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Abstract
This survey paper is concerned with vortex shedding from bodies in unsteady flow due either to time dependent
motion of the body in a still fluid or unsteady motion of the fluid about a fixed body. The fluid is treated as incom-
pressible, and the main emphasis is on starting flows and oscillatory flows. Much of the discussion describes 2D
flow around sections of long or slender bodies. The first part of the paper covers the inviscid flow scaling of the
forces induced by vortex shedding in time dependent flows which drive the shedding. This is followed by applica-
tion of Wu’s impulse integral of the moment of vorticity to predict the forces induced by vortex shedding from a
body in both inviscid and viscous flows. Vortex shedding phenomena involving small amplitude, high-frequency
oscillatory flow such as vortex-induced vibration (VIV) and fluid-structure interaction (FSI) are not included in
this discussion as in these cases the unsteady flow controls rather than drives the vortex shedding and they are well
covered elsewhere.
The second part of the paper describes a vortex force mapping (VFM) method derived by considering the Lamb–
Gromyko formulation for the pressure contribution which allows the integral of the vorticity field to be restricted to
regions which are not far from the body. It is applied to both inviscid and viscous flows. The section finishes with
discussion of application of the VFM to the calculation of forces induced on bodies from flow field measurements,
such as particle image velocimetry (PIV).

Nomenclature
c chord of aerofoil or wing
f frequency (Hz)
k unit vector (0, 0, 1)
n normal to surface
p pressure
qe local flow speed near edge
r coordinate system vector (streamwise, spanwise, vertical) = (x, y, z)
s wing semi-span, distance along body contour
z coordinate vector in 2D cross-section plane = (x, y)
CD, CL drag and Lift force coefficients, =D/ 1

2
ρU∞2c, L/ 1

2
ρU∞2c

CM in-line inertia force coefficient
D mean diameter of body
F force vector
Le edge length-scale
M moment of force
Qe edge velocity parameter
R volume, radius of circle
Re Reynolds number =U∞c/ν, U∞D/ν
St Strouhal number = fD/U∞
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T time period
U velocity vector = (U, V , W)
U∞ magnitude of free stream velocity
V velocity vector in cross-flow plane, = (V , W)
AoA angle-of-attack, incidence
CFD computational fluid dynamics
DVR downstroke vortex ring
LEV leading edge vortex
PIV particle image velocimetry
RV root vortex
TEV trailing edge vortex
TV tip vortex
UVR upstroke vortex ring
VFM vortex force map
VMM vortex moment map

Greek symbol
α angle-of-attack, incidence
β,μ time exponents tβ , tμ

γ circulation density, bound vorticity on surface
δ included edge angle (rads)
ε wing semi-apex angle
ζ coordinates in transformed 2D plane, = (ξ , η)
κ edge parameter, = 2− δ/π
ν kinematic viscosity
ρ fluid density
τ non-dimensional time = U∞ t

c

φ velocity potential
χp hypothetical potential
ψ cycle phase
ω vorticity vector= (ωx,ωy,ωz

)
,= (0, 0,ω) in 2D flow

ω frequency, radians/s
� circulation, vorticity flux

�, I, �, �, T force and stress tensors
� rotation rate/angular velocity of body, volume (3D), area (2D) of flow domain

1.0 Introduction
The vortex is the fundamental structure in fluid flow. In constant density flow the flow field can be
reconstructed entirely from the vorticity field and the boundary conditions without involving the pressure
field. All bodies immersed in a flow generate vorticity at their surfaces which subject to diffusion and
convection, eventually separates from the body and sheds into the main flow. If the Reynolds number is
not too low the vorticity remains, at least initially, within thin boundary layers and shed vortex sheets.
Because of the instability of free vortex sheets and wakes most of these flows are unsteady. In this
paper we focus on unsteady vortex flows due to time-dependence of locally uniform incident flow or
kinematically equivalent body motion, particularly impulsive changes as in starting flows and flows
where oscillation is imposed. While the vorticity remains within thin sheets the pressure difference
between the two sides is small, and inviscid potential flow theory can describe the dynamics of the free
vorticity reasonably well. Instability and subsequent turbulence further diffuse and spread the vorticity
and where this has occurred inviscid theory can only represent the external flow and only approximately.

Rapidly changing flow conditions tend to drive strong rolling up of shed vorticity. In uniform steady
incident flow transverse variation of the sectional circulation leads to shedding of streamwise vorticity.
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Temporal changes in circulation lead to shedding of spanwise vorticity, e.g. [1] chapter 7. Von Karman
vortex street wakes and the related vortex-induced vibration (VIV) and fluid-structure interaction (FSI)
in which small amplitude unsteady body motions produce strong controlling effects, such as vortex
shedding lock-in, will not be included here as there are many comprehensive publication in this area,
such as Refs [2, 3].

Separating vortices may immediately convect away from the body as at a trailing edge or under the
influence of the back-flow induced by their virtual ‘image’ in the body may appear to remain attached for
a time. Vortex flow fields interact strongly with the body from which they have been shed and any other
close-by, inducing large forces. For example, vortices above highly swept wing leading edges generate
a large additional lift [4]. Vortices shed from aerofoil leading and trailing edges can generate lift and
thrust or drag and when shed from other salient edges such as during deployment of spoilers may affect
the lift with an initial increase followed by a decrease while increasing the drag considerably [5–7].

In what follows the flow field will be assumed to be at low Mach number, therefore effectively incom-
pressible, and the frequencies of the unsteady motion not so high that acoustic effects need be considered.
The Reynolds number will be high enough that as well as considering the viscous flow prediction of the
effect of vortices on body forces such as lift and drag, inviscid analysis can be used to provide force
estimates where these forces are dominated by the contribution from surface pressure.

Unsteady incident flows shedding transverse vorticity from long, transverse bodies tend to promote
local two-dimensionality, weakening relatively the effect of streamwise vorticity, e.g. [8] for the rel-
ative scaling of the effects in a vortex sheet wake in unsteady flow. Because of the complexity and
heavy computational load of 3D unsteady flow computations 2D sectional analysis is often used to
calculate unsteady forces around sections of bodies which are long and vary slowly in a transverse direc-
tion. The lowest order correction for three-dimensionality in unsteady, incompressible flow subject to
oscillatory disturbance (the Cicala function [1]) decreases rapidly with increasing frequency indicating
that sectional analysis should give better prediction for unsteady flow forces than it does for the mean
components. Most of the discussion in the present paper will focus on sectional flow analysis.

For viscous flows the vorticity transport equation
∂ω

∂t
=∇ × (U ×ω)+ ν∇2ω, (1)

where ν is kinematic viscosity, shows that changes in the vorticity flux through a material element take
place only by diffusion. Vorticity cannot be created or destroyed, only redistributed, in the interior of a
fluid. Considering regions Rf occupied by the fluid and RiB by the i-th solid body, the principle of total
vorticity conservation leads to an invariant total vorticity flux (circulation) for the combined fluid and
solid body domains [9]

d

dt

∫
Rf

ωdR+ d

dt

∑
i

∫
RiB

ωdR= 0, (2)

where
∫∑

i R
ωdR≡ 2

∑
i �iRiB for rotating bodies in the flow field. For bodies moving in a stationary

fluid, having started from rest or for a flow starting from rest around fixed bodies, the vorticity is initially
zero everywhere in the fluid domain. Therefore the total of the vorticity flux (circulation) remains zero
at all subsequent times ∫

R∞
ωdR= 0, (3)

where R∞ = Rf +∑i RiB is an infinite control volume enclosing the fluid domain and all the bodies.
Thus ∫

Rf

ωdR=−2
∑

i

�iRiB, (4)

where �i is the angular velocity of the body RiB. If the motion of immersed bodies is prescribed, the
total vorticity in the fluid domain for any instant is known. A useful result is that the above conservation
of total vorticity leads to the following conclusion about the asymptotic velocity field [10, 11]
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U(r, t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

22D−3π
∇
(
∇ln

1

r
· α
)
+O

(
r−(D+1)

)
, (D= 2)

1

22D−3π
∇
(
∇ 1

r
· α
)
+O

(
r−(D+1)

)
, (D= 3)

(5)

where D= 2 refers to the 2D flow and D= 3 refers to the 3D flow, and α is defined as the first moment
of the vorticity field

α=
∫

R∞
r×ωdR. (6)

It is worth emphasising here that the asymptotic behaviour in 2D is expected to be r−2 since the
vorticity in a 2D flow started from rest induces a dipole-like far field, the overall circulation being zero by
Kelvin’s theorem. The asymptotic behaviour in 3D is r−3, which agrees with Equation (5). The velocity
in the far field of any region of vorticity decays at least as rapidly as r−1 with distance r and therefore
only vorticity close to the body should contribute to the body force. However, in some vortex force
calculation methods, the whole flow field including the far field must be considered in the integration.

The paper focuses on the phenomenon of vortex shedding from bodies within unsteady incom-
pressible flows, with particular emphasis on the forces induced by the vortex shedding in starting and
oscillatory flows. Section 2 presents the theoretical models of shed vorticity, while Section 3 demon-
strates the methodologies employed to extract forces induced by this vorticity. Oscillatory flows are
discussed in Section 4, and a general vortex force method is explored in Section 5. Finally, Section 6
provides concluding remarks.

2.0 Theoretical models of shed vorticity
2.1 Inviscid methods and the discrete vortex method
We first consider briefly some methods of modelling vortex shedding in flows in which viscous effects
can be neglected in a first analysis.

The first of these models of shed vorticity is limited to bodies which induce only small perturbations
in a uniform incident flow. For a streamlined body such as a plate or aerofoil at small angle-of-attack
(AoA) the wake perturbations including any roll-up are small enough to allow representation by a plane
sheet. The vorticity shed from the trailing edges of the body is then assumed to be convected by the
free stream alone, all other effects being negligible. This thin aerofoil theory devised for steady flows by
Munk [12] was extended to unsteady flow to analyse flutter [13], impulsively started motion [14], effects
of periodic convected gusts [15] and impulsive gusts [16] on aerofoils. Useful analytic results can be
obtained for many applications. For larger perturbations this representation may be extended by means
of lifting surface panel methods to unsteady flows around more complicated 3D bodies and wakes [6]
still widely used in industry for aeroelastic calculations.

The second group of methods was developed for flows with shed vortex sheets exhibiting strong roll-
up. The rolled-up trailing vortices shed from lifting wings were represented by concentrated, streamwise
line vortices close to the centroids of the rolled-up vortex sheets and aligned with the free stream. For
high angles of attack and stronger roll-up closer to the wing as in the case of vortices separating from
the leading edges of a slender delta wing this representation was improved by including the local flow
around the wing in the vortex alignment but still gave significant errors [17]. The analogous 2D unsteady
flow model for the shedding of a rolling-up vortex from an edge, such as for starting flow around the
trailing edge of an aerofoil, was similarly inaccurate [18].

Further improvement of the concentrated line vortex model of the leading edge vortices (LEVs) of
a slender wing at high AoA [19] and similarly for unsteady 2D vortex shedding and roll-up (for shock
diffraction around a sharp edge [18]) recognised that the part of the vortex sheet joining the growing
spiral vortex to its separation edge needed to be included in the model. The effect of this part was
represented by a plane ‘feeder’ sheet (FS in Fig. 1) contributing to the condition of zero overall force
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Figure 1. Line vortex + feeder sheet (FS) model of delta wing LEVs (from Ref. [20]).

on the shedding vortex system. With this the equation for r0(x)= (y0(x), z0(x)) the vector position in the
cross-flow (y, z) plane of the LEVs above the slender wing becomes:

dr0

dx
= V(r0)

U∞
− r0 − re

�0

d�0

dx
(7)

where re is the coordinate of the edge. The second term on the RHS represents the effect of the feeder
sheet on the force balance. V(r0)= (V(r0) , W(r0)) is the velocity in the cross-flow plane induced at the
vortex position and U∞ the free stream velocity in the x direction. This line vortex model then gives the
positions of the vortex centres and the additional lift due to the LEVs more accurately [20].

The corresponding improved equation for the unsteady 2D separating vortex [18] is:

dr0

dt
=V(r0)− r0 − re

�0

d�0

dt
(8)

or:
d[�0(r0 − re)]

dt
= �0V(r0) (9)

showing that the addition of the second term on the RHS of Equation (8) equates the vortex induced
force to the rate of change of the vortex moment formed by a counter-rotating vortex pair formed by the
vortex and its virtual image in the body.

More detailed representation of the rolling-up sheet requires, at least, a multi-element discretisation.
The Lagrangian method of solution of the vorticity transport equation:

∂ω

∂t
+U.∇ω=ω.∇U + ν∇2ω (10)

tracks elements of the vorticity field ω simulating the LHS convection of Equation (10), while preserving
the vortex structure. The first term on the RHS of Equation (10) ω.∇U is zero in 2D flow and hence
omitted.

The velocity field, U, is computed simultaneously from the vorticity field as the solution of the
Poisson equation:

∇2U =−∇ ×ω. (11)

Equations (10) and (11) are sufficient with boundary conditions to specify the flow kinematically. The
pressure and body forces may be determined retrospectively when required. Many different discretisa-
tions of the circulation density in a vortex sheet are possible to increase accuracy but the simplest, known
as the discrete vortex method (DVM) or point vortex method, is a lumped vortex discretisation of the
sheet, each short element being represented by a concentrated point vortex at the centre of the element,

The DVM was first developed [21] as an inviscid 2-D model of rolling-up of vortex sheets in an
isolated wake. It was then adapted further [22] to study 2D shedding of a vortex street wake from a
rectangular-base body.
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Figure 2. DVM computation of a rolling up vortex sheet shed from the edge of a flat plate [31].

With externally specified separation points the inviscid DVM was found to predict the Strouhal fre-
quency and spacing of the von Karman vortex street quite well. Alternating rolled-up vortices arose
naturally in the wake due to inherent numerical instability of the wake.

The DVM is a time-stepping method, new vortices being shed into the flow at each step. The solution
of Equation (10) at each time step with RHS zero for inviscid 2D flow, requires the solution of Equation
(11) for the velocity field from all vortices in the flow field, most easily calculated using the 2D Biot-
Savart integral solution:

Um =
∑

j

�j

2π

k× (rm − rj

)
| (rm − rj

) |2 (12)

excluding the local singularity at j=m, where k is the unit vector (0, 0, 1). Thus the operation count
of the method is O

(
N2

v

)
per time step, where Nv is the number of vortices shed which increases in

proportion to the number of time-steps. While the method has attractions of simplicity, apparently
reducing diffusion, long flow evolution times, with an operation count O

(
N3
)

for N time-steps, have
only become possible with the advent of large computers. Faster methods of solution of the velocity
from Equation (11) have been developed to obviate this problem (eg multipole [23], vortex-in-cell [24,
25] and other mesh methods) which have lead to the possibility of much longer and better resolved flow
computations.

Point vortex discretisation of a separating vortex sheet in inviscid flow, including the concentrated
vortex models, fails locally at the separation edge since without continuous sheet representation there
the only possible flows are either a continuous flow around the edge, with a singularity, or a full stag-
nation separation point, both incorrect. More accurate discretisation methods have been developed to
overcome this using continuous elements and integration along the sheet, which are more appropriate
[26, 27].

Numerical instability is inherent increasing with resolution, see Refs [28, 29], but often controlled by
a desingularising addition in the denominator of the influence kernel in Equation (12), see e.g. Ref. [30].
It increases rapidly in the close-packed inner turns of a vortex spiral but can be averted by amalgamating
the inner turns progressively into a single central core vortex. An example of this for a rolling up spiral
vortex sheet shedding from the sharp edge of a plate in a starting flow, is shown with core amalgamation
(red curve) and without (black curve) in Fig. 2. The two curves agree well until the third arm of the spiral
where the one without amalgamation becomes unstable and breaks up. Similar strong roll-up occurs at
all free ends of vortex sheets unless the vorticity gradient is weak.
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Figure 3. DVM simulation of the wake of a circular cylinder Re= 200, St = 0.196, CD = 1.22, GArkellZ .

Figure 4. Diagram of vortex � shed from a sharp edge of internal angle δ. Imposed velocity field U0

symmetric, V0 antisymmetric, qe(r) surface velocity at distance r from edge.

2.2 Modelling of viscous flows by the DVM
Modelling of flows with appreciable viscous effects is more usually (and virtually always for 3-
dimensional flows) carried out using the Eulerian mesh methods of computational fluid dynamics
(CFD). Numerical simulations using Lagrangian discrete vortex methods for the convection, have been
carried out for 2D unsteady flows where there is some advantage that only two flow variables need be
solved for, compared with four for CFD. With the point vortices desingularised by a finite support vis-
cous diffusion has been modelled by the Random Walk Method [32], see Ref. [33] regarding the high
number density required. With sufficient vortices to ensure overlapping cores the vorticity exchange
method [34] has proved accurate for laminar flows, hybrid methods in which the Lagrangian vortices
are projected onto a Eulerian mesh to carry out the diffusion have also been developed. A result using
this type of hybrid method for flow around a circular cylinder at a Reynolds number of 200 is shown
in Fig. 3 The hybrid method can be extended with subgrid modelling of turbulence to simulate vortical
flows at higher Reynolds numbers [35].

2.3 Scaling of 2D vortex shedding from a sharp edge
The following scaling analysis was first derived for a local edge flow [36] and later specifically for an
aerofoil in starting flow [37]. The edge region of a 2D body such as an aerofoil, formed by two locally
plane sections of its surface meeting with included angle δ, is subject to a starting flow at time t= 0, as
shown in Fig. 4. The local flow near the edge can be divided into two velocity components: U0 symmetric
with respect to the bisector of the edge angle and V0 normal to it. Assuming effectively inviscid flow and
δ < π the V0 component generates an infinite velocity at the edge which causes separation and shedding
of a vortex sheet. There are two cases to consider: (1) U0(t)= Û0tβ and V0(t)= V̂0tβ , β � 0, representing
starting motion of a body in an initially stationary fluid, and (2) U0(t)= Û0 and V0(t)= V̂0tβ , β � 0
representing the body starting pitching or transverse motion in a pre-existing uniform stream.
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While the vortex sheet which is shed as a result of flow separation at the edge is still close to it the flow
there has no length scale given explicitly by the body. The length-scale Le must be evaluated from the
product of a local velocity-scale and the time t. The local velocity close to the edge, qe(r)=Qer(1/κ)−1,
where Qe is a constant which does depend implicitly on the overall body scale, is singular at the edge
since κ = 2− δ/π . Therefore, it must be evaluated at a non-zero distance r> 0 from the edge to define
a velocity-scale and the evaluation distance must itself scale on Le. For simplicity let r= Le, but it could
be any multiple.

Therefore Le =QeL(1/κ)−1
e t and hence Le = (Qet)κ/(2κ−1).

The parameter Qe which defines the edge flow locally, is proportional to the imposed velocity V0.
It can be calculated in practice from values of qe(r) at points on the body surface close to the edge,
averaging the product qe(r) r(1−1/κ).

The development of the shedding vortex sheet can only scale on this local length scale. Le, grows
with time as:

Le = (Qet)
κ/(2κ−1) (13)

and the sheet therefore rolls up initially into a growing, self-similar spiral.
Let the total circulation shed since the start depend on time as:

�(t)= �0t
μ (14)

The local velocity induced by the vortex and its image decays as r−2 but the potential on which the
force depends as an integral decays in 2D flow as r−1 and is therefore not local but must depend on a
global body length-scale parameter such as a mean diameter. However, this parameter can be derived
from Qe which, although evaluated locally, contains the required body-scale information.

Two equations define the flow development. The first is the flow separation condition. In any single or
multi-point vortex representation of the shedding it is taken as the Kutta (full stagnation point) condition,
since the alternative is a velocity singularity at the edge. Using it does introduce some small errors [38].
Higher fidelity vortex shedding models based on sheet-like elements give better accuracy with a flow
stagnation point only on the separated side [27]. All lead to the same inviscid scaling.

The second equation is for the convection of the vorticity in the physical plane. There are two possi-
bilities initially depending on which term in the equation dominates. If V0 dominates, as often the case,
the circulation � of the shed vorticity (a single vortex at r0 = (x0, y0) is shown) increases as tμ where:

μ= 2κβ + 1

2κ − 1
, [39] (15)

For impulsively started flow β = 0 and μ= 1
2κ−1

, for constant acceleration β = 1 and μ= 2κ+1
2κ−1

.
The second possibility occurs when the symmetric component U0 dominates, for example when a

body immersed in a continuous flow symmetrically off the edge is subject to a V0 component around the
edge which starts to accelerate gradually from zero. Then

μ= 1

2κ − 2
+ β, [39] (16)

For constant acceleration of V0 (β = 1), μ= 2κ−1
2κ−2

. So for an aerofoil commencing heave motion with
constant acceleration in a mean free-stream μ∼ 3/2 since κ ∼ 2.

The single point vortex model applied to a starting flow about a sharp edge has a small-time analytic
solution. The result is shown for a Karman-Trefftz aerofoil in impulsively started flow compared with
longer time DVM simulation and the Wagner linearised theory [14] in Figs 5, 6 taken from [37]. For
small times the shed concentrated vortex and the DVM spiral centre leave the trailing edge in a direction
normal to the edge angle bisector before their paths bend towards the free-stream direction. More details
of the scaling of the flow are given in Graham [37]. For impulsively started aerofoil-free-stream flows
these isolated edge results are of more theoretical than practical use since the starting vortex is rapidly
carried away from the locality of the trailing edge, but have greater validity for oscillatory and slender
body flows.
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Figure 5. DVM computation of the TEV formed above the trailing edge of an aerofoil at two times after
an impulsive start [40].

Figure 6. DVM computation of the lift on a Karman-Trefftz aerofoil after an impulsive start [40].

The scaling can be applied equally to leading edge vortex (LEV) as to trailing edge vortex (TEV)
shedding from an aerofoil. Viscous effects are more important in the LEV case since the shed vortex may
remain or move downstream close to the aerofoil surface. For effectively sharp leading-edge separation
the analysis is as for the TEV with the sign of U∞ changed to towards the edge rather than away from
it. For a flat plate or thin aerofoil in a starting flow at a moderate to large AoA, both U∞ and V∞ have
the same dependence on t. The shedding from both edges depends only on the V∞ component of free
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stream normal to the plate and is independent of U∞. Therefore reversing the sign of U∞ in the local
edge coordinate system has no effect on the initial shedding path of the vortex core, the roll-up is the
same sign, but the geometry is reversed. The LEV core initially leaves in a direction normal to the plate
at the leading edge with scaling as for the TEV. For longer times the path of the vortex moves from the
normal direction to a downstream direction now over the plate’s surface, but its image effect is therefore
stronger causing a stronger opposing back-flow which slows its downstream convection. This LEV flow
has been studied extensively with PIV and computer simulation [39]. For more gradually starting heave
or pitch motion the concentrated vortex model predicts a rearwards core vortex path leaving the surface
at the edge tangentially with y0 ∼ x3/2

0 . Leading edge separations due to rapid changes in effective AoA
are a major component of dynamic stall, see Section 3.3.2.

2.4 Time-dependent slender wing flow
In steady flow, the LEVs shed by a plane delta wing, as shown in Fig. 1, retain conical similarity.
The locations y0(x), z0(x) of the vortex cores in the cross-flow plane (x) predicted by the concen-
trated model move gradually inwards from the edge ye(x) following the path ye − y0 ∼ z2/3

0 as AoA is
increased [20].

For time-dependent flow such as following an impulsive start, sudden heave or roll motion or oscilla-
tory motion the time dependence combines with rearward propagation of the shedding vorticity feeding
the LEV. The streamwise derivative in Equation (7) is replaced by the convective derivative ∂

∂t
+U∞ ∂

∂x

in the corresponding vortex force balance equation:

(
∂

∂t
+U∞

∂

∂x

)
[�0 (r0 − re)]= �0U0(r0) (17)

Similar vortex shedding occurs from the bilges and keels of long ship hulls and is important in deter-
mining vortex damping of time-dependent roll, and other sea-keeping motions. For small amplitudes
around a slender body of constant section the vortex shedding can be considered to be as from an
isolated slender edge in a free stream U∞ with a cross-flow V0, due to AoA or lee-way, starting impul-
sively. Equation (17) is hyperbolic and solved along characteristics t+ x/U∞ = constant. Assuming
the vortex shedding to develop from the upstream end of the edge, eg the start of a long slender rect-
angular planform wing or of a bilge-keel without other disturbances, the solution shows the effect of
the upstream origin of shedding spreading rearwards. Considering an impulsively started flow U∞ and
defining a convection length, X =U∞T , which the influence of the upstream end has just reached at
a specific time T since the start, upstream of X the growth of the vortex depends on distance x(<X)
from the upstream origin. In this region its normal distance from the plate, z0(x) follows the envelope
z/s= 0.25(x/s)2/3(V0/U∞)2/3. Downstream of X vortex growth is dependent on time t since the start only
and is independent of lengthwise distance x(>X). Here z0 grows as t2/3 until t= x/U∞, Fig. 7.

If the cross-section geometry of the shedding body changes with streamwise distance x, streamwise
growth for the same conditions occurs over the whole range of x but at different rates on either side
of the convection length X. For a slender, plane, delta wing, semi-span s(x)= εx, at AoA = α, in the
upstream region x< X =U∞T a growing length of steady conical flow develops from the apex, Fig. 8
in agreement to first order in α/ε with the results given by Ref. [20]. In the downstream region x> X,
z0 ∼ (U∞t)2/3s1/3, which while independent of the apex still increases here with lengthwise distance x
since ds

dx
> 0.

Therefore for gust or operational frequencies quasi-steady aerodynamics as for x<U∞T are adequate
because aircraft speeds are high and the convective distances associated with the time-scales, with the
exception of those for flutter, are much larger than the wing chord. In contrast for sea-keeping and
manoeuvring motions of ships the axial velocities are lower and the bilge lengths longer so that time
dependency effects are important.
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Figure 7. Vertical distance of the growing vortex above a streamwise edge of a slender, rectangular
wing at incidence in an impulsively started flow. The horizontal lines are at equal steps in time.

Figure 8. Vertical distance of the growing vortex above the leading edge of a slender delta wing at
incidence in an impulsively started flow. The transverse lines are each for constant time separated by
equal time-steps.
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3.0 Vortex induced force
3.1 The impulse method
The conventional method of calculating forces in CFD by integrating the pressure and the shear stress
on the surface of a body can be difficult to apply because of the need to fully resolve the boundary
layers on the body where the velocity and vorticity gradients are very large. In many unsteady flow
applications, direct measurement of pressures or forces is also difficult because of structural resonances,
time lags and body geometry problems. For unsteady flows the concept of the fluid dynamic impulse
applied to the entire vorticity field, called the Impulse Method, is a useful alternative for the calculation
of aerodynamic or hydrodynamic forces. It has gained the interest of the CFD community, especially
in the context of vorticity-based algorithms where pressure is not explicitly evaluated. In experimental
work, the impulse method is useful for evaluation of forces when combined with techniques such as
Particle Image Velocimetry (PIV) which provides time-sequenced velocity fields but not pressure data.

3.1.1 The original method
The impulse method applies Newton’s third law directly to the flow field through the momentum equa-
tion in integral form without involving the Navier-Stokes equations explicitly. In classical steady flow
aerodynamics, Prandtl’s steady vortex-force theory, the Kutta-Joukowski theorem in 2D flow, shows the
advantage of linking force directly to shed vorticity. More generally the impulse method [40] applies to
unsteady flow, the force on a body being expressed as the time derivative of an impulse over the infinite
flow domain, which is always unsteady. It is valid for inviscid and viscous flow at any Reynolds number
and can be evaluated as a linear superposition of the impulses of all vortical structures present. In Lamb’s
original work, the flow fields of point vortices were superposed onto a background potential flow. The
fluid impulse on the body was shown to be generated by the growth and motion of counter-rotating
vortex pairs of equal and opposite strength.

Lamb’s impulse method has been developed into an aerodynamic lift theory for an aerofoil in
unsteady motion [41]. The unsteady part of the force was divided into two components: added-mass
force caused by the acceleration of the fluid in response to the aerofoil’s acceleration and circulatory
force which could be evaluated from the vortices shed into the flow field.

Fluctuating lift and drag formulae have been derived [42] for a 2D body by integration of the acceler-
ation field of the wake over the wake domain. More general formulae for vorticity-induced aerodynamic
forces and moments on multiple bodies in unsteady, viscous flows were proposed by Wu [9]. These,
related the forces on one or more immersed solid bodies of arbitrary shape and motion in 2- or 3D flows
to the time variation of vorticity-moment integrals, by applying the momentum theorem to the infi-
nite control volume R∞, including both the fluid region and the solid body regions, where the induced
flow appears as that of a time-dependent vortex dipole in Equation (5) [9]. Because of this, the impulse
method does not separate the individual body forces in a multi-body group. This work was one of the
first to present a rigorous analytical model for calculating aerodynamic forces and moments in viscous
flows.

F=− 1

D− 1
ρ

dα

dt
+ ρ

N∑
i=1

d

dt

∫
RiB

U iBdR, (18)

where D= 2 in 2D flows, D= 3 in 3D flows, and α the first moment of the vorticity field defined in
Equation (6). In 2D flows α = (αx, αy

)
, where

αx =
∫

R∞
yωdR, αy =−

∫
R∞

xωdR. (19)

The first term in Equation (18) is proportional to the time rate of change of the first vorticity moment in
the total region occupied by the fluids and solid bodies. The second term in Equation (18) is the inertial
force due to the acceleration of the mass of fluid around the bodies. A comprehensive and rigorous
derivation of this equation was also given [43]. Equation (18) is the general form of the unsteady force
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acting on a body assuming incompressible flow, a no-penetration boundary condition at the fluid-body
surface, and R∞ enclosing all the bodies and shed vorticity.

The moment is obtained similarly and has the same form for 2- and 3D flows [9],

l×F= 1

2
ρ

dβ

dt
+ ρ

N∑
i=1

d

dt

∫
RiB

r×UiBdR, (20)

where β is defined as the second moment of the vorticity field [9],

β =
∫

R∞
r2ωdR. (21)

The impulse method has been applied in many unsteady flow cases [44–46], which show load esti-
mations agreeing well with direct measurements. It also permits considerably simplified formulae for
forces induced by vortices while they remain local to a body shedding edge.

3.1.2 Impulse theory for a finite region
The integral for the aerodynamic force as in Equation (18) and similarly for the aerodynamic moment
as in Equation (20) require description of the vorticity over the whole flow field, when the far field
should be irrelevant. Noca [47] presented an accurate expression for the evaluation of instantaneous
forces on a body in an incompressible cross-flow from knowledge of the velocity and vorticity field in a
finite, arbitrarily chosen domain Rm surrounding the body and closed by a surface Sm over which residual
stress is integrated.

F=− d

dt

∫
Rm

ρUdR+
∮

Sm

n ·�dS, (22)

where � is the stress tensor. If the domain is kept relatively small Equation (22) becomes

F=− 1

D− 1
ρ

dRm

dt
− 1

D− 1

N∑
j=1

d

dt

∮
Sj

r× (n×U) dS+
∮

Sm

n ·�dS. (23)

Here αRm is the first moment of the vorticity field in the control volume Rm (including the fluid region
and the solid bodies) bounded by the control surface Sm.

αRm =
∫

Rm

r×ωdR (24)

The detailed derivation is given in Noca, where � is a tensor related to the velocity, vorticity, and
viscous stress [43].

The term
∮

Sm
n ·�dS vanishes when the surface Sm is taken to infinity and the system is started from

rest. For a non-rotating cylinder, the last term in Equation (23) becomes:∮
Sm

n ·�dS=
∮

Sm

[
1

2
U2n− (n ·U)U

]
dS=

∫
Rm

U ×ωdR. (25)

Noca et al. [48] applied the above equation for the unsteady force to a transverse oscillating circular
cylinder placed in a free stream and compared the results with those obtained by the ‘momentum equa-
tion’ and the ‘flux equation’ choosing different arbitrary and finite control volumes enclosing the body.
The ‘flux equation’ for the unsteady force F contains only the control-surface integral of the velocity
and its derivatives, which is useful as in most experiments the flow adjacent to a body surface in the
boundary layer is highly under-resolved.

F=
∮

Sm

n̂ · γ fluxdS−
N∑

j=1

∮
Sj

n̂ · (U −USj

)
UdS− d

dt

N∑
j=1

∮
Sj

n̂ · (Ur) dS, (26)
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where

γ flux =
1

2
U2I −UU − 1

D− 1
U(r×ω)+ 1

D− 1
ω(r×U)

− 1

D− 1

[(
r · ∂U

∂t

)
I − r

∂U
∂t
+ (D− 1)

∂U
∂t

r
]

(27)

+ 1

D− 1
[r · (∇ · T) I − r(∇ · T)]+ T,

and USj is the jth-body wall velocity. Their work shows the ability of these formulae to predict unsteady
force using truncated domains for relatively high Reynolds numbers. The intrinsic three-dimensionality
of a nominally 2D flow is not considered. For low Reynolds number flows, in which the force coefficients
are small, a change of domain size or relocation of the coordinates doesn’t provide completely self-
consistent results though the comparison is still satisfactory. This may be caused by the asymmetric end
conditions and oblique vortex shedding or the ’moment arm’ r [48].

The unsteady loads exerted on bodies moving in a fluid strongly depend on the local kinematics
and vortex flow structures. To calculate the force using a finite domain enclosing the body, Wu [49],
proposed the ‘derivative-moment transformations’ (DMT), a formulation for force and moment, which
still includes the pressure term. Wu et al. [50] used three variants of the DMT-based equations to study
the dynamic forces on circular cylinders due to local flow structures and their evolution in unsteady
viscous flow. A unified explanation of the influence on the body forces of the evolution of each time-
varying flow structure was given. The rich forms and wide range of applications of the DMT-based force
and moment expression make it popular.

Although not as popular as Wu’s force formula [9], Noca’s impulse equation finds application in many
fields, including force prediction from a PIV field [51, 52], discussed later. Li and Lu [53] discovered
when studying flapping locomotion using the DMT formula, that force and power are influenced strongly
by the vortical structures near the body.

3.1.3 Force decomposition in impulse theory
It is better, if possible, to derive a procedure to obtain forces which only requires flow data within a finite
domain instead of an infinitely large domain. However even so obtaining the complete description of
the velocity/vorticity data throughout the domain can be difficult in some practical cases. For example,
in experimental measurements such as PIV, the crucial area within the boundary-layer often cannot
be adequately resolved at high Reynolds number. If the diffusion of the vorticity generated at the body
surface cannot be captured by the experimental measurements, the missing vorticity information leads to
a deficit in force prediction. Graham et al. [54] showed that the vortex sheet required to fulfil the non-slip
boundary condition represents the incomplete measurement of vorticity on the body surface. The vortical
flow field is decomposed into a vortex sheet associated with the body motion, and the vorticity field
measured from the experiment as shown in Fig. 9. This surface vortex sheet arises naturally in inviscid
flow, replacing the boundary-layer vorticity as a result of the slip boundary condition. It appears similar
to the bound vortex sheet representations in some numerical vortex panel methods for inviscid flows.
The impulse defined in Equation (6) can then be evaluated from the contribution from the measured
vorticity in the fluid �k and the contribution from the surface vortex sheet γ :

αRm ,x = αkv
Rm ,x + αvs

Rm ,x, αRm ,y = αkv
Rm ,y + αvs

Rm ,y, (28)

where

αkv
Rm ,x =

∑
k

yk�k, αkv
Rm ,y =−

∑
k

xk�k, (29)
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Figure 9. Schematic representation of the decomposition of the vortical flow field into a vortex sheet
associated with the body motion and the vorticity field measured from the experiment [56].

and

αvs
Rm ,x =

∮
yγ dl, αvs

Rm ,y =−
∮

xγ dl. (30)

The closed-loop integrals are around the body surface.
The vortex sheet impulse can be further broken down into a circulatory part induced by the shed

vorticity in the field and an added mass part due to the body movement

αvs
Rm ,x = αc

Rm ,x + αam
Rm ,x, αvs

Rm ,y = αc
Rm ,y + αam

Rm ,y. (31)

The details on how to calculate these terms can be found in Ref. [54]. Implementing this method for
a 2D flat-plate flow and translating wing experiments, they found the vortex-sheet contribution to be
significant and the correction needed to be added whenever the data was incomplete for the flow around
the body surface.

3.2 Impulse integral: Vortex-induced forces due to vortices close to a body edge
3.2.1 Force calculation and aerofoil starting flows
The force induced on a body in 2D flow by a vortex �(t) at (x0(t), y0(t)) shed from and still close to an
edge of internal angle δ, Fig. 4, is shown in the Appendix A to be:

F=−ρ d

dt

{
�k× (ζ 0 − ζ I0

)}
(32)

where ζ 0 is the coordinate of the transformed vortex position under the transformation z(= (r, θ))→ ζ ,
of the body to a circle of radius R, and ζ I0 is its image point in the circle. Evaluated close to the edge,
z= 0, ζ = 0, the transformation can be written as ζ = (Cr)1/κR1−1/κ[cos(θ/κ), sin(θ/κ)], where C is a
constant dependant on the body geometry. θ is measured from the external bisector of the edge angle
and κ = 2− δ/π . If the vortex is close to the edge ζ 0 − ζ I0 = [2

(
Cr0)1/κR1−1/κcos(θ/κ), 0

]
. The above

result and the scaling analysis were given in complex notation in Ref. [36].
Therefore the force amplitude on a body due to an array of shed vortices, �j, is:

F= ρ κQe

V∞

d

dt

∑[
2�jr

1/κ
j cos

(
θj/κ

)]
(33)

with Qe, the edge velocity singularity parameter defined in Section 2.3 providing the influence of the
overall body length-scale. The force F acts in the direction normal to the bisector of the edge angle.

If a rolling-up shedding vortex can be represented by a single concentrated vortex �0 at z
0

then the
Kutta condition for separation at the edge allows further simplification of Equation (33) to:

F= πρκ2 d

dt

Q2
er2/κ

0

V∞
(34)

The advantage of using these two formulations for the vortex force is that they can be evaluated solely
from quantities which can be calculated or measured locally near the edge without reference to the rest
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of the body shape nor the implicit transformation of its perimeter to a circle. The body-scale factor
required for the force is contained in the parameter Qe

V∞ which is obtainable from local conditions at the
edge. Applying Equation (A6) for the vortex shed from the trailing edge of a Karman-Trefftz aerofoil in
impulsively started flow shows that this formula predicts the results given in Ref. [37], Equation (14).

Force calculations involving contributions from vortices further away which cannot be considered
local to the edge can be computed using the time derivative of the vortex dipole formula given in the
appendix, Equation (A10).

For an impulsively started flow β = 0 past an aerofoil for which κ ∼ 2:

F∼ (U∞t/c)−1/3 (35)

where c is the chord of the aerofoil. After the initial singularity ∼ t−1/3 in the vortex lift due to the
shedding of the starting vortex, the lift decreases rapidly, and a DVM simulation shows that it asymptotes
towards the curve predicted by the linearised Wagner theory [14], Fig. 6 [37]. The singularity in the
vortex induced lift should be distinguished from the singularity in the potential flow added mass of the
aerofoil due to infinite acceleration of the flow at the start.

If however the velocity around the aerofoil trailing edge causing the separation grows more gradually,
V0,∼ tμ with μ> 1/2, in the presence of an on-going free-stream the shed vortex convects downstream
immediately, closer to the stream direction, with a weaker roll-up. There is no singularity in the vortex
lift which remains closer to linear theory [37].

3.3 Strong vortex development due to rapid change of geometry
For more rapid changes in effective AoA the strong roll up previously described occurs and induces
an initial increase in lift force which can be well above the linearised prediction. Such a flow occurs
when an upper wing-surface spoiler is rapidly deployed during forward flight. This is intended to dump
lift rapidly and add drag if the aircraft encounters a sudden gust or needs to make a rapid manoeuvre.
However it has been shown e.g. [7] that in rapid deployment the growth of the vortex at the tip of the
spoiler generates a strong ’adverse’ effect. This initially increases the lift on the wing significantly before
it falls with oscillations over a time for the aircraft to travel ∼ 4c (wing chords) to a new value below
the previous mean, appropriate to the final angle of deployment and the intended goal, Fig. 10.

3.3.1 Flapping flight
The high lift-to-drag ratio which a large bird generates in forward flight by fixing its wing at a small
angle-of-attack, within the streamlined flow regime, has led to conventional fixed-wing aerodynamics.
However, in many biological flight regimes which cover a wide Reynolds number range (Re= 100 to
106), conventional wing aerodynamics are insufficient and vortex-dominated unsteady separated flows
are essential for the excellent flight stability and maneuverability which many flying creatures achieve
[55]. In particular insects [56], birds [57], and bats [58] all leverage the large-scale coherent vortices
generated through the flapping wing mechanism [59] to generate the lift and thrust which enables the
larger birds to take off from the ground or perch and to generate lift which enables smaller birds and
insects to hover or to slow forward-flight and execute soft landings. The impulsive wing opening motion
and resulting vortex formation generating additional lift, seen in this ’clap and fling’ wing motion [60]
have some similarities with the rapidly deployed spoiler, considered above. Edwards and Cheng [61]
have studied the effect of the inviscid formation of the vortex at each wing-tip of a pair of wings in a
rapidly opening ‘V’ configuration without forward speed. These vortices were shown to significantly
increase the lift in this phase of wing motion. More detailed studies of insect flight, e.g. the Hawk Moth
[62], have suggested a more complex flow may be involved. A LEV running along the wing develops
due to rapid forward rotation of the wing about the ‘shoulder’ during typical ‘figure-of-eight’ wing
motion. This type of vortical flow may be similar to the Himmelskamp delayed stall effect observed on
wide-chord inboard sections of rotor blades [63].
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Figure 10. Lift Coefficient time history due to rapid deployment to 90o of a 0.1c spoiler, at 0.7c for 12o

AoA [7].

These unsteady separated flows and vortex dynamics are not yet fully understood but play an impor-
tant role in the high lift and thrust generation in flapping flight. The present understanding of their flow
physics has developed to a large extent from examination of CFD simulations and experimental results,
quasi-steady models, and evaluation of relevant vortex force models [55, 64]. The vortex force map
(VFM) method, which will be introduced in Section 5, should be very suitable to contribute to this.

Vortex formation and evolution have had not only a great impact on lift and net thrust generation but
because of the variation in these effects for different wing types (Fig. 11) have influenced the wings which
have evolved. In the low Re regime the vortex dynamics involved in insect flight is better understood
[68] while at somewhat higher Re the vortex dynamics for bird and bat flight is less well understood due
to the complex morphology and dynamic variation of their wings [58].

This high-lift LEV aerodynamic mechanism is observed in flapping flight over a wide range of Re
for insects [68], birds [69, 70], and bats [58], as shown in Fig. 11. Many insects move their wings with
a translation motion that combines with forward flight, flapping up- and down-strokes and rotation,
executing figure of eight wing motions. In the translational phase of the wing, a leading-edge vortex
(LEV) is developed during the second half of the down-stroke. The LEV grows larger as the flight speed
increases, covering the whole wing chord. Dynamic stall (or possibly delayed stall) mechanisms explain
the formation and stabilisation of the LEV before it stalls. The LEV formation can also be attributed
to the wing’s rotational motion at the end of each stroke, at which point an LEV forms during the
flip-over of the wing in preparation for the next half-stroke, and may stay attached to the wing during
the downstroke. Alternate shedding of the LEV and TEV at large angles of attack of the wing motion is
common in a quasi-2D flow regime. The vortex shedding frequency is proportional to the wing frequency
in hovering flight. The characteristics of the vortices vary with the Re, the wing reduced frequency,
Strouhal number of the shedding, and the wing kinematics (including wing deformation). In the 3-
dimensional flow regime, spanwise flow along the wing stabilises the LEV, which spirals out towards the
wingtip in a similar manner to the conical leading-edge vortex on a delta wing, see also delayed stall [63].
For high aspect-ratio wings a Kelvin-Helmholtz instability occurs on the LEV feeding sheet at relatively
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Figure 11. (a) Vortex structures in the near-field of hawk moth hovering flight (up) and in the revolving
bumble bee wing at the onset of and long after the LEV breakdown. Panel adapted from Liu et al. [55].
(b) PIV flow fields of mosquitoes forward flight during the end of pronation, late downstroke, end of
supination and late upstroke. Panel adapted from Bomphrey et al. [65]. (c) Side view of the vortex
wake structure during the transition from hovering to forward acceleration and during forward cruising
of a hummingbird hawkmoth (Macroglossum stellatarum). Panel adapted from Yao and Yeo [66], (d)
Vortical structures around a bat wing identified by the λ2-criterion and coloured by the normalised
spanwise vorticity. Panel adapted from Wang et al. [67]. LEV, leading-edge vortex; TEV, trailing-edge
vortex; TV, tip vortex; RV, root vortex; DVR, downstroke vortex ring; UVR, upstroke vortex ring.

high Reynolds numbers, causing the formation of a secondary LEV. Additionally, vortex breakdown
(bursting) may occur at 60–70% of the wing span due to a fall in axial velocity in the core. However,
both of these phenomena have very little impact on the aerodynamic forces, which are generated [55].

During the wing rotation, vortices are also found to augment force production in mainly three ways:
the additional circulation produced through the Framer effect which is dependent on the timing and
duration of rotation, the clap and fling of paired flapping wings [60, 71], and wing-wake interactions
including wake capture mechanisms during stroke reversal [72]. This has been suggested as the cause
of force production by TEVs in high-frequency high-aspect-ratio mosquito flight [65].

In the flapping and gliding flight of larger birds, complex near-body and wake-vortex structures, such
as vortex rings are generated for the lift and thrust/drag production. The slotted wing-tip feathers in both
gliding and flapping flight generate multiple-core vortices, and vortex spreading, which are responsible
for the induced drag reduction [57]. The bird’s V-formation flight also benefits from the energy in the
wake vortices. Bats utilise vortices in another way. The tube-like TVs trail in the path of the wing-
tip and shed continously throughout the wing stroke, forming incomplete ring-like vortices that travel
downstream. A pair of root vortices sometimes can be observed [58] (Fig. 11). The dynamically changing
wingspan significantly intensifies the LEV thus augmenting time-averaged lift [67].
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Figure 12. Sketch of an aerofoil section lift coefficient CL through a cycle of AoA α for a typical dynamic
stall. (a) Flow separates and separating vortex sheet starts to roll up. (b) Vortex convects over upper
surface of aerofoil. (c) Vortex passes over trailing edge. (d) Flow is separated over the whole upper
surface. (e) Upper surface flow reattaches.

3.3.2 Dynamic stall
Dynamic stall occurs when the effective AoA of an aerofoil section increases rapidly to beyond the
mean flow stall angle. Depending on the Reynolds number, wing section shape and rapidity of change of
angle, separation can start some way back from the leading edge, even near the trailing edge, then move
quickly forward to the leading edge where a strong vortex separates and rolls-up. This vortex induces
additional lift increasing it to well above the steady flow value for the current AoA. This is followed
by further increase in lift and the development of a strong nose-down pitching moment as the vortex
stops growing and is convected over the surface of the aerofoil. When the vortex passes the trailing edge
the lift collapses, Fig. 12, and the pitching moment recovers [73]. The time scales involved are rather
similar to those during rapid spoiler deployment but with variations due to the more complex movements
of the separation. Because of the important applications for helicopter and wind turbine blades, the
phenomenon has been widely investigated, e.g. [74] and empirical methods of prediction developed
[73, 75, 76]. Flow separation is assumed to start when the normal force coefficient reaches a prescribed
value depending on the aerofoil section, followed by LEV growth and downstream convection. The
time history of the normal force on the aerofoil is obtained from a combination of linear unsteady lift
theory [14] and a separated flow model, often based on Kirchhoff’s formulae, described by first order
differential equations with time lags and empirical coefficients. The whole subject is covered extensively
in [77].

Stages in the process are similar to those of sudden separation from a sharp leading-edge plate
discussed earlier. As the LEV grows, back-flow induced on it by its virtual image in the aerofoil approx-
imately balances main flow convection so that the vortex remains close to the leading edge, the lift
continues to increase and the centre of the vortex as it grows starts to move very slowly downstream.
Eventually back-flow weakens the shedding until LEV growth ceases. At this point streamwise con-
vection dominates, the vortex moves downstream past the trailing edge into the wake and the lift
collapses.

3.3.3 3D flows: slender wings in impulsive flow
The formulation for the vortex induced force at an isolated edge can be applied to low aspect ratio wings,
AoA= α small but sufficient to cause leading edge separation, with the LEV distance above the leading
edge at any x-section small compared with the wing span at that section. Applying the isolated edge
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scaling to a cross-section at x of the delta wing, with semi-span s= εx where ε is the semi-apex angle,
replacing time t by the equivalent time x/U∞ the concentrated vortex model, Equation (A6) gives:

CL = 22/3πε2
(α
ε

)5/3

(36)

where CL = L
1
2 ρU2∞s

is the lift coefficient for the lift L on a half-wing section.
This is the same to first order in α

ε
as that derived by Brown and Michael [20] using the concentrated

vortex model for the full wing with both leading-edge vortices accounted for in the cross-flow. If the
slender wing is subject to a sudden impulsive motion such as heave, the vortex induced forces can
be evaluated similarly. LEVs on slender wings are much more stable than those on high aspect ratio
wings because of the stabilising effect of the strong axial flow in the core. If the AoA of a slender wing
is increased gradually the axial velocity in the vortex core weakens, then reverses locally and vortex
‘bursting’ occurs [78], initially in the trailing regions of the LEVs downstream of the wing. As the AoA
increases further bursting moves forward until it reaches the apex when the wing is then fully stalled. If
the rate of change of AoA is faster the development of the vortex burst lags the AoA considerably and
exhibits considerable hysteresis if caused by oscillatory AoA [79].

4.0 Oscillatory flows
4.1 2D oscillatory flow with zero mean
Oscillatory 2D flows around a body with one or more edges shed strongly rolled up vortex structures.
Shedding is typically of one pair of opposite sign vortices propagating outwards from each shedding
edge per flow cycle as shown in Fig. 13. The oscillatory flow amplitude ratio parameter is the Keulegan-
Carpenter number Kc = V0T

D
, where V0 is the velocity amplitude, T is the cycle time and D is a length-scale

of the body, usually its diameter. Kc is proportional to the ratio of the amplitude of the spatial oscillations
of the fluid (or the body) to the diameter of the body. After the oscillatory free stream velocity (the
‘driving flow’) has passed through its maximum during a flow cycle and started decreasing the vortex
currently being shed from a given edge continues to grow in strength until the amplitude of the opposing
back-flow which it induces at the edge reaches and then exceeds the velocity induced by the free stream.
At this point the vorticity being shed from the edge into the rolling-up sheet changes sign. Shortly after
this the sheet breaks and opposite signed vorticity commences a new roll-up in the opposite sense to the
previous vortex. When the second vortex has reached approximately its maximum (and the first of a new
pair has started to form) the two contra-rotating vortices of the first pair convect away together from the
edge under their mutually induced velocities in a direction at an acute angle to the edge bisector [36, 81,
82]. A heuristic argument is suggested to explain why the force induced on the body in small amplitude
oscillatory flow which cannot itself convect vortices far from the shedding edge, is dominated by the
development of the vortices close to the edge and relatively unaffected by those further away. Provided
the strength of one is approximately equal and opposite to the strength of the other in a pair their self-
induced path is nearly straight and due to mutually induced convection they rapidly leave the vicinity
of the edge. The growth of the vortex moments of each of a nearly equal and opposite strength counter-
rotating pair with their effective images in the body, tend to nearly cancel leaving the combined moment
approximately constant and hence making little contribution to the force on the body. If on the other
hand the two vortices are far from being of equal but opposite strength they follow a more highly curved
path and propagation away from the body is restricted. If close to the body surface but far from the
edge vortices are convected along the surface by the induced velocity of their images in the surface
again preserving the constancy of moment. Therefore in nearly all cases of vortices far from the edge
vortex moment does not change appreciably and there is little contribution to the force. For relatively
low Keulegan Carpenter numbers, Kc ≤ 10, the vortex force scaling given by the isolated edge theory
can be applied.
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Figure 13. Vortex shedding from a 30o edge in oscillatory flow. anticlockwise vortices (blue), clockwise
vortices (red) [80].

The process of shedding counter-rotating pairs, as shown for a 30o edge in Fig. 13, induces an irregular
oscillatory force Fv(t) on the shedding body with the same averaged period as the oscillatory free stream
but with varying phase difference as in Fig. 15 due mainly to the strength of induced back-flow.

Morison’s equation [83],

F(t)= ρA
dU

dt
Cm + 1

2
ρDU|U|CD (37)

is the standard equation used to express the flow direction force F(t), in this case sectional, per unit
transverse length of a body with diameter D and cross-sectional area A in oscillatory flow:

U(t)=U0sin(2π t/T) (38)

in terms of two cycle averaged coefficients: Cm, the inertia coefficient and CD, the drag coefficient.
If ψ is the phase lead of the fundamental of Fv(t) with respect to the velocity U(t) then

Cm =Cm0 +Cmv (39)

with

Cmv ∝ Kc

2π
sin(ψ) (40)

and

CD ∝ 3π

2
cos(ψ) (41)

where the unseparated flow inertia coefficient Cm0 associated with the potential flow induced by the
free-stream around the body is the dominant contribution to Cm. Cmv due to the vortex shedding is usu-
ally much smaller and less important except when it effects resonant frequencies in cases where the
body/fluid density ratio is small, rarely in air but quite often in water [84]. The drag, although often the
smaller part of the overall force, can be very important since it determines the vortex damping of the
oscillatory motion.
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Morison’s equation [83] was originally derived to describe the wave-direction force induced on long
structural elements of circular cross-section exposed to wave action. Offshore oil and gas jacket struc-
tures have many components of this type, subject to large wave forces. Floating and highly compliant
structures and ship hulls can perform large oscillatory motions. Baffles and other plates may be used to
increase damping (e.g. heave plates on spar buoys, bilge keels on ship hulls). Many fundamental studies
of sectional forces induced on bluff bodies transverse to planar oscillatory flow have been carried out to
establish values of the force coefficients, particularly for circular, square and flat plate sections [85, 86]
rounded square pontoon sections [87] and ship hull cross-sections [88, 89].

For the common symmetric sections with typically just two separation points, one either side, the con-
vection paths of shed vortex pairs may be symmetric or antisymmetric with respect to the flow direction
and often, apparently randomly, flip between the different states which may also exist simultaneously
at different transverse sections of a long body [82]. Spanwise (lengthwise) mode jumping is a frequent
occurrence in more complex oscillatory cylinder flows. Since the vortices which are shed as counter-
rotating pairs in oscillatory flow contribute little to the dipole force moment provided the value of Kc

is not too large the isolated edge scaling analysis of Section 2.3 should apply throughout the cycles of
flow. Therefore changing the characteristic time to the cycle time T , gives the following dependence of
the Morison force coefficients on Kc [36]:

CD = AK
3−2κ
2κ−1

c (42)

Cm =Cm0 + BK
2

2κ−1
c (43)

where κ = 2− δ/π , is the included angle of the shedding edge and A and B are dimensionless coef-
ficients which depend on the body section. Viscous effects are more usually expressed for these flows
by the Stokes parameter β = D2

νT
= Re

Kc
than the Reynolds number Re. For the three most common edge

angles: δ 
 0 (plates and bilge keels),

CD = AK−1/3
c , Cm =Cm0 + BK2/3

c , (44)

δ= π/2 (box sections, ship and pontoon hulls)

CD = A, Cm =Cm0 + BKc, (45)

and δ= π referring to body sections without sharp or high curvature edges such as circular cylinder.
Although for separation from continuous surfaces with mobility of the separation point the analysis is
less justifiable, nevertheless the scaling appears to be reflected in the measured data [36]:

CD = AKc, Cm =Cm0 + BK2
c (46)

These predictions for CD as powers of Kc are compared with experimental data in Fig. 14 showing
good agreement. Normalising the force cycle by the above powers of Keulegan-Carpenter number for
the three sections, flat plate, diagonally aligned square and circular section, similarly gives a very good
collapse of the data for force cycles over the low Kc range as shown in Fig. 15. They also predict well
the vortex shedding generated by small amplitude roll motion from the bilges of ship hulls with and
without bilge keels [88, 89]. Rectangular hulls are predicted by this scaling to have a constant Morison
drag coefficient, independent of flow amplitude (i.e. Kc), which is the usual assumption (damping force
proportional to roll velocity squared) made by the industry, see e.g. [90]. But it should be noted that the
result for thin plates predicts an increasingly large drag coefficient as the amplitude of motion decreases
which supports the effectiveness of bilge keels and baffle plates as damping devices. In the usual ’mixed’
cases where right-angle bilges are either rounded at the corner or have a bilge-keel added there (or both),
the behaviour of the drag coefficient follows the expected behaviour for the local geometry, rounding
or plate, at small amplitude of oscillation but reverts to the constant CD as the amplitude becomes large
[91, 92].

The circular section is the one which has been most widely studied because it is the section used
in so many structures. For very small amplitudes of oscillatory motion, Kc < 1, the flow is unseparated
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Figure 14. Drag coefficient at low Kc for + Normal Flat plate, ♦ diamond square, o circular cylinder,
[85, 91].

Figure 15. Normalised streamwise force versus time over one cycle [39].
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Figure 16. Vortex shedding from a circular cylinder at Kc = 4.0. DVM simulation with passive particle
visualisation [94].

but boundary-layer displacement and skin friction generate a small additional streamwise force. These
boundarylayers also have a spanwise instability which develops into alternating Honji vortices running
round the cylinder [93]. For Kc >∼ 3 separation occurs and vortices shed in pairs antisymmetrically and
obliquely to the flow direction, Fig. 16. At medium and large values of the Keulegan Carpenter number
the flows exhibit spanwise correlated shedding regimes similar to those for sharp sections with two fixed
shedding edges [81]. The process exhibits periods of departure from these states, single vortices circling
around the body, flows showing abrupt jumps between alternative states in the spanwise direction [82].
Averaged over many cycles the shedding process for a symmetric section doesn’t induce any net mean
force but the irregularity of the strong cyclic in-line force can produce non-zero averages over a few flow
cycles. Because the shedding does not form a conventional streamwise wake there is no strong periodic
transverse force generated in this Kc range.

At high Keulegan Carpenter numbers, (� 10), the effect of the free-stream U(t)=U0sin 2π t
T

on the
flow tends towards quasi-steady behaviour [95]. The in-line force in Morison’s equation is dominated
by drag as the ratio of D dV

dt
to V2 decreases and the drag coefficient tends towards its value in steady flow.

A periodic transverse force develops together with the formation of a finite length ‘von Karman type’
vortex wake containing an antisymmetric array of vortices downstream of the body over each half-cycle
of the free-stream. Remarkably, even when these wakes contain only very few vortices the principle of
a constant Strouhal number and hence constant streamwise vortex spacing, defines the shedding pro-
cess and wake, e.g. [96]. A frequency modulated transverse force with constant (lift) coefficient CL and
Strouhal number S follows closely the equation for the time dependent phase φ(t):

φ = S

D

∫
U(t)dt (47)
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Figure 17. Transverse force coefficient for a circular cylinder over a half-cycle of oscillatory incident
flow: Kc = 43.4, S= 0.2, ĈL = 1.33, ψ = 351.0O, x experimental data, - quasi-steady theory Equation
(48), from Ref. [97].

where D is the cylinder diameter and S is its Strouhal number. Therefore

L(t)= 1

2
U2

0Dsin2 2π t

T
CLcos

(
KcS

2π
cos

2π t

T
+ φ0

)
(48)

where φ0 is the starting phase of the shedding in each half-cycle. Figure 17 shows the excellent agreement
between measured data for a circular cylinder in oscillatory flow with Kc = 43.4 and the quasi-steady
Equation (48) with a standard value of Strouhal number, S= 0.20 for steady incident flow at similar
Reynolds number. In this case there are only about five vortices altogether in the wake. Surprisingly
the new wake forming in each half-cycle appears to accommodate the previous returning wake without
disruption. Results for Keulegan Carpenter numbers down to Kc ≤ 20 continue to show a strong measure
of agreement with this theory [97].

4.2 Oscillatory flows with non-zero mean
4.2.1 2D flows
For bodies moving in large amplitude oscillatory motion Kc >∼ 10 in the presence of significant mean
flow Morison’s equation continues to be valid and the ’quasi-steady-Strouhal’ model for the transverse
force also continues to apply approximately and down to a lower value of Kc, whether the incident flow
reverses or not. Where the amplitude of the oscillatory motion dominates the mean the flows gener-
ally exhibit similar behaviour to those in oscillatory flow with zero mean but as expected with a mean
‘convective’ bias of the shed vortex paths [98].

An area of great practical importance is that covering mean incident cross-flows combined with small
amplitude oscillatory motion. These vortex flows occur when flexible bodies vibrate while subject to a
mean flow. In the presence of imposed small amplitude oscillatory body or fluid motion the wake and
induced forces can depend strongly on the reduced velocity parameter VR = V∞

fD
where f is the oscillation

frequency. If VR is close to 1/S where S is the Strouhal number nD/V∞ for the cylinder at that Reynolds
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Figure 18. Vortices shed from a rolling ship hull of rectangular cross-section in forward motion, from
Ref. [102].

number the shedding (frequency n) will often lock onto the imposed oscillation becoming highly regular,
correlated along the span of the cylinder and much stronger. The width of the frequency band over
which lock-on occurs depends on the amplitude of the oscillations [2]. This is a large subject with many
references e.g. Refs [3, 99], which is outside the scope of this paper.

4.2.2 3-Dimensional flows: vortex induced forces on slender bodies in oscillatory cross-flow with forward
motion

In the case of roll motion of slender wing aircraft and the calculation of roll damping the parameter
U∞T/c is small and application of quasi-steady analysis is reasonable. However, in the case of ship
hulls, this assumption is less certain. Ikeda et al. [100] assessed the effect of forward motion on eddy
making damping on a rolling hull by experimental subtraction of other contributions to the damping,
and concluded that it led to a decrease in the damping coefficient. On the other hand Al Hukail [101]
carried out computations of vortex shedding from a rolling slender rectangular block section hull. Some
vortex pairing for each cycle of roll was observed in the computer simulations. An example is shown in
Fig. 18. It was found in these computations that the forward motion led to a significant increase in the
roll damping.

5.0 A general vortex force map (vfm) method
As mentioned before, for predicting the unsteady force acting on the body in separated flows, detailed
knowledge of the entire vorticity field is normally required and few analytical methods are available.
More success has been made with analytical-numerical coupling methods. These include unsteady thin
aerofoil theory corrected by additional vortices [102] or the use of the unsteady Blasius equation [103].
On the other hand, accurate experimental measurements of fluid dynamic loads in separated flows are
possible with the development of high-precision experimental techniques. However such direct load
measurements are not always easy to execute for flow problems at low Reynolds numbers, as the fluid
dynamic loads tend to be very small and are subject to significant measurement errors [104]. Moreover,
direct load measurements can be significantly contaminated by the resonance effect. Meanwhile, obtain-
ing fluid dynamic loads from the integration of computed surface pressures and skin friction, the
normal method used in CFD, has its difficulties since resolving the entire boundary layer to an adequate
resolution near the solid surface in unsteady PIV data is far more difficult than in CFD simulations [104].

As a result, volumetric pressure-free methods, including the vortex element methods have seen devel-
opment to extract force on the body in a non-intrusive way from accurate experimental measurements
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of flow fields, such as PIV. These also help to provide a better insight into the specific influence of each
flow structure on the force.

Section 5.1 introduces the history and various variants of element-based methods. This is followed
by a discussion on the general VFM method, which can be considered as a variant of element-based
methods, but it is derived from inviscid theory. Section 5.2 focuses on the inviscid VFM method, while
Section 5.3 is dedicated to viscous flows. The 3D VFM method is presented in Section 5.4. Finally,
Section 5.5 introduces the application of the VFM method in Particle Image Velocimetry (PIV).

5.1 Element-based methods
The general expressions for the force and moment on a rigid body within a general framework and a
unified perspective, which involve the velocity field instead of the pressure at the body surface was first
proposed by Quartapelle and Napolitano [105]. Chang [106] expressed the force acting on a body as
the scalar product of a potential flow and the Lamb vector. Howe [107] expresses the force and moment
exerted on a rigid body in unsteady motion in a uniform incompressible flow in terms of the velocity
and vorticity in the flow and the body velocity. These methods together with the vortex force/moment
map method are intrinsically the same.

In the element-based theory, the Lamb vector depends on the choice of frame of reference, thus the
projection of Lamb’s vector, i.e. the elementary force contribution, is not Galilean invariant [108]. A
Galilean invariant representation of the force is important, especially in those arbitrary multiple-body
dynamic problems where no universal frame of reference exists. To address this, a modified force-
element theory was proposed by Gao et al. [109] based on the weighted integral of the second invariant
of the velocity gradient tensor Q= 1

2ρ
∇2p. This modified force-element method satisfies Galilean invari-

ance. It has been applied in analysing the 3D force of low Reynolds number flows past a plunging aerofoil
[110], where a curve of the accumulated volume fraction with respect to the downstream position was
drawn to quantify the contribution of local structures on the force. More applications of the modified
force-element theory include the jellyfish flow [111], where a negative Q is also shown to be the pre-
dominant propulsion mechanism and a self-propelled flexible plate in a uniform shear flow where the
background vorticity is non zero [112]. It has been further explored by Menon and Mittal [113], and the
derivation of the equations for the moment has been given. The element-based methods have also been
explained as the virtual power principle in fluid dynamics by Yu [114], where the integral term in the
equation needs to satisfy the Galilean invariance requirement.

5.2 VFM for 2D inviscid flow
The concept of the 2D method was first proposed by Li and Wu [115] in studying the flow around a flat
plate at a moderate AoA (< 20o). It amends the inviscid Wagner lift model for starting flow to account for
the influence of separated leading edge and trailing edge vortices. The separated leading-edge vortices
are always presented as discrete vortices released sequentially from the leading edge. Assuming the
trailing edge vortices as either a planar vortex sheet or a series of discrete vortices released sequentially
gives two sets of lift formulae. Then the lift models are coupled with a discrete vortex simulation with the
results validated against numerical computation by CFD. The vortex system of the starting flow around a
flat plate at moderate AoA with an arbitrary number of vortices shed from the leading and trailing edges,
plus a quasi-planar vortex sheet, (VS, which may also be represented by discrete vortices) is shown in
Fig. 19(a). The vortex system of the starting flow around a flat plate at arbitrarily high AoA is shown in
Fig. 19(b). An explicit lift expression in terms of modified Wagner functions and the properties of the
separated vortices has been derived.

The non-dimensional time is defined by τ = V∞t/c (equivalent to the number of chord lengths trav-
eled by the aerofoil at constant speed in a ground-based frame of reference). In the vortex structures
shown in Fig. 19, the vortex sheets are presented by C(s, t) and have the strength of k(s, t), where s is the
location and t is the physical time, the separated discrete vortices with strength �(i)

v located at
(
x(i)

v , y(i)
v

)
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Figure 19. Schematic representation of the Vortex flow around a flat plate [115, 116] at (a) moderate
and (b) high AoA. LEV, leading edge vortex; TEV, trailing edge vortex; VS, vortex sheet; RVS, residual
vortex sheet.

move with the local speed U(i)
v =

(
dx(i)

v /dt, dy(i)
v /dt

)
. In these cases, the body speed once started is con-

stant, thus the added mass force is zero, and the impulse Equation (18) takes the form of the Phillips
equation [42]. Here, the vorticity consists of three parts, the bound vorticity �b, the point vortices �(i)

v ,
and the vortex sheet k(s, t), and they satisfy the Kelvin theorem, Equation (49)

�b +
I∑

i=1

�(i)
v +

∫
C

k(s, t)ds= 0 (49)

Accordingly, the total, i.e., normal force formula (there is no leading-edge suction) can be divided
into three parts and using Equation (49) we have

F= Fb + FPV + FVS⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fb =−ρV∞�b + ρ�̇b

FPV = ρ
I∑

i=1

(
−V∞�(i)

v +
d�(i)

v xi

dt

)
FVS =−ρV∞

∫
C

k(s, t)ds+ ρ d

dt

∫
C

k(s, t)C(s, t)ds

Or⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fb = ρ�̇b

FPV = ρ
I∑

i=1

d�(i)
v xi

dt

FVS = ρ d

dt

∫
C

k(s, t)C(s, t)ds

(50)

Here �b =
∫ c

0
γb(x, t) dx is the bound vorticity and �b =

∫ c

0
γb(x, t) xdx is the first moment of the

bound vorticity. For a flat plate or a thin aerofoil, the bound vorticity γb(x, t) can be obtained by thin
aerofoil theory with the added separated vortices [1].

1

2π

∫ c

0

γb(ξ)

x− ξ dξ = v(g) + v(PV) + v(VS) (51)

Here v(g) =−V∞sinα, v(PV) and v(VS) are given by the Biot–Savart relation [115]. Accordingly, the
bound vorticity can be decomposed into three parts γb (x, t)= γ (g)b (x, t)+ γ (PV)

b (x, t)+ γ (VS)
b (x, t), �b =

�
(g)
b + �(PV)

b + �(VS)
b , and �b =�(g)

b +�(PV)
b +�(VS)

b . Where �(g)b =−πcV∞sinα. For the flow around a
moderate AoA flat plate in Fig. 19(a), by solving Equation (51) under assumption of planar trailing edge
vortex sheets and sinα≈ α, the lift formula can be obtained by projection of the normal force (50) in
the lift direction [115]

L= φAL∞ + ρ
I∑

i=1

(
OAV∞ +�A ·U(i)

v

)
�(i)

v (52)
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Figure 20. (a) Vortex force line map, panels (b) and (c) are the amplification of zones near the leading
and trailing edges [116].

where φA is the modified Wagner function, OA and �A are problem-independent factors [115]. L∞ =
ρπcV2

∞sinα is the steady asymptotic lift which can be obtained from the Kutta–Joukowski theorem.
Equation (52) decomposes the lift as a modified Wagner lift with separated vortex contributions. It can
be proven that giving the strength of a self-contained stationary vortex above a flat plate, it is precisely
the same as Saffman’s lift formula [117].

For the flow around a high AoA flat plate in Fig. 19(a), by solving Equation (51) under the assumption
of vanishing RVS and substituting the solution into Equation (52), the force formula for a flat plate can be
reorganised as a sum of the vortex movement (vm) term and the circulation production (cp) term [116]

F= F(vm) + F(cp)⎧⎪⎪⎨
⎪⎪⎩

F(vm) = ρ
I∑

i=1

(
�i ·U(i)

v

)
�(i)

v

F(cp) = 1

2
ρc
(
RLE�̇LE + RTE�̇TE

) (53)

where �i, RLE, and RTE are problem-independent factors [116]. It is proved in Li and Wu [116] that, F(cp)

which is due to the newly shed element of vortex sheet, is small relative to F(vm), tending to zero as the
time step tends to zero.

In Equations (52) and (53), the flow field (U(i)
v and �(i)

v ) can be obtained either from experiment (e.g.,
PIV) or from numerical methods (e.g. discrete vortex simulation or CFD). The factors OA, �A, �i, RLE,
and RTE can be pre-obtained independently once the geometry of the body is given and used to draw the
vortex force (line) maps. These explicitly indicate the lift-enhancing and -reducing directions, and the
effect of the sign and position of vortices on the force.

The vortex force line map for the vector �i in Equation (53) is shown in Fig. 20. The explanation and
application of this can be found in Ref. [116].

5.3 Vortex force map for 2D viscous flows
5.3.1 Single-body flow vortex force map
Li and Wu [118] adopted Howe’s integral force formulae [107] to extend the above inviscid vortex force
line map approach for the normal force on a flat plate to viscous flow around arbitrary 2D bodies. The
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normal and axial force components for 2D flow are expressed as{
FN = ρ

∫∫
�

�S
N ·Uωzd�

FA = ρ
∫∫
�

�S
A ·Uωzd�

(54)

Here �S
N =

(
∂φNS/∂y,−∂φS

N/∂x
)

and �S
A =

(
∂φS

A/∂y,−∂φS
A/∂x

)
are standard VFM factors for normal

and axial forces respectively. Note that the integral over the whole fluid region � should include all
shedding vortices in viscous flow, and it replaces the summation of the potential vortices in Equations
(52) and (53). φS

N and φS
A are the standard hypothetical potentials for a fixed body with unit inflow from

infinity in the normal and axial directions respectively, as defined in Li and Wu [118].
The lift and drag can be obtained by a combination of the normal and axial forces in Equation (54).

Note that, when (x, y)→∞, �S
N and �S

A are non-zero, which means that vortices far away from the
body have a significant impact on the force. This is physically unlikely and inconvenient practically
as correction terms should be introduced when applying to truncated domains [118]. Thus, the force
formula where only near-body vortices have important effects through coordinate transformations and
Howe’s formulae [107] was derived [119] as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fk = F(dd)
k + F(vp)

k + F(vis−p)
k + F(vis−f )

k

F(add)
k = ∮

lB
φk

dUB
dt
· ndl

F(vp)
k = ρ

∫∫
�

�k ·Uωzd�

F(vis−p)
k =μ ∮

lB
ωzdφk

F(vis−f )
k =μ ∮

lB
ωzk · dl

}
F(correction)

k

(55)

where UB =UB(xB, yB, t) is the velocity of the body surface (lB),

�k = (∂φk/∂y,−∂φk/∂x) (56)

is the vortex pressure force vector, and φk is the hypothetical potential defined as the velocity potential
for hypothetical fluid motion induced by the translational motion of the body surface at unit speed in the
negative kth direction. According to the definition of φk, we have⎧⎪⎨

⎪⎩
∇2φk = 0

−∇φk · nB = k · nB = nB,k

∇φk = 0 (x, y)→∞
, (57)

where nB is the normal vector pointing inward from the body surface. Note that these hypothetical
potentials are different from the standard vortex force factors φS

N and φS
A. φk ensures that only near-body

vortices have an impact on the vortex-induced body force. Equation (55) includes the added mass force
F(add)

k caused by body motion, the viscous pressure force F(vis−p)
k caused by vorticity diffusion on the

body surface, and the skin friction force F(vis−f )
k caused by the shear stress. The unsteady effects are

included in the force formula implicitlythrough time-dependent ω and U. Since time t does not occur
explicitly in the force formula, temporal resolution of the flowfield data does not affect the accuracy of
the method and snapshots of the field can be used. However, it is essential to precisely charact erise the
body acceleration for an accurate prediction of the added mass force.

The Laplace equations and the corresponding boundary conditions (57) with k in the lift and drag
directions are solved to give the potential φL andφLD, thus �L and �D [119]. Analytical solutions of
(57) exist for simple bodies, such as a circular cylinder (Fig. 21(a) and (b)). For a general shape of
body, such as a NACA0012 aerofoil at α= 45o, (57) can be solved numerically, and the results are
plotted in Fig. 21(c) and (d). Figure 21(a)–(d) are called the vortex pressure force maps, where each
line with arrows defines the direction for a counterclockwise vortex (having positive strength) to give
a positive lift/drag or the direction for a clockwise vortex (having negative strength) to give a negative
lift/drag. These VFMs can be employed to evaluate the force exerted by a specific vortex and to extract
forces from the information of the flow field enclosing the body [119]. E.g., for a circular cylinder, the
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Figure 21. Vortex pressure force maps for the (a) lift of a cylinder, (b) drag of a cylinder, (c) lift of
NACA0012 aerofoil at α = 45o, and (d) drag of NACA0012 aerofoil at α = 45o [120].

symmetrical vortex pressure lift map about the y= 0 axis explains that a pair of counter-rotating vortices
moving symmetrically downstream of a cylinder contribute zero lift. The vortex force approach has been
validated against CFD results of NACA0012 at several angles of attack and Reynolds numbers by Li
et al. [119]. The dominant force is the vortex pressure force. The viscous forces are negligible when
the Reynolds number is large enough. Moreover, the computation of vortex forces was demonstrated
using coarsely sampled data on a small, truncated domain, and it was found that the method produces
acceptable accuracy, which facilitates its application to computing body forces from PIV data.

5.3.2 Multi-body flow vortex force map
We consider a number M of solid bodies, relatively stationary to each other, in the viscous flows of
constant density ρ and viscosity μ in a control volume � bounded by S∞ at infinity. Each body has a
volume �mB (m= 1, 2, . . . , M), bounded by closed surfaces SmB (m= 1, 2, . . . , M) (degrade to lmB in
a 2D case). The free-stream velocity is V∞ incident at an angle α to the ith-body axis. The force Fi

acting on the ith-body has been derived rigorously in Wang et al. [120] in the body-fixed frame (x, y, z)
of the ith-body. The schematic of the flow and the force components are shown in Fig. 22(a). Similar to
a single body, the kth component of the force (with a unit vector k) of the ith-body is decomposed into
the added mass force F(Add)

ik , the vortex-pressure force F(vor−P)
ik , the viscous-pressure force F(vis−P)

ik and the
skin-friction force F(friction)

ik , and the first three make up the pressure force F(pressure)
ik :

F ik = F(Add)
ik + F(vor−P)

ik + F(vis−P)
ik︸ ︷︷ ︸

F(pressure)
ik

+F(friction)
ik (58a)

F(Add)
ik =−ρ

∑
i=1,2,...,M

∫∫
liB

φik

dU
dt
· ndl (58b)

F(vor−P)
ik = ρ

∫∫
�

�ik ·Uωzd� (58c)

F(vis−P)
ik =μ

∑
i=1,2,...,M

∮
liB

ωzdφik (58d)

F(friction)
i =μ

∮
liB

ωzk · dl (58e)

where the vortex-pressure force factor is expressed as

�ik =
(
∂φik

∂y
,−∂φik

∂x

)
. (59)
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Figure 22. The 3D method for the multi-body configuration. (a) The schematic of the flow around
multi-body configuration. (b) The 3D for the main aerofoil and for the flap in a wing-flap configuration.
(c) The lift coefficient on the main aerofoil and on the flap in the wing-flap configuration at α = 45o. (d)
Contours of vortex lift distribution displaying lift coefficients acting on the main aerofoil (left column)
and on the flap (right column) contributed by local vortices, for a wing-flap configuration starting flow
at α = 45o and at instants τ = 7 and 8, with streamlines [121].

where φik is defined as ⎧⎪⎨
⎪⎩
∇2φik = 0

−∇φik · niB = k · niB, (x, y, z)→ liB

−∇φik · nmB = 0, (x, y, z)→ lmB ∪ l∞(m �= i)

(60)

Here niB and nmB are the normal vectors pointing inwards from each body surface. liB and lmB denote
2D body surfaces. Taking lift as an example, solving the Laplace Equation (60) in the direction of
k= kL = (−sinα, cosα) for i= 1 and i= 2 in the wing-flap configuration, one can obtain the vortex
force vectors for the main aerofoil (�1L) and for the flap (�2L) respectively. The 3D for the main aerofoil
and for the flap are shown in Fig. 22(b). The concept of vortex pressure maps still exists for individual
bodies when the flow field contains multiple bodies and should not be understood as a superposition of
the individual contributions. The maps separate the body forces and provide links to the flow features
(velocity and vorticity).

Vortex lift evolution for the main aerofoil and for the flap in an impulsively started wing-flap config-
uration with zero flap deflection angle and for α= 45o at Re= 1,000 are shown in Fig. 22(c). The total
force and other force components are also shown. Figure 22(d) is the spatial distribution of local vortex
pressure lift due to the local vorticity at typical instants. The pressure force contributed by vorticity in
the flow field was found to be the dominant force and its variation can be explained by the motion of the
vortices relative to each body.

5.3.3 Single-body flow vortex moment map
A vortex moment map (VMM) method has also been derived to predict the pitching moment on a single
body [120]:

Mp = ρζ
∫∫

�

Fp ·Uωzd�. (61)
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Figure 23. The vortex moment map for the NACA0012 aerofoil with a pitching axis (a) LE, (b) c/2, (c)
c/4, (d) TE. (e) The comparison between the pitching moment obtained by the VMM method and CFD
with a pitching axis c/4 at α= 60o and Re= 1, 000. (f) Contours of the vortex moment coefficient per
unit area (left) and the vorticity (right) at a typical instant τ = 2.0 with streamlines [121].

where the VMM vector

Fp = 1

ζ

(
∂χp

∂y
,−∂χp

∂x

)
(62)

is normalised by a unit angular velocity multiplied by the characteristic length. The flow-independent
hypothetical potential χp is defined as the velocity potential for hypothetical fluid motion induced by the
rotation of the body �B at unit angular velocity about an axis that passes through the reference point
xp and perpendicular to the coordinate plane, satisfying the following Laplace equation and boundary
conditions ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇2χp = 0

∂χp

∂nB

= (x− xp
)× p · nB (x, y)→ lB

∇χp = 0 (x, y)→∞

, (63)

where p is the unit vector along the moment axis. The hypothetical potential χp vanishes at infinity and
is made unique by requiring no circulation about any irreducible path. The flow-independent VMMs,
shown in Fig. 23 for a NACA0012 aerofoil with different pitching axis xp, were constructed to identify
the moment contribution of each given vortex in the flow field [121]. It is shown in the maps that an LEV
moving away from the reference point or a TEV moving towards the reference point contributes to a nose-
down pitching moment, and vice versa. Moreover, for any reference points located on the aerofoil except
for the LE and TE, an LEV moving away from the edges or a TEV moving towards the edges contributes
to a nose-up pitching moment, and vice versa. An impulsively started NACA0012 aerofoil has been used
as an example. Good comparisons have been found between the moment given by CFD itself and by the
precomputed VMM, together with the vortices obtained by CFD. As expected, the contribution from
viscous forces on the pitching moment is negligible at the Reynolds numbers considered (50≤ Re≤
1e6), and the corresponding VMM can accurately reflect the total force contribution of the vortices in
the viscous flow field. Similar to the VFM, the VMM method is insensitive to vortices far away from
the body, which reflects the fact that pressure loads on the aerofoil are mainly due to near-body vortices
in accordance with the Biot-Savart law. It is found that, due to the rolling up of LEVs and TEVs, the
unsteady nose-down moment about the quarter chord is higher than the steady-state value. Both LEVs
and TEVs can generate both positive and negative moments depending on their location. As an LEV
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grows and moves away from the body, its net contribution of the moment changes from positive to
negative, while a TEV always contributes a net positive moment. The time-variation of the total moment
is the overall effect of both LEVs and TEVs.

5.3.4 Multi-body flow vortex moment map.
In a similar way the above VMM can be extended to the multi-body assembly shown in Fig. 22(a). The
moment Mip acting on the ith-body is, without completely rigorous derivation:

Mip = ρζi

∫∫
�

Fip ·Uωzd�. (64)

where the VMM vector for the ith-body

Fip = 1

ζi

(
∂χip

∂y
,−∂χip

∂x

)
(65)

is normalised by a unit angular velocity multiplied by the characteristic length of the ith-body. The
flow-independent hypothetical potential χip is defined as the velocity potential for hypothetical fluid
motion induced by the rotation of the body�iB at unit angular velocity about an axis that passes through
the reference point xp and perpendicular to the coordinate plane, which satisfies the following Laplace
equation and boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇2χip = 0

∂χip

∂niB

= (x− xp
)× p · niB (x, y)→ lB

∂χip

∂nmB

= 0 (x, y)→ lmB ∪ l∞ (m �= i)

. (66)

A more rigorous derivation of the moment formula for multi-body assembly is still required. However,
this method can separate the forces for individual bodies although high resolution is needed in narrow
gaps.

5.4 Vortex force map method for 3D viscous flows
The 3D VFM method [122] described in this section has been derived and used to obtain body forces
from the existing velocity/vorticity field near the body. The starting flow of a delta wing at high AoAs
was used as an example to demonstrate the force method.

In the 3D body-fixed frame where the velocity U = (u, v, w), and the vorticity ω= (ωx,ωy,ωz

)=(
∂w
∂y
− ∂v

∂z
, ∂u
∂z
− ∂w

∂x
, ∂v
∂x
− ∂u

∂y

)
, the vortex force on the body can be written as

Fk =
∫∫∫

�

δFkd�

δFk = ρ
[−�S

k,3 · (u, v, 0) ωz −�S
k,1 · (0, v, w) ωx −�S

k,2 · (u, 0, w) ωy

]− ρk · (ω×V∞) , (67)

where the standard 3D VFM vectors are

�S
F,1 =

(
0,−∂φ

S
k

∂z
,
∂φS

k

∂y

)
, �S

k,2 =
(
∂φS

k

∂z
, 0,−∂φ

S
k

∂x

)
, �S

k,3 =
(
−∂φ

S
k

∂y
,
∂φS

x

∂x
, 0

)
. (68)
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Figure 24. (a) A schematic diagram of vortex flow and force components for a delta wing at an incidence
of α. (b) The analogy between the normal force of a slender delta wing and that of a 2D flat plate
with steadily growing width and the analysis of the force contribution from a given vortex according to
Wu’s [9] force formula. (c) Contours of vortex lift coefficient distribution (left column) and contours
of streamwise vorticity (right column) at the mid-cross-section x= 0 of a delta wing at typical instants
τ = 1 (top line), 2.5 (middle line), and 11.5 (bottom line) after it impulsively started from rest at α = 60o

and Re= 5× 104 [123].

Here the standard hypothetical potential φS
k is the potential of an ideal flow with a unit incident

velocity in the kth-direction about the body and governed by a 3D Laplace equation⎧⎪⎨
⎪⎩
∇2φS

k = 0

−∇φS
k · nB = 0 (x, y, z)→ SB

∇φS
k = k= (k1, k2, k3) (x, y, z)→∞

. (69)

Note that at infinity, substituting ∇φS
k |∞ = (k1, k2, k3) and (k1, k2, k3) |∞ =V∞ into Equation (67) we

have δFk|∞ = 0. This is compatible with the physical understanding that only near-body vortices induce
pressure load on the body and affect the lift and drag. The vorticity at infinity appears to give a zero
force contribution.

Li et al. [122] have discussed the case of a slender delta wing with V∞ = (V∞cosα, 0, V∞sinα)
(Fig. 24(a)). The force formula (67) together with (68) and (69) have been used to study the compo-
nents of the force coefficient contributed by streamwise, spanwise, vertical vorticity (ωx, ωy, ωz), and the
correction term−ρ∫∫∫

�
k · (ω×V∞) d�. The force from the LEV, mainly ωx, is found to be dominant.

The VFM for the lift contribution of streamwise vorticity has been compared with that for FNcosα
on a 2D flat plate normal (at 90o incidence) to the flow to demonstrate the analogy between the normal
force on a slender delta wing and that of a flat plate with a steadily growing span (see Fig. 24(b)).
It is found that the analogy exists in the cross-flow sections close to the apex of the delta wing, even
for relatively large AOAs, while the similarity doesn’t extend to the rear part, e.g., close to the TE. The
precomputed VFMs, together with the vorticity field obtained by CFD shown in Fig. 24(c) (right column)
can be used to calculate the force (here lift) contribution of the vorticity field and the results are shown
in Fig. 24(c) (left column). Part of the LEV contributes a large positive lift and part of it contributes
a small negative lift, leading to a positive total lift. The result is consistent with the conclusion from
Wu’s theory that a pair of streamwise vortices contribute to positive lift when separating laterally and
negative lift when moving towards each other (Fig. 24(b)). Moreover, the force contribution is mainly
due to the conical vortex sheet (with a lateral flow speed of V∞cosαtanβ) rather than the central core. A
quantitative understanding of the influence of vortical structures in four different evolution regimes on
the body force has also been given in Ref. [122].

Note that Equation (67) can be rewritten in an alternative form

Fk = ρ
∫∫∫

�

[−�k,3 · (u, v, 0) ωz −�k,1 · (0, v, w) ωx −�k,2 · (u, 0, w) ωy

]
d�, (70)

https://doi.org/10.1017/aer.2024.82 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.82


2184 Graham and Li

with VFM vectors �k,1 =
(

0,− ∂φk
∂z

, ∂φk
∂y

)
, �k,2 =

(
∂φk
∂z

, 0,− ∂φk
∂x

)
, �k,3 =

(
− ∂φk

∂y
, ∂φx

∂x
, 0
)

and hypothetical
potential satisfying

⎧⎪⎨
⎪⎩
∇2φk = 0

−∇φk · nB = k · nB (x, y, z)→ SB

∇φk = 0 (x, y, z)→∞
(71)

Whether it is better to use Equation (67) or Equation (70) depends on the situation.

5.5 Application of VFM to practical force evaluation from PIV data
The following is an outline of how VFM may be used with PIV of the flow-field around a body to provide
values of force on the body.

The typical approach to obtain fluid dynamic loads from the integration of surface pressures and skin
friction in CFD has its difficulties in unsteady PIV data since resolving the entire boundary layer to an
adequate resolution near the body surface is impractical. Additionally, though accurate experimental
measurements on fluid dynamic loads in separated flows are possible with the development of high-
precision experimental techniques, they are not easy to execute for low Reynolds number flow where
the loads tend to be small and are subject to significant measurement errors and can be significantly
contaminated by the resonance effect. Thus, the above-mentioned vortex methods can be very useful
for extracting fluid dynamic forces in a non-intrusive way from the experimental measurements, such as
PIV, of the flow fields.

The impulse force formulae have been extensively explored in extracting force from the unsteady PIV
field. For instance, Noca et al. [47] tested the expression for evaluating the instantaneous forces on a body
in an incompressible cross-flow from the PIV measurements of the velocity and vorticity field in a finite
and arbitrarily chosen region enclosing the circular cylinder. The results showed that the impulse force
formula was accurate for fully resolved computational results, and captured the trend for the under-
resolved experimental data. Later, Graham et al. [54] got good agreement between impulse formulae
and force-balance measurements on a 2D translating wing flow by adding the influence of the missing
vorticity via a vortex sheet, whose strength was obtained by the no-slip boundary condition. Following
the same procedure by implicitly accounting for the incomplete PIV data close to the cylinder, applying
the rotational and translational boundary condition of the cylinder kinematics to the cylinder surface,
Gehlert and Babinsky [123, 124] recovered the lift and drag from the PIV data on accelerating and
rotating cylinder flows and validated it with force balance measurements. Ōtomo et al. [125] successfully
estimated unsteady lift due to a pair of LEV and TEV from PIV data.

The use of impulse methods in PIV data analysis requires a time sequence of data and a filtering
process to align well with force balance measurements. These methods are unable to extract instanta-
neous forces from a single PIV data snapshot. Conversely, element-based techniques, such as auxiliary
potential-based methods and the VFM method, are often underutilised. These methods hold significant
potential for analysing unsteady flows without explicitly incorporating time derivatives. Li et al. [119]
have facilitated the application of VFM method to computing body forces from PIV data by demonstrat-
ing a satisfactory level of force prediction accuracy using the VFM method on CFD data, even when
relying on coarsely sampled data from a small, truncated domain. Building on this, Ōtomo et al. [126]
have further investigated the application of the VFM method to PIV data. This is the first application
of the VFM method to PIV velocity data, where forces are extracted from snapshot PIV velocity and
vorticity fields. A remarkable agreement between the direct force measurements and the VFM method
has been observed for three different kinematics for surging flat plates and pitching NACA0018 aero-
foils at Reynolds numbers of O

(
104
)
. It has been found that the VFM method is highly robust to noise

compared to the impulse method.
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6.0 Conclusions
This paper has discussed the subject of vortex-induced forces on bodies in unsteady incident flows where
abrupt changes cause a vortex sheet to be shed and roll-up close to the body. The scaling of this rolling-up
vortex has been discussed using simplified, inviscid models, in particular a concentrated vortex model.

The impulse integral [9] which predicts the forces due to vorticity throughout the flow field
is discussed. A vortex force map method derived either from this impulse integral or from some
elementary-based method [107], but with the advantage of only requiring information on vorticity close
to the body has been presented.

Some applications to impulsively started flows about aerofoils and slender wings with leading-edge
separation, oscillatory flows about 2D sections of bodies, and examples of flows such as in flapping
flight and spoiler deployment where sudden changes of body geometry cause vortex shedding have
been presented as have comments on the use of the vortex force map to enable forces on bodies to be
predicted from PIV measurements alone.

7.0 Further developments
An immediate extension of the work described here is to complete the derivation of methods to provide
efficient computation of the moment induced on multiple bodies by vorticity shed either as discrete
vortices or by any distributed vorticity in the flow field. In a number of physical problems, such as roll
damping, moment rather than force is the significant quantity.

A further planned extension is for continuing development of methods as outlined in Section 5.5
to enable the forces and moments on single or multiple bodies to be computed from the surrounding
distribution of vorticity in the flow field from measurements obtained by PIV.

While the majority of discussions primarily concentrate on 2D rigid bodies, a future direction is
to broaden the analysis to encompass 3D and flexible bodies, particularly for certain Fluid-Structure
Interaction (FSI) applications.
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Appendix
A.0 Force on a sharp-edged body due to a vortex close to the edge
Wu’s theorem for body forces shows that the vortex force FV exerted on a body due to vortex shedding
in a 2D flow field (including boundary layers, wakes, and large-scale vortices shed from separations)
can be expressed as:

FV =−ρ d

dt

∫
S∞

r×ωdS (A1)

over the whole flow field S∞. For 2D flow we define a complex coordinate system z= x+ iy with origin
inside the body as shown in Fig. A1 and consider the body starting from rest at t= 0 having since then
shed N vortices of circulation�j (defined as positive when clockwise) which are currently located at zj(t).
By Kelvin’s theorem the total circulation in the whole flow must remain equal to zero and therefore the
body must have circulation �0 =−∑N

1 �j.

https://doi.org/10.1017/aer.2024.82 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.82


The Aeronautical Journal 2189

Figure A1. Sketch of body shedding vortices in the complex z-plane showing integration paths sb around
the body and sw around the cuts cj joining the vortices �j to the shedding edge, and the integration path
s∞ at∞.

Equation (A1) can then be replaced by:

FV =−iρ
d

dt

[∮
sb

zγ ds+
N∑
1

(
zj�j

)]
(A2)

where the integral is a closed line integral around the body surface sb, γ is the strength of the vortex
sheet on sb which satisfies the condition that there is zero velocity everywhere inside sb relative to it.∮

sb
γ (s) ds= �0, the circulation and FV = FVx + iFVy is the complex force induced on the body by the

growing array of shed vortices.
γ = ∂φ

∂s
where φ is the real part of a complex potential W = (φ + iψ) due to the shed vortices and

the circulation which they induce around the body. ψ is the streamfunction which is constant on sb.
Therefore in Equation (A2): ∮

sb

zγ ds=−
∮

sb

z
∂φ

∂s
ds=−

∮
sb

z
dW

ds
ds (A3)

since ∂ψ

∂s
= 0 on sb.
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In order to make the complex potential W(z) unique the developing vortex sheet from the edge ze of sb

out along the sequence of elements to the vortex element at its end which was shed first, is accounted for
by defining a cut in the z-plane across which it is discontinuous with a jump in value at any point equal
to the circulation up to that point. Integrating by parts around the closed contour on the body surface sb

shows that: ∮
sb

zγ ds= �0ze +
∮

sb

W(z) dz (A4)

A similar anticlockwise integration on the closed contour sw around the shed vortices and the cut
joining them to ze shows that: ∮

sw

W(z) dz= �0ze +
N∑
1

�jzj (A5)

since
∑N

1 �j =−�0. Combining Equations (A4) and (A5):

Fv =−iρ
d

dt

∮
sb+sw

W(z) dz (A6)

Since the combined closed contour sb + sw lies outside all the vorticity, it may be enlarged out to a
far contour s∞, |z|→∞, enclosing the whole flow field without changing the value of the integral.

Let z= f (ζ ) be a conformal transformation taking the body surface sb, into a circle ζ = Reiθ in the
ζ plane, with freestream conditions unchanged. Therefore dz/dζ→ 1 on s∞. The value of the radius R
of the circle is determined by the size and shape of sb. Therefore the integral in Equation (A6) may be
evaluated in the ζ plane as:∮

sb+sw

W(z) dz=
∮
∞

W(z(ζ ))
∂z

∂ζ
dζ =

∮
∞

W(ζ ) dζ (A7)

since ∂z
∂ζ
= 1 on s∞.

Discrete vortices in the fluid have identifiable point images in the circle plane. Therefore W(ζ ) is
the complex potential of a set of vortex pairs formed by each shed vortex at its transformed location in
the ζ plane together with its image in the circle to which sb has been transformed. Each of these pairs
induces flow in the far field ζ→∞, equivalent to a dipole of strength μj = �j

(
ζ − ζIj

)
where ζIj = R2

ζ∗j
is

the image vortex position and ()∗ indicates here a complex conjugate. Hence W(ζ )→ −i
∑N

1 �j(ζj−ζIj)
2πζ

on
s∞. Therefore ∮

s∞
W(ζ )=

N∑
1

�j

(
ζj − ζIj

)
(A8)

by the Resdiue theorem and the force on the body due to the shedding of a vortex and its subsequent
growth and convection away from the body is given by the rate of change in the transformed circle plane:

FV =−iρ
d

dt

[
�j

(
ζj − ζIj

)]
(A9)

In vector form:

FV =−ρ d

dt

[
�jk×

(
ζ j − ζ Ij

)]
(A10)

where ζ j =
(
ξj, ηj

)
and ζ Ij =

(
ξIj, ηIj

)
are the coordinates in the circle plane of the jth vortex and its image

in the circle, and k is a unit vector normal to the (x, y) plane. This result was previously derived using
Blasius’ theorem in Ref. (36).
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