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ON THE EXISTENCE OF OPTIMAL CONTROL FOR
CONTROLLED STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

NORIAKI NAGASE

§1. Introduction

In this paper we are concerned with stochastic control problems of
the following kind. Let Y(¢) be a d’-dimensional Brownian motion defined
on a probability space (2, #, #,, P) and u(f) an admissible control. We
consider the Cauchy problem of stochastic partial differential equations
(SPDE in short)

dp(t, x) = L(Y(?), u(@®)p(t, x)dt + M(Y(®)p(t, x)dY ()
(1.1 xeRe, >0
p(0, x) = ¢(x)

where L(y, u) is the 2nd order elliptic differential operator and M(y) the
1st order differential operator.

By a solution p(f) = p“(¢), we mean H'M-valued & ,-adapted process
which satisfies

(PO, = 6,1 + [ LY@, us)p(), ds
+ [, aa(re)pe), nave, t=0

for any smooth 5 where (-, -) is the pairing between H-' and H' and
(-, -) is LA (R?) inner product (see [4], [7]).

The SPDE (1.1) is related to the filtering, stochastic control with
partial observation, population genetics etc. and investigated by Pardoux,
Krylov & Rozovskii and Rozovskii & Shimizu, etc.

The purpose of this paper is to prove the existence of optimal controls
for the following problem. Define a criterion J(u) by

Received November 21, 1987.
) H'=H!(R?) denotes the Sobolev space Wi(R%), 1=0, +1, ---.

73

https://doi.org/10.1017/50027763000001549 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001549

74 NORIAKI NAGASE

(1.2) J(w) = E[F(p") + G(p*(T))]

where F and G are real valued functions on L¥0, T'; L*(R?%)) and L¥R%)
respectively. Now we want to minimize J(z) by a suitable choice of an
admissible process u.

In Section 2 we will recall some known results in our convenient way
and formulate our problem precisely. In Section 3 we will prove that
the solution p* depends on u continuously which derives the existence
of optimal control [Theorem 3.2]. In Section 4 we apply our results to
stochastic control with partial observation, where an observation noise
may depend on a state noise.

The author wishes to thank Professor M. Nisio for her valuable sug-
gestion and encouragement and the referee for many helpful comments.

§2. Notation and preliminaries
We assume the following conditions (A.1) ~(A.3).
(A.1) b: R X RY —> R* ® R”
g: R* X RY —> R*®@ R¥
a: RTEX RY — R‘Q@ R¢
h: R X R — R?
are bounded and continuous and @ is symmetric.
(A.2) There exists § > 0 such that
2a(x, y) — 30(x, y)a*(x,y) >8I  for any (x,5) e R* X R¥
where ¢* is the transposed matrix of g.

(A.3) a(-,y), o(-,y) are C**'-class in xe R?,
h(-,¥), b(-,y) are C?-class in xe R?,

and their derivatives are bounded and continuous in (x,y) e RXRY,
where M = max{2, m} and m is a given nonnegative integer.

Let I' be a convex and compact subset of RZ.

DErinNITION 2.1. & = (2, %, P, Y, u) is called an admissible system,
if (2, &#, P) is a probability space and u is a I’-valued measurable process
and Y is a d’-dimensional (&,)-Brownian motion on (2, %, P), where

F, = o{Y(s), L u(@)de; s < t}.
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A denotes the totality of admissible systems.

For o/ €Y, n* denotes the image measure of (Y, u) on C(0, T; R¥) X
L0, T; ).

Endowing the uniform topology on C(0, T; R*) and the weak topology
on L¥0, T; '), we have

Lemma 2.1. {x*; o/ € U} is compact under the Prokhorov metric. (See
Fleming & Pardoux [2] Lemma 2.3.)

Define L(y, w)e Z(H', H™"), M*(y) e Z(H', {R")) (k=1, - - -, d’, y e R,

wel) by
e — Y (a2 (5 dq
@D o0y = = 3 (euo0) B J0) + 5 (b5 wp L)
@D MOp) = 3 (a9 9) + a0
=1 xi

for p, ge H' and ne L*(R?), where (-, -) = the inner product in L*(R¢),
{-, -> = the duality pairing between H~' and H' and

~ L &, da,
bfx,y, u) = Lle bu(x, y)u, — Z; axj (%, )
- & oz,

~ a
ha(,3) = b y) = 320, ).
Y= i

By (A.1)~(A.3), there exists « > 0 and 1€ R such that

o
(2.3 — 2{L(y, wp, p) + A|plli = «|lp} + 3 ;lle(y)pllﬁ
| for any pe H', yeR%, uel

where ||-||; = the H'norm (Il = 0, + 1, - -.) (for the proof, see § 2 of Krylov
& Rozovskii [4]).

(2.3) is called the coercivity condition.

For an admissible system ./ =(2, &, P, Y, u), putting L*(£)=L(Y (), u(2))
and M<“(t) = M*(Y(¢)), we consider the Cauchy problem of SPDE on
0, #,P),

dp(®) = L*()p(H)dt + M*(O)p(t)dY(®
(2.4) t>0
p(0) = ge H*

where M“(t) = (M~'(%), - - -, M**(2)).
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DrrFiNITION 2.2. By a solution of SPDE (2.4), we mean an H'!-valued
Z ,-adapted process p(¢) defined on (2, #, P) such that

(1) E[[ Ip@izdt] < oo
(2) for any pe H' and te[0, T]

@5 (GO = G0 + [ L©pE,ds + [ M©pE), ndYe)

holds.

By the coercivity condition (2.3), we have the following proposition.
(See [5], [71.)

ProrosiTioN 2.1. For each </ €, the equation (2.4) has a unique
solution p = p” which satisfies

2.7 peLX(0, T) x Q; H*") N L*2; CO, T; H™)

and

1P = 1315 + 2 [ <L“©p(©), pe))ds
2.9) ’

+2 [ M©p©), PN aYE) + [ IMP@lids.

The solution p = p” of the SPDE (2.4) is called the response for <.

Remark 2.1. We can apply the results of Pardoux [7] also to the
triplet (V, H, V*), where V= H**', H= H'and V* = H*-*(I = 0,1, - - -, ).
Define L(y, u) € Z(H'*', H"Y), M(y) € Z(H'**, H') similarly to L(y, u), M(y),
where we replace -, -> and (-, -) by “{-, -), = the duality pairing between
H'* and H**" and “(.,.), = the inner product in H"’ repsectively in
(2.1), (2.2). Then the coercivity condition holds. (In (2.3), |-|l, and |- ||, are
replaced by ||-]; and |- |, respectively.) Appealing to Krylov & Rozovskii
[4], the solution p of (2.4) turns out a unique solution of SPDE (2.9)

dp(®) = L(Y(®), u@®)p(®)dt + M(Y(@®)p(t)dY(t)

(2.9) t>0
p(0) =¢.
Moreover p(t) satisfies similar equality to (2.8). (i.e. “0” is replaced
by “17)
Let F:LY0,T; H*)—>R and G: H™—>R be weakly continuous
functions.
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For o/ ¢ %, we define the pay-off function J(2/) by
(2.10) J(£) = E[F(p”) + G(p*(T))] .

We want to minimize its value by a suitable choice of .« ¢ .

§ 3. Existence of optimal control

First of all we will prove that the solution p“ of (2.4) depends on &/
continuously.

Tueorem 3.1. If ™ — ¥ in law, then
B.1) p*™ —>p* in law as L¥0, T; H™*Y)-random variable
and
3.2) p*“(T)——> p*(T) in law as H™-random variable,
where we endow the weak topologies on L*0, T; H™*') and H™.
For the proof we need the following two lemmas.

LemMA 3.1. There exists a constant K > 0 such that

33) E{[ Il dt} < Kigis
34) E{sup [p*(®i} < Kll$l
(35) ([ ol d) < Kl

for any o/ e€A. (=0,1,---,m).

According to [6] we introduce the spaces #/(D) and #(T, D) as
follows. Set (-, x) = the Fourier transformation in ¢ of (-, ), |- |l., » = the
H*D)-norm and ||-|x = the norm of the dual space (H*(D))*, where™we
identify H'(D) with its dual space.

#AD) = [y L= o0, co; HHON; [ 1eP 5@ de < oo}
where

e = {[”_19®k o dt + [~ erIi@I de}
AT, D) = {¥lp, 115 ¥ € (D)}

where
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1 ey, 2y = Inf{@llr, 05 9(&) = ¥(t) a.e. on [0, TT}.

Remark 3.1. If D is a bounded and open subset of R¢ with a smooth
boundary, then, by the compactness lemma ([6] p.60) the imbedding:
H#AT, D) — L¥0, T; H(D)) is compact.

LEmMA 3.2. Let 0 <7 < 1/4, then for each <« €,
p¥ e #(T, D) as.
and there exists K > 0 such that
(3:6) Ellp* b, 0] < Kligl;  VZ €.

Proof of Lemma 3.1. (3.3) and (3.4) are easy variants of Corollary 2.2
of Krylov & Rozovskii [4]. Now we will show (3.5). Since the response
p is the solution of (2.9), using It6’s formula, we get

Ip@1t = I8l + 4 [ 1P@IKLSP(E), ). ds
@7 +2[ Ip@RIM@p@Iids + 4 3 [ AT ©pE), p@); ds
+4[ IpO WP, P, dY()

where L() = L(Y(2), u(f)) and M(t) = M(Y(2)).
Hence, using the coercivity condition, we have

Ellp®1 — 19l = 2B [/ Ip@ 1 E@p, py: + | Ms)pIds|
+ 4E U: ;‘]0 (M(s)p, p); dS]
< 2E| [ Ip @I 1@} — o' Ip(@)[f.1) ds]

< 20E| | Ip(s) It ds|

(3.8)

So the Gronwall’s inequality derives (3.5).

Proof of Lemma 3.2. For the convenience, we extend p(f) on (— oo, o)
in the following way

p@® =p),tel0, T]
=0, te(—oo,c)\[0,T].

Since p(f) is a solution of (2.9), applying Itd’s formula, we obtain
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2xic (P(c), 7). = (4, 7). — (P(T), 7). exp{—2riz T}

(3.9) + <f/4;7(r), 7 + LT exp{— 2rict}(M(D)p, 7). dY(2)

for any e H°

Let {g}i>; be an orthonormal basis in H®. Using (3.3), (3.4) and (3.9),
we have ‘

(3:10) 4=CE@IE = 4x'c" 3 E(BE), 7:F) < Kill61k + KENLp@IE] -

Let 0 <7 <1/4 and 0 <« < 3/2, then

[ Bteris@Rde < [ EUp@Ede + [ | B| A 56 k]ae

G < k{E|[" wona] + [ & sk +E|[ 1Zopikd)}

- T fel
< Klgl3.-

This concludes the lemma.

Remark 3.2. (3.5) implies the uniform integrability of
T
[ip@ia, e

Remark 3.3. We define the metric d on H = L0, T'; H™*'(R%)) by

o
=1

d(p,q) = kZ %,;min(l(ek,p — |1} p,geH

where (-, -) is the inner product on H and {e.};., is the orthonormal
basis on H. Then Lemma 3.1 and Prokhorov’s theorem imply that the
totality of image measure p” (& € %) is relatively compact as a set of
measures on the metric space (H, d).

On the other hand, on each bounded set of H the weak topology is
metrizable by the metric d. Therefore, for any weakly closed set F of
H, FN{ge H;|q||<r} (> 0) is closed with respect to the metric d.

Under this observation, {p*; &/ € U} is relatively compact as a set of
measures on H associated with the weak topology.

Proof of Theorem 3.1. Let D, (k=1,2,-..) be bounded and open
subsets of R¢ with smooth boundary, D, c D,,, and | J., D, = R¢ For
an admissible system & = (2, #, P, Y, u),
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#“ = the image measure of (Y, u,p”) on S,
2 = the image measure of (Y, u, p*) on S,

where
S = C, T;R*) x L*0, T; I') x L*0, T; H™*'(R%)),
and
S, = C, T; R*) x L0, T; I') X L¥0, T; H(D,))

endowing the weak topology on L*0, T; H™*'(R%)) and the strong topology
on L¥0, T; H(D,)). By the compactness of {r”; o/ €%} and Remark 3.3,
B = {p*; o €U} is relatively compact. Moreover, by Lemma 3.2 and Re-
mark 3.1, B, = {g; & € U} is relatively compact.

Hence there exist a subsequence {</(n')},., a probability  on S and
a probability g, on S, (k=1,2, ---) such that

(3.12) p?"" —> 4 in law as ' —— oo
and
(3.13) ™) ——> g, in law as n'-—> oo,

By Skorohod’s theorem, we can construct the S;-valued random
variables (Y,, u,,p.), (Y,u,p), n’=1,2,---, on a probability space
2, #, P) such that
(8.14) the law of (Y., ép,Po) = ™, v’ =1,2,---,

(8.15) the law of (Y, u, p) = u

and
3.16) (Y., u,, p.) —> (Y, u, p) almost surely (n' —> <o)

as S,-valued random variables.
Now we will prove the following lemma.

LEmmA 3.3. Let +: [0, T] - R be an absolutely continuous function
with ' € LX0,T) and (T) =0 and ne Cy(R*) with supp(y) C Dy, then
(Y, u, p) of (3.16) satisfies

G090 + [ WO, Dt + [ WO, ut)p, 1yt

(3.17) .
+ [, vOW¥®IP, DdY®) = 0.
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Proof. Since p,. is the solution of the SPDE (2.4) for (Y,, ©,), using
It6’s formula to (2.5), we get

@ D90 + [ VO D, Dt + [ HOLTlt), wl)pu 73
o + [ OOV, DAYl = 0.
By Remark 3.2 and (3.16), we get
(318 E|[ 1.0 — POl nidt] —>0 (v — )
Recalling “supp(y) < D,”, we obtain

[ O, )P 7yt

(3.19) .

— [ o yo, wow pat i Q).
(320 YO@). D> WOP®, ) in (O, T] X D)
and

(321) yOMY(Dpw, n) —> vOM(Y®)p,n)  in L0, T1 X 2).
For the proof of (3.19), putting
4o @) = V(&) (bul-, Yold)poA?), 7)
q(®) = (@ (bal-, YO)P (), 1)
and u(®) = (W\(t), - - -, u*(t)), we have

[ 4G, Yutpu, nut®dt — [ vOG.(, YOI O, Duiyde
(3.22) ’

= [T u0@.® — a@dt + [ @) — v@a@ar.

By (3.18), the 1st term of the right hand side of (3.22) converges to
0 in L¥2). By Remark 3.2 and (3.16), we get

(3.23) E[{ f : (L (f) — ul(t))q(t)dt}z] — 0.

This implies (3.19). (3.20) and (3.21) can be proved similarly. More-
over, combining (3.21) with (3.16), we get

[ v, app.. nav.o
(3.24)

— [ wowroPpave i 0.
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Hence, by taking limit of (3.17),, we obtain (3.17).
Let i,: S— S, be the canonical injection. Then by the definition

(3.25) (™) = pr and i) = g

Let (17, ii, p) be S-valued random variable whose law = x. Then (3.25)
implies that the law of &, a, Blo) = e

Hence, by Lemma 3.3, (17, il, p|p,) satisfies the equation (3.17). Noting
that supp(y) < D,, we obtain

6,990 + [ VOGO, Ddt + [ WOLT), 2@)p, ydt
(3.26) . . _
+ [, v F )5, DaT O = 0.

Since k is arbitrary, (3.26) holds for any 5 e Cy(R?).
By the same argument as Theorem 1.3 in [7], p becomes a solution
of SPDE (2.4) for (17', ). Since the law of (17, i) = n¥, we get

(3.27) 1 = the law of (Y, 4, p) = p*.
This means that any convergent subsequence of {y”™’} converges to
. Hence the original sequence {y“} converges to x“. So we get (3.1).

Next we consider the law of (Y, u, p”, p“(T")) then by the similar argument
we can prove (3.2).

THEOREM 3.2. If F and G are bounded from below, then there exists
an optimal admissible system <7 € U that is

(3.28) inf{J(); o € A} = J(H).
Proof. By theorem 3.1,
J (/) = E[min{F(p*), n} + min{G(p*(T)), n}]

is continuous on 9. Since J(«/) is the limit function of non-decreasing
sequence {J,(#)}r.,, it is lower-semicontinuous on %. This concludes the
theorem.

§4. Optimal control for partially observed diffusions

In this section we will apply Theorem 3.2 to the stochastic control
problems for partially observed diffusions where an observation noise
may depend on a state noise.

We assume the following conditions (A.4)~(A.6).
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(Ad) 6:R* X R¥ —>R*®R? is bounded and continuous
(A.5) There exists 6 > 0 such that

a(x, ¥)6*(x, y) — 20(x, y)o*(x, ) > 61  for ¥V (x,y) e R* X R*

(A6) 6(-,y) is C’-class in xeR? and all derivatives are bounded and
continuous in (x,y) € R? X R¢.

Put a(x, y) = (6(x, y)6*(x, y) + a(x, y)a*(x, ¥))/2, then a(x, y) and a(x, y)
satisfy (A.2).

Now we will consider the optimal control problems of the following
kind. Let X(¢) denote the state process being controlled, Y(f) the obser-
vation process and u(f) the control process. The state and observation
processes are governed by the stochastic differential equations

dX() — b, YO)u®dt + 65X, YO)AW®) + (X, Y)W
@ { X(0) = &

and

4.2) {dY(t) — h(X()dt + dW(2)
Y(0) = 0

where W and W are independent Brownian motions with values in R¢
and R? respectively on a probability space (2, %, P).
The problem is to minimize a criterion of the form

4.9) I = B[ rx@pds + g

In the customary version of stochastic control under partial obser-
vation, u(f) is a function of the observation process Y(s), s <t. Instead
of discussing the problem of this type, we treat some wider class of
admissible controls inspired by Fleming & Pardoux [2].

Let

(4.4) o®) = exp{[ HEEAYE ~ | RO ds}

Then W and Y become independent Brownian motions under a new
probability P defined by
(4.5) dP = p(T)-'dP

and X(f) becomes a solution of the following SDE
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dX (@) = {b(XQ), Y®)u(®) — o(X(), YE)R(X(2)}dt
(4.6) + ¢(X(), YO)AW () + o(X(®), Y1) dY(?)
X(0) = ¢&.

Suppose & has a probability density ¢ e H*(R?).

DEFINITION 4.1. o = (2, #, P, W, Y, 4, &) is called an admissible
system, if

(1) (@, %, P) is a probability space

(2) u is I'-valued measurable process

(3) Y is a d'-dimensional (£ ,)-Brownian motion where

F, = a{Y(s), f: u(r)dr; s < t}

(4) W is a d-dimensional Brownian motion

(5) ¢ is a d-dimensional random variable and its distribution has
the density ¢

(6) ¢ W and (Y, u) are independent with respect to P.

For an admissible system 7, the solution X(f) = X“(f) of the SDE
(4.6) is called the response for /. Putting dP = o(T)dP, we define the
pay-off function by

@D () = B[ rx-@pdt + x|
where f, g € L*(R?) and non-negative.

By the similar argument as Rozovskii [8], we obtain the following.

ProposiTION 4.1. Let p” be a solution of the SPDE (2.4) for an ad-
missible system «f, then p“(t) is the unnormalized conditional density of
X“(t) with respect to &#,. Namely, for every ¢ € L*(R?), tc[0, T]

4.8 Elp(X“®)p(®)|F ] = (p, p*(t)) P-a.s.

holds, where (-, -) is the inner product in L*(R?).
Using (4.8), we get

“9) () = B[, pr@)de + (g 24T -

Since (f, p“(¥)) and (g, p“(T)) are non-negative, Theorem 3.2 assures
the existence of an optimal admissible system. Namely,
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TuEOREM 4.1. There exists an optimal admissible system 7, that is

(4.10) inf J(&) = J(F).
o:ad.Sys.
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