e= (eAf)(fAe),

similarly, fAfST(A). Then T(A)=A=c¢Ae+eAf+fAe+fAf, as needed.

(b) In this case Amitsur’s [1, Theorem 1] states that A contains no non-
invariant noncentral subalgebras = A, unless A is 4-dimensional over a field F
of characteristic two. Since E(A), T(A) are invariant noncentral subalgebras,
equality E(A) = T(A) = A follows when dim A/F=x4. In this exceptional case,
A is a simple matrix algebra. A general property of arbitrary matrix algebras
A =Ry, n>1, implied by [7, Prop. 1] is that E(A)=T(A)=A. This latter
result also suffices for the case (c), since A is then locally a complete matrix
ring R,, n>1, by Litoff's theorem [8, p. 901.

TueoreMm 5.3. Let A be an algebraic algebra over the field 0. (a) If A
is primitive, but not division, then E(A) and T(A) are dense in the finite topology

on A. (Then E(A) and T(A) are primitive algebras.) (b) If A is semisimple,
so is E(A).

Proof. (a) The proof is analogous to that of Theorem 2.1. Adopting the
terminology there, with B = E(A) (resp. B=T(A)), if ¢ is any element in a
complete set of matrix units for U, by [9, p. 239 ff.], there exists an element
f in a complete set of matrix units in U such that f =e. If e>=¢e (resp. e =0),
then, since f € E(A) (resp. f € T(A)), it follows that e @. Since any auto-
morphism of U maps a complete set of matrix units onto another complete
set, this latter assertion shows that @ contains all conjugates of . Since
U= Dy, n>1, by [7, Prop. 1], U is generated by the conjugates of e,

U =Q. The rest of the proof is unchanged.

so that
(b) It is not hard to show that a subring (subalgebra) B of a semisimple

ring (algebra) A is itself semisimple, if each homomorphism of A which maps

A onto a primitive ring (algebra) also maps B onto a primitive ring (algebra),
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(The proof of this is related to that of Corollary 2.2). Thus, if A is a semi-
simple algebraic algebra, and if P is any primitive ideal of A, then [9, p. 239
ff.] shows that the canonical map A—-»A— P maps B=E(A) onto E(A— P).
If A— P is not division, then E(A — P) is primitive by (a), while if A— P is
division, since it is an algebraic division algebra, every nonzero subalgebra
is a division algebra. Thus E(A — P) is primitive in this case too, and the
semisimplicity of B follows from the remark above.

Relating to Lemma 5.2 is the question whether T(A) = A in a simple ring
(algebra) A implies the equality E(A) = A.
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