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Galois-theoretic features for 1-smooth
pro-p groups
Claudio Quadrelli

Abstract. Let p be a prime. A pro-p group G is said to be 1-smooth if it can be endowed with a
continuous representation θ∶G → GL1(Zp) such that every open subgroup H of G, together with the
restriction θ∣H , satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-p group
contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and
Koenigsmann on maximal pro-p Galois groups of fields, and that if a 1-smooth pro-p group is solvable,
then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-p Galois groups
of fields. Finally, we ask whether 1-smooth pro-p groups satisfy a “Tits’ alternative.”

1 Introduction

Throughout the paper p will denote a prime number, and K a field containing a root
of unity of order p. Let K(p) denote the compositum of all finite Galois p-extensions
of K. The maximal pro-p Galois group of K, denoted by GK(p), is the Galois group
Gal(K(p)/K), and it coincides with the maximal pro-p quotient of the absolute
Galois group ofK. Characterising maximal pro-p Galois groups of fields among pro-p
groups is one of the most important—and challenging—problems in Galois theory.
One of the obstructions for the realization of a pro-p group as maximal pro-p Galois
group for some field K is given by the Artin–Scherier theorem: the only finite group
realizable as GK(p) is the cyclic group of order 2 (cf. [1]).

The proof of the celebrated Bloch-Kato conjecture, completed by Rost and Voevod-
sky with Weibel’s “patch” (cf. [12, 27, 29]) provided new tools to study absolute Galois
groups of field and their maximal pro-p quotients (see, e.g., [2, 3, 17, 21]). In particular,
the now-called Norm Residue Theorem implies that the Z/p-cohomology algebra of a
maximal pro-p Galois group GK(p)

H●(GK(p),Z/p) ∶= ⊕
n≥0

Hn(GK(p),Z/p),

with Z/p a trivial GK(p)-module and endowed with the cup-product, is a quadratic
algebra: i.e., all its elements of positive degree are combinations of products of
elements of degree 1, and its defining relations are homogeneous relations of degree 2
(see Section 2.3). For instance, from this property one may recover the Artin-Schreier
obstruction (see, e.g., [17, Section 2]).
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More recently, a formal version of Hilbert 90 for pro-p groups was employed to find
further results on the structure of maximal pro-p Galois groups (see [9, 19, 21]). A pair
G = (G , θ) consisting of a pro-p group G endowed with a continuous representation
θ∶G → GL1(Zp) is called a pro- p pair. For a pro-p pair G = (G , θ) let Zp(1) denote
the continuous left G-module isomorphic to Zp as an abelian pro-p group, with G-
action induced by θ (namely, g .v = θ(g) ⋅ v for every v ∈ Zp(1)). The pair G is called
a Kummerian pro- p pair if the canonical map

H1(G ,Zp(1)/pn) �→ H1(G ,Zp(1)/p)

is surjective for every n ≥ 1. Moreover the pair G is said to be a 1-smooth pro-p
pair if every closed subgroup H, endowed with the restriction θ∣H , gives rise to a
Kummerian pro-p pair (see Definition 2.1). By Kummer theory, the maximal pro-
p Galois group GK(p) of a field K, together with the pro-p cyclotomic character
θK∶GK(p) → GL1(Zp) (induced by the action of GK(p) on the roots of unity of order
a p-power lying in K(p)) gives rise to a 1-smooth pro-p pair GK (see Theorem 2.8).

In [5]—driven by the pursuit of an “explicit” proof of the Bloch–Kato conjecture
as an alternative to the proof by Voevodsky—De Clerq and Florence introduced
the 1-smoothness property, and formulated the so-called “Smoothness Conjecture”:
namely, that it is possible to deduce the surjectivity of the norm residue homomor-
phism (which is acknowledged to be the “hard part” of the Bloch–Kato conjecture)
from the fact that GK(p) together with the pro-p cyclotomic character is a 1-smooth
pro-p pair (see [5, Conjecture 14.25] and [15, Section 3.1.6], and Question 2.10).

In view of the Smoothness Conjecture, it is natural to ask which properties of
maximal pro-p Galois groups of fields arise also for 1-smooth pro-p pairs. For example,
the Artin–Scherier obstruction does: the only finite p-group which may complete into
a 1-smooth pro-p pair is the cyclic group C2 of order 2, together with the nontrivial
representation θ∶C2 → {±1} ⊆ GL1(Z2) (see Example 2.9).

A pro-p pair G = (G , θ) comes endowed with a distinguished closed subgroup: the
θ-center Z(G) of G, defined by

Z(G) = ⟨ h ∈ Ker(θ) ∣ ghg−1 = hθ(g) ∀ g ∈ G ⟩ .

This subgroup is abelian, and normal in G. In [10], Engler and Koenigsmann showed
that if the maximal pro-p Galois group GK(p) of a field K is not cyclic then it has
a unique maximal normal abelian closed subgroup (i.e., one containing all normal
abelian closed subgroups of GK(p)), which coincides with the θK-center Z(GK), and
the short exact sequence of pro-p groups

{1} �� Z(GK) �� GK(p) �� GK(p)/Z(GK) �� {1}

splits. We prove a group-theoretic analogue of Engler–Koenigsmann’s result for 1-
smooth pro-p groups.

Theorem 1.1 Let G be a torsion-free pro-p group, G /≃ Zp , endowed with a represen-
tation θ∶G → GL1(Zp) such that G = (G , θ) is a 1-smooth pro-p pair. Then Z(G) is the
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unique maximal normal abelian closed subgroup of G, and the quotient G/Z(G) is a
torsion-free pro-p group.

In [28], Ware proved the following result on maximal pro-p Galois groups of fields:
if GK(p) is solvable, then it is locally uniformly powerful, i.e., GK(p) ≃ A⋊Zp , where
A is a free abelian pro-p group, and the right-side factor acts by scalar multiplication
by a unit of Zp (see Section 3.1). We prove that the same property holds also for 1-
smooth pro-p groups.

Theorem 1.2 Let G be a solvable torsion-free pro-p group, endowed with a represen-
tation θ∶G → GL1(Zp) such that G = (G , θ) is a 1-smooth pro-p pair. Then G is locally
uniformly powerful.

This gives a complete description of solvable torsion-free pro-p groups which
may be completed into a 1-smooth pro-p pair. Moreover, Theorem 1.2 settles the
Smoothness Conjecture positively for the class of solvable pro-p groups.

Corollary 1.3 IfG = (G , θ) is a 1-smooth pro-p pair with G solvable, then G is a Bloch–
Kato pro-p group, i.e., the Z/p-cohomology algebra of every closed subgroup of G is
quadratic.

Remark 1.4 After the submission of this paper, Snopce and Tanushevski showed
in [24] that Theorems 1.2–1.1 hold for a wider class of pro-p groups. A pro-p group is
said to be Frattini-injective if distinct finitely generated closed subgroups have distinct
Frattini subgroups (cf. [24, Definition 1.1]). By [24, Theorem 1.11 and Corollary 4.3],
a pro-p group which may complete into a 1-smooth pro-p pair is Frattini-injective.
By [24, Theorem 1.4] a Frattini-injective pro-p group has a unique maximal normal
abelian closed subgroup, and by [24, Theorem 1.3] a Frattini-injective pro-p group is
solvable if, and only if, it is locally uniformly powerful.

A solvable pro-p group does not contain a free nonabelian closed subgroup. For
Bloch–Kato pro-p groups—and thus in particular for maximal pro-p Galois groups
of fields containing a root of unity of order p—Ware proved the following Tits’
alternative: either such a pro-p group contains a free non-abelian closed subgroup;
or it is locally uniformly powerful (see [28, Corollary 1] and [17, Theorem B]). We
conjecture that the same phenomenon occurs for 1-smooth pro-p groups.

Conjecture 1.5 Let G be a torsion-free pro-p group which may be endowed with a
representation θ∶G → GL1(Zp) such that G = (G , θ) is a 1-smooth pro-p pair. Then
either G is locally uniformly powerful, or G contains a closed nonabelian free pro-p group.

2 Cyclotomic pro-p pairs

Henceforth, every subgroup of a pro-p group will be tacitly assumed to be closed, and
the generators of a subgroup will be intended in the topological sense.
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In particular, for a pro-p group G and a positive integer n, G pn
will denote the

closed subgroup of G generated by the pnth powers of all elements of G. Moreover,
for two elements g , h ∈ G, we set

hg = g−1hg , and [h, g] = h−1 ⋅ hg ,

and for two subgroups H1 , H2 of G, [H1 , H2] will denote the closed subgroup of G
generated by all commutators [h, g] with h ∈ H1 and g ∈ H2. In particular, G′ will
denote the commutator subgroup [G , G] of G, and the Frattini subgroup G p ⋅G′ of G
is denoted by Φ(G). Finally, d(G) will denote the minimal number of generatord of
G, i.e., d(G) = dim(G/Φ(G)) as a Z/p-vector space.

2.1 Kummerian pro-p pairs

Let 1 + pZp = {1 + pλ ∣ λ ∈ Zp} ⊆ GL1(Zp) denote the pro-p Sylow subgroup of the
group of units of the ring of p-adic integers Zp . A pair G = (G , θ) consisting of a pro-
p group G and a continuous homomorphism

θ∶G �→ 1 + pZp

is called a cyclotomic pro- p pair, and the morphism θ is called an orientation of G (cf.
[7, Section 3] and [21]).

A cyclotomic pro-p pair G = (G , θ) is said to be torsion-free if Im(θ) is torsion-
free: this is the case if p is odd; or if p = 2 and Im(θ) ⊆ 1 + 4Z2. Observe that
a cyclotomic pro-p pair G = (G , θ) may be torsion-free even if G has nontrivial
torsion—e.g., if G is the cyclic group of order p and θ is constantly equal to 1. Given a
cyclotomic pro-p pair G = (G , θ) one has the following constructions:
(a) if H is a subgroup of G, ResH(G) = (H, θ∣H);
(b) if N is a normal subgroup of G contained in Ker(θ), then θ induces an

orientation θ̄∶G/N → 1 + pZp , and we set G/N = (G/N , θ̄);
(c) if A is an abelian pro-p group, we set A⋊ G = (A⋊G , θ ○ π), with ag = aθ(g)−1

for all a ∈ A, g ∈ G, and π the canonical projection A⋊G → G.
Given a cyclotomic pro-p pairG = (G , θ), the pro-p group G has two distinguished

subgroups:
(a) the subgroup

K(G) = ⟨h−θ(g) ⋅ hg−1
∣ g ∈ G , h ∈ Ker(θ)⟩(2.1)

introduced in [9, Section 3];
(b) the θ-center

Z(G) = ⟨h ∈ Ker(θ) ∣ghg−1 = hθ(g) ∀ g ∈ G ⟩(2.2)

introduced in [17, Section 1].
Both Z(G) and K(G) are normal subgroups of G, and they are contained in Ker(θ).
Moreover, Z(G) is abelian, while

K(G) ⊇ Ker(θ)′ , and K(G) ⊆ Φ(G).
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Thus, the quotient Ker(θ)/K(G) is abelian, and if G is torsion-free one has an
isomorphism of pro-p pairs

G/K(G) ≃ (Ker(θ)/K(G)) ⋊ (G/Ker(θ)),(2.3)

namely, G/K(G) ≃ (Ker(θ)/K(G)) ⋊ (G/Ker(θ)) (where the action is induced by θ,
in the latter), and both pro-p groups are endowed with the orientation induced by θ
(cf. [18, Equation 2.6]).

Definition 2.1 Given a cyclotomic pro-p pair G = (G , θ), let Zp(1) denote the
continuous G-module of rank 1 induced by θ, i.e.,Zp(1) ≃ Zp as abelian pro-p groups,
and g .λ = θ(g) ⋅ λ for every λ ∈ Zp(1). The pair G is said to be Kummerian if for every
n ≥ 1 the map

H1(G ,Zp(1)/pn) �→ H1(G ,Zp(1)/p),(2.4)

induced by the epimorphism of G-modulesZp(1)/pn → Zp(1)/p, is surjective. More-
over, G is 1-smooth if ResH(G) is Kummerian for every subgroup H ⊆ G.

Observe that the action of G onZp(1)/p is trivial, as Im(θ) ⊆ 1 + pZp . We say that a
pro-p group G may complete into a Kummerian, or 1-smooth, pro-p pair if there exists
an orientation θ∶G → 1 + pZp such that the pair (G , θ) is Kummerian, or 1-smooth.

Kummerian pro-p pairs and 1-smooth pro-p pairs were introduced in [9] and in
[5, Section 14] respectively. In [21], if G = (G , θ) is a 1-smooth pro-p pair, the orienta-
tion θ is said to be 1-cyclotomic. Note that in [5, Section 14.1], a pro-p pair is defined
to be 1-smooth if the maps (2.4) are surjective for every open subgroup of G, yet by a
limit argument this implies also that the maps (2.4) are surjective also for every closed
subgroup of G (cf. [21, Corollary 3.2]).

Remark 2.1 Let G = (G , θ) be a cyclotomic pro-p pair. Then G is Kummerian if, and
only if, the map

H1
cts(G ,Zp(1)) �→ H1(G ,Zp(1)/p),

induced by the epimorphism of continuous left G-modules Zp(1) ↠ Zp(1)/p, is sur-
jective (cf. [21, Proposition 2.1])—here H∗cts denotes continuous cochain cohomology
as introduced by Tate in [26].

One has the following group-theoretic characterization of Kummerian torsion-free
pro-p pairs (cf. [9, Theorems 5.6 and 7.1] and [20, Theorem 1.2]).

Proposition 2.2 A torsion-free cyclotomic pro-p pair G = (G , θ) is Kummerian if and
only if Ker(θ)/K(G) is a free abelian pro-p group.

Remark 2.3 LetG = (G , θ) be a cyclotomic pro-p pair with θ ≡ 1, i.e., θ is constantly
equal to 1. Since K(G) = G′ in this case, G is Kummerian if and only if the quotient
G/G′ is torsion-free. Hence, by Proposition 2.2, G is 1-smooth if and only if H/H′
is torsion-free for every subgroup H ⊆ G. Pro-p groups with such property are called
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absolutely torsion-free, and they were introduced by Würfel in [30]. In particular, ifG =
(G , θ) is a 1-smooth pro-p pair (with θ nontrivial), then ResKer(θ)(G) = (Ker(θ), 1)
is again 1-smooth, and thus Ker(θ) is absolutely torsion-free. Hence, a pro-p group
which may complete into a 1-smooth pro-p pair is an absolutely torsion-free-by-cyclic
pro-p group.

Example 2.4 (a) A cyclotomic pro-p pair (G , θ) with G a free pro-p group is 1-
smooth for any orientation θ∶G → 1 + pZp (cf. [21, Section 2.2]).

(b) A cyclotomic pro-p pair (G , θ) with G an infinite Demushkin pro-p group is
1-smooth if and only if θ∶G → 1 + pZp is defined as in [14, Theorem 4] (cf. [9,
Theorem 7.6]). E.g., if G has a minimal presentation

G = ⟨ x1 , . . . , xd ∣ x p f

1 [x1 , x2]⋯[xd−1 , xd] = 1 ⟩

with f ≥ 1 (and f ≥ 2 if p = 2), then θ(x2) = (1 − p f )−1, while θ(x i) = 1 for i ≠ 2.
(c) For p ≠ 2 let G be the pro-p group with minimal presentation

G = ⟨x , y, z ∣ [x , y] = zp⟩.

Then the pro-p pair (G , θ) is not Kummerian for any orientation θ∶G → 1 + pZp
(cf. [9, Theorem 8.1]).

(d) Let

H =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 a c
0 1 b
0 0 1

⎞
⎟
⎠
∣ a, b, c ∈ Zp

⎫⎪⎪⎪⎬⎪⎪⎪⎭

be the Heisenberg pro-p group. The pair (H, 1) is Kummerian, as H/H′ ≃ Z
2
p ,

but H is not absolutely torsion-free. In particular, H can not complete into a
1-smooth pro-p pair (cf. [18, Example 5.4]).

(e) The only 1-smooth pro-p pair (G , θ) with G a finite p-group is the cyclic group
of order 2 G ≃ Z/2, endowed with the only nontrivial orientation θ∶G ↠ {±1} ⊆
1 + 2Z2 (cf. [9, Example 3.5]).

Remark 2.5 By Example 2.4(e), if G = (G , θ) is a torsion-free 1-smooth pro-p pair,
then G is torsion-free.

A torsion-free pro-p pair G = (G , θ) is said to be θ-abelian if the following
equivalent conditions hold:
(i) Ker(θ) is a free abelian pro-p group, and G ≃ Ker(θ) ⋊ (G/Ker(θ));
(ii) Z(G) is a free abelian pro-p group, and Z(G) = Ker(θ);
(iii) G is Kummerian and K(G) = {1}
(cf. [17, Proposition 3.4] and [20, Section 2.3]). Explicitly, a torsion-free pro-p pair
G = (G , θ) is θ-abelian if and only if G has a minimal presentation

G = ⟨x0 , x i , i ∈ I ∣ [x0 , x i] = xq
i , [x i , x j] = 1 ∀ i , j ∈ I⟩ ≃ Z

I
p ⋊Zp(2.5)
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for some set I and some p-power q (possibly q = p∞ = 0), and in this case Im(θ) =
1 + qZp . In particular, a θ-abelian pro-p pair is also 1-smooth, as every open subgroup
U of G is again isomorphic to Z

I
p ⋊Zp , with action induced by θ∣U , and therefore

ResU(G) is θ∣U -abelian.

Remark 2.6 From [9, Theorem 5.6], one may deduce also the following group-
theoretic characterization of Kummerian pro-p pairs: a pro-p group G may complete
into a Kummerian oriented pro-p group if, and only if, there exists an epimorphism
of pro-p groups φ∶G ↠ Ḡ such that Ḡ has a minimal presentation (2.5), and Ker(φ)
is contained in the Frattini subgroup of G (cf., e.g., [22, Proposition 3.11]).

Remark 2.7 If G ≃ Zp , then the pair (G , θ) is θ-abelian, and thus also 1-smooth, for
any orientation θ∶G → 1 + pZp .

On the other hand, if G = (G , θ) is a θ-abelian pro-p pair with d(G) ≥ 2, then θ
is the only orientation which may complete G into a 1-smooth pro-p pair. Indeed,
let G′ = (G , θ′) be a cyclotomic pro-p pair, with θ′∶G → 1 + pZp different to θ, and
let {x0 , x i , i ∈ I} be a minimal generating set of G as in the presentation (2.5)—thus,
θ(x i) = 1 for all i ∈ I, and θ(x0) ∈ 1 + qZp . Then for some i ∈ I one has θ′∣H /≡ θ∣H ,
with H the subgroup of G generated by the two elements x0 and x i . In particular, one
has θ([x0 , x i]) = θ′([x0 , x i]) = 1.

Suppose that G′ is 1-smooth. If θ′(x i) ≠ 1, then

xq
i = x i ⋅ xq

i ⋅ x
−1
i = (xq

i )
θ′(x i) = xqθ′(x i)

i ,

hence xq(1−θ′(x i))
i = 1, a contradiction as G is torsion-free by Remark 2.5. If θ′(x i) = 1

then necessarily θ′(x0) ≠ θ(x0), and thus

xθ(x0)
i = x0 ⋅ x i ⋅ x−1

0 = xθ′(x0)
i ,

hence xθ(x0)−θ′(x0)
i = 1, again a contradiction as G is torsion-free. (See also [21,

Corollary 3.4].)

2.2 The Galois case

Let K be a field containing a root of 1 of order p, and let μp∞ denote the group of roots
of 1 of order a p-power contained in the separable closure of K. Then μp∞ ⊆ K(p),
and the action of the maximal pro-p Galois group GK(p) = Gal(K(p)/K) on μp∞

induces a continuous homomorphism

θK∶GK(p) �→ 1 + pZp

—called the pro- p cyclotomic character of GK(p)—as the group of the automorphisms
of μp∞ which fix the roots of order p is isomorphic to 1 + pZp (see, e.g., [8, p. 202]
and [9, Section 4]). In particular, if K contains a root of 1 of order pk for k ≥ 1, then
Im(θK) ⊆ 1 + pk

Zp .
Set GK = (GK(p), θK). Then by Kummer theory one has the following (see, e.g.,

[9, Theorem 4.2]).
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Theorem 2.8 LetK be a field containing a root of 1 of order p. ThenGK = (GK(p), θK)
is 1-smooth.

1-smooth pro-p pairs share the following properties with maximal pro-p Galois
groups of fields.

Example 2.9 (a) The only finite p-group which occurs as maximal pro-p Galois
group for some field K is the cyclic group of order 2, and this follows from the
pro-p version of the Artin–Schreier Theorem (cf. [1]). Likewise, the only finite
p-group which may complete into a 1-smooth pro-p pair, is the cyclic group of
order 2 (endowed with the only nontrivial orientation onto {±1}), as it follows
from Example 2.4(e) and Remark 2.5.

(b) If x is an element of GK(2) for some field K and x has order 2, then x self-
centralizes (cf. [4, Proposition 2.3]). Likewise, if x is an element of a pro- 2 group
G which may complete into a 1-smooth pro-2 pair, then x self-centralizes (cf. [21,
Section 6.1]).

2.3 Bloch–Kato and the Smoothness Conjecture

A non-negatively graded algebra A● = ⊕n≥0 An over a field F, with A0 = F, is called
a quadratic algebra if it is one-generated—i.e., every element is a combination of
products of elements of degree 1—and its relations are generated by homogeneous
relations of degree 2. One has the following definitions (cf. [5, Definition 14.21] and
[17, Section 1]).

Definition 2.2 Let G be a pro-p group, and let n ≥ 1. Cohomology classes in the
image of the natural cup-product

H1(G ,Z/p) × . . . × H1(G ,Z/p) ∪�→ Hn(G ,Z/p)

are called symbols (relative to Z/p, wieved as trivial G-module).
(i) If for every open subgroup U ⊆ G every element α ∈ Hn(U ,Z/p), for every n ≥

1, can be written as

α = corn
V1 ,U(α1) +⋯ + corn

Vr ,U(αr),

with r ≥ 1, where α i ∈ Hn(Vi ,Z/p) is a symbol and

corn
Vi ,U ∶Hn(Vi ,Z/p) �→ Hn(U ,Z/p)

is the corestriction map (cf. [16, Chapter I, Section 5]), for some open subgroups
Vi ⊆ U , then G is called a weakly Bloch–Kato pro- p group.

(ii) If for every closed subgroup H ⊆ G the Z/p-cohomology algebra

H●(H,Z/p) = ⊕
n≥0

Hn(H,Z/p),
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endowed with the cup-product, is a quadratic algebra over Z/p, then G is called
a Bloch–Kato pro- p group. As the name suggests, a Bloch–Kato pro-p group is
also weakly Bloch-Kato.

By the Norm Residue Theorem, if K contains a root of unity of order p, then
the maximal pro-p Galois group GK(p) is Bloch–Kato. The pro-p version of the
“Smoothness Conjecture,” formulated by De Clerq and Florence, states that being 1-
smooth is a sufficient condition for a pro-p group to be weakly Bloch–Kato (cf. [5,
Conjugation 14.25]).

Conjecture 2.10 Let G = (G , θ) be a 1-smooth pro-p pair. Then G is weakly Bloch–
Kato.

In the case ofG = GK for some fieldK containing a root of 1 of order p, using Milnor
K-theory one may show that the weak Bloch–Kato condition implies that H●(G ,Z/p)
is one-generated (cf. [5, Rem. 14.26]). In view of Theorem 2.8, a positive answer to the
Smoothness Conjecture would provide a new proof of the surjectivity of the norm
residue isomorphism, i.e., the “surjectivity” half of the Bloch–Kato conjecture (cf. [5,
Section 1.1]).

Conjecture 2.10 has been settled positively for the following classes of pro-p groups.
(a) Finite p-groups: indeed, if G = (G , θ) is a 1-smooth pro-p pair with G a finite

(nontrivial) p-group, then by Example 2.4–(e) p = 2, G is a cyclic group of order
two and θ∶G ↠ {±1}, so that G ≃ (Gal(C/R), θR), and G is Bloch–Kato.

(b) Analytic pro-p groups: indeed if G = (G , θ) is a 1-smooth pro-p pair with G a
p-adic analytic pro-p group, then by [18, Theorem 1.1] G is locally uniformly
powerful and thus Bloch–Kato (see §3.1 below).

(c) Pro-p completions of right-angled Artin groups: indeed, in [25], it is shown that
if G = (G , θ) is a 1-smooth pro-p pair with G the pro-p completion of a right-
angled Artin group induced by a simplicial graph �, then necessarily θ is trivial
and � has the diagonal property—namely, G may be constructed starting from
free pro-p groups by iterating the following two operations: free pro-p products,
and direct products with Zp—and thus G is Bloch–Kato (cf. [25, Theorem 1.2]).

3 Normal abelian subgroups

3.1 Powerful pro-p groups

Definition 3.1 A finitely generated pro-p group G is said to be powerful if one has
G′ ⊆ G p , and also G′ ⊆ G4 if p = 2. A powerful pro-p group which is also torsion-free
and finitely generated is called a uniformly powerful pro-p group.

For the properties of powerful and uniformly powerful pro-p groups, we refer to
[6, Chapter 4].

A pro-p group whose finitely generated subgroups are uniformly powerful, is said
to be locally uniformly powerful. As mentioned in Section 1, a pro-p group G is locally
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uniformly powerful if, and only if, G has a minimal presentation (2.5)—i.e., G is locally
powerful if, and only if, there exists an orientation θ∶G → 1 + pZp such that (G , θ) is
a torsion-free θ-abelian pro-p pair (cf. [17, Theorem A] and [3, Proposition 3.5]).

Therefore, a locally uniformly powerful pro-p group G comes endowed automati-
cally with an orientation θ∶G → 1 + pZp such thatG = (G , θ) is a 1-smooth pro-p pair.
In fact, finitely generated locally uniformly powerful pro-p groups are precisely those
uniformly powerful pro-p groups which may complete into a 1-smooth pro-p pair (cf.
[18, Proposition 4.3]).

Proposition 3.1 Let G = (G , θ) be a 1-smooth torsion-free pro-p pair. If G is locally
powerful, then G is θ-abelian, and thus G is locally uniformly powerful.

It is well-known that theZ/p-cohomology algebra of a pro-p group G with minimal
presentation (2.5) is the exterior Z/p-algebra

H●(H,Z/p) ≃ ⋀
n≥0

H1(H,Z/p)

—if p = 2 then ⋀n≥0 V is defined to be the quotient of the tensor algebra over Z/p
generated by V by the two-sided ideal generated by the elements v ⊗ v, v ∈ V—so that
H●(G ,Z/p) is quadratic. Moreover, every subgroup H ⊆ G is again locally uniformly
powerful, and thus also H●(H,Z/p) is quadratic. Hence, a locally uniformly powerful
pro-p group is Bloch–Kato.

3.2 Normal abelian subgroups of maximal pro-p Galois groups

Let K be a field containing a root of 1 of order p (and also
√
−1 if p = 2). In Galois

theory, one has the following result, due to Engler et al. (cf. [11] and [10]).

Theorem 3.2 Let K be a field containing a root of 1 of order p (and also
√
−1 if p = 2),

and suppose that the maximal pro-p Galois group GK(p) of K is not isomorphic to Zp .
Then GK(p) contains a unique maximal abelian normal subgroup.

By [21, Theorem 7.7], such a maximal abelian normal subgroup coincides
with the θK-center Z(GK) of the pro-p pair GK = (GK(p), θK) induced by the
pro-p cyclotomic character θK (cf. §2.2). Moreover, the field K admits a p-Henselian
valuation with residue characteristic not p and non-p-divisible value group, such
that the residue field κ of such a valuation gives rise to the cyclotomic pro-p pair Gκ

isomorphic to GK/Z(GK), and the induced short exact sequence of pro-p groups

{1} �� Z(GK) �� GK(p) �� Gκ(p) �� {1}(3.1)

splits (cf. [10, Section 1] and [8, Example 22.1.6]—for the definitions related to
p-henselian valuations of fields, we direct the reader to [8, Section 15.3]). In particular,
GK(p)/Z(GK) is torsion-free.

Remark 3.3 By [21, Theorems 1.2 and 7.7], Theorem 3.2 and the splitting of (3.1)
generalize to 1-smooth pro-p pairs whose underlying pro-p group is Bloch–Kato.
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Namely, if G = (G , θ) is a 1-smooth pro-p pair with G a Bloch–Kato pro-p group, then
Z(G) is the unique maximal abelian normal subgroup of G, and it has a complement
in G.

3.3 Proof of Theorem 1.1

In order to prove Theorem 1.1 (and also Theorem 1.2 later on), we need the following
result.

Proposition 3.4 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair, with d(G) = 2
and G = ⟨x , y⟩. If [[x , y], y] = 1, then Ker(θ) = ⟨y⟩ and

x yx−1 = yθ(x).

Proof Let H be the subgroup of G generated by y and [x , y]. Recall that by Remark
2.5, G (and hence also H) is torsion-free.

If d(H) = 1 then H ≃ Zp , as H is torsion-free. Moreover, H is generated by y and
x−1 yx, and thus xHx−1 ⊆ H. Therefore, x acts on H ≃ Zp by multiplication by 1 + pλ
for some λ ∈ Zp . If λ = 0 then G is abelian, and thus G ≃ Z

2
p as it is absolutely torsion-

free, and θ ≡ 1 by Remark 2.7. If λ ≠ 0 then x acts nontrivially on the elements of H,
and thus ⟨x⟩ ∩ H = {1} and G = H ⋊ ⟨x⟩: by (2.5), (G , θ′) is a θ′-abelian pro-p pair,
with θ′∶G → 1 + pZp defined by θ′(x) = 1 + pλ and θ′(y) = 1. By Remark 2.7, one has
θ′ ≡ θ, and thus θ(x) = 1 + pλ and θ(y) = 1.

If d(H) = 2, then H is abelian by hypothesis, and torsion-free, and thus (H, θ′) is
θ′-abelian, with θ′ ≡ 1∶H → 1 + pZp trivial. By Remark 2.7, one has θ′ = θ∣H , and thus
y, [x , y] ∈ Ker(θ). Now put z = [x , y] and t = yp , and let U be the open subgroup of G
generated by x , z, t. Clearly, ResU(G) is again 1-smooth. By hypothesis one has z y = z,
and hence commutator calculus yields

[x , t] = [x , yp] = z ⋅ z y⋯z y p−1
= zp .(3.2)

Put λ = 1 − θ(x)−1 ∈ pZp . Since t ∈ Ker(θ), by (2.1) [x , t] ⋅ t−λ lies in K(ResU(G)).
Since t and z commute, from (3.2) one deduces

[x , t]t−λ = zp t−λ = zp t−
λ
p p = (zt−λ/p)p ∈ K(ResU(G)).(3.3)

Moreover, zt−λ/p ∈ Ker(θ∣U). Since ResU(G) is 1-smooth, by Proposition 2.2, the
quotient Ker(θ∣U)/K(ResU(G)) is a free abelian pro-p group, and therefore (3.3)
implies that also zt−λ/p is an element of K(ResU(G)).

Since K(ResU(G)) ⊆ Φ(U), one has z ≡ tλ/p mod Φ(U). Then by [6, Proposi-
tion 1.9] d(U) = 2 and U is generated by x and t. Since [x , t] ∈ U p by (3.2), the
pro-p group U is powerful. Therefore, ResU(G) is θ∣U -abelian by Proposition 3.1. In
particular, the subgroup K(ResU(G)) is trivial, and thus

[x , y] = z = tλ/p = y1−θ(x)−1
,

and the claim follows. ∎
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Proposition 3.4 is a generalization of [18, Proposition 5.6].

Theorem 3.5 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair, with d(G) ≥ 2.
(i) The θ-center Z(G) is the unique maximal abelian normal subgroup of G.
(ii) The quotient G/Z(G) is a torsion-free pro-p group.

Proof Recall that G is torsion-free by Remark 2.5. Since Z(G) is an abelian normal
subgroup of G by definition, in order to prove (i) we need to show that if A is an abelian
normal subgroup of G, then A ⊆ Z(G).

First, we show that A ⊆ Ker(θ). If A ≃ Zp , let y be a generator of A. For every x ∈ G
one has x yx−1 ∈ A, and thus x yx−1 = yλ , for some λ ∈ 1 + pZp . Let H be the subgroup
of G generated by x and y, for some x ∈ G such that d(H) = 2. Then the pair (H, θ′)
is θ′-abelian for some orientation θ′∶H → 1 + pZp such that y ∈ Ker(θ′), as H has a
presentation as in (2.5). Since both ResH(G) and (H, θ′) are 1-smooth pro-p pairs, by
Remark 2.7, one has θ′ = θ∣H , and thus A ⊆ Ker(θ).

If A /≃ Zp , then A is a free abelian pro-p group with d(A) ≥ 2, as G is torsion-free.
Therefore, by Remark 2.3 the pro-p pair (A, 1) is 1-smooth. Since also ResA(G) is 1-
smooth, Remark 2.7 implies that θ∣A = 1, and hence A ⊆ Ker(θ).

Now, for arbitrary elements x ∈ G and y ∈ A, put z = [x , y]. Since A is normal in G,
one has z ∈ A, and since A is abelian, one has [z, y] = 1. Then Proposition 3.4 applied
to the subgroup of G generated by {x , y} yields x yx−1 = xθ(x), and this completes the
proof of statement (i).

In order to prove statement (ii), suppose that yp ∈ Z(G) for some y ∈ G. Then yp ∈
Ker(θ), and since Im(θ) has no nontrivial torsion, also y lies in Ker(θ). Since G is
torsion-free by Remark 2.5, yp ≠ 1. Let H be the subgroup of G generated by y and
x, for some x ∈ G such that d(H) ≥ 2. Since x ypx−1 = (yp)θ(x), commutator calculus
yields

yp(1−θ(x)−1) = [x , yp] = [x , y] ⋅ [x , y]y⋯[x , y]y p−1
.(3.4)

Put z = [x , y], and let S be the subgroup of H generated by y, z. Clearly, ResS(G) is 1-
smooth, and since y, z ∈ Ker(θ), one has θ∣S = 1, and thus S/S′ is a free abelian pro-p
group by Remark 2.3. From (3.4) one deduces

yp(1−θ(x)−1) ⋅ z−p ≡ (y1−θ(x)−1
⋅ z−1)

p
≡ 1 mod S′ .(3.5)

Since S/S′ is torsion-free, (3.5) implies that z ≡ y1−θ(x)−1
mod Φ(S), so that S is

generated by y, and S ≃ Zp , as G is torsion-free. Therefore, S′ = {1}, and (3.5) yields
[x , y] = y1−θ(x)−1

, and this completes the proof of statement (ii). ∎

Remark 3.6 Let G be a pro-p group isomorphic to Zp , and let θ∶G → 1 + pZp be
a nontrivial orientation. Then by Example 2.4(a), G = (G , θ) is 1-smooth. Since G is
abelian and θ(x) ≠ 1 for every x ∈ G, x ≠ 1, Z(G) = {1}, still every subgroup of G is
normal and abelian.
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In view of the splitting of (3.1) (and in view of Remark 3.3), it seems natural to ask
the following question.

Question 3.7 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair, with d(G) ≥ 2. Is
the pro-p pair G/Z(G) = (G/Z(G), θ̄) 1-smooth? Does the short exact sequence of pro-p
groups

{1} �� Z(G) �� G �� G/Z(G) �� {1}

split?

If G = (G , θ) is a torsion-free pro-p pair, then either Ker(θ) = G, or Im(θ) ≃ Zp ,
hence in the former case one has G ≃ Ker(θ) ⋊ (G/Ker(θ)), as the right-side factor is
isomorphic toZp , and thus p-projective (cf. [16, Chapter III, Section 5]). Since Z(G) ⊆
Z(Ker(θ)) (and Z(G) = Z(G) if Ker(θ) = G), and since Ker(θ) is absolutely torsion-
free if G is 1-smooth, Question 3.7 is equivalent to the following question (of its own
group-theoretic interest): if G is an absolutely torsion-free pro-p group, does G split
as direct product

G ≃ Z(G) × (G/Z(G)) ?

One has the following partial answer (cf. [30, Proposition 5]): if G is absolutely
torsion-free, and Z(G) is finitely generated, then Φn(G) = Z(Φn(G)) × H, for some
n ≥ 1 and some subgroup H ⊆ Φn(G) (here Φn(G) denotes the iterated Frattini series
of G, i.e., Φ1(G) = G and Φn+1(G) = Φ(Φn(G)) for n ≥ 1).

4 Solvable pro-p groups

4.1 Solvable pro-p groups and maximal pro-p Galois groups

Recall that a (pro-p) group G is said to be meta-abelian if there is a short exact
sequence

{1} �� N �� G �� Ḡ �� {1}

such that both N and Ḡ are abelian; or, equivalently, if the commutator subgroup G′
is abelian. Moreover, a pro-p group G is solvable if the derived series (G(n))n≥1 of
G—i.e., G(1) = G and G(n+1) = [G(n) , G(n)]—is finite, namely G(N+1) = {1} for some
finite N.

Example 4.1 A nonabelian locally uniformly powerful pro-p group G is meta-
abelian: if θ∶G → 1 + pZp is the associated orientation, then G′ ⊆ Ker(θ)p , and thus
G′ is abelian.

In Galois theory, one has the following result by Ware (cf. [28, Theorem 3], see also
[13] and [17, Theorem 4.6]).
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Theorem 4.2 Let K be a field containing a root of 1 of order p (and also
√
−1 if p = 2).

If the maximal pro-p Galois group GK(p) is solvable, then GK is θK-abelian.

4.2 Proof of Theorem 1.2 and Corollary 1.3

In order to prove Theorem 1.2, we prove first the following intermediate results—
a consequence of Würfel’s result [30, Proposition 2] —, which may be seen as the
“1-smooth analogue” of [28, Theorem 2].

Proposition 4.3 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair. If G is meta-
abelian, then G is θ-abelian.

Proof Assume first that θ ≡ 1—i.e., G is absolutely torsion-free (cf. Remark 2.3).
Then G is a free abelian pro-p group by [30, Proposition 2].

Assume now that θ /≡ 1. Since G is 1-smooth, also ResKer(θ)(G) and ResKer(θ)′(G)
are 1-smooth pro-p pairs, and thus Ker(θ) and Ker(θ)′ are absolutely torsion-free.
Moreover, Ker(θ)′ ⊆ G′, and since the latter is abelian, also Ker(θ)′ is abelian, i.e.,
Ker(θ) is meta-abelian. Thus Ker(θ) is a free abelian pro-p group by [30, Proposi-
tion 2]. Consequently, for arbitrary y ∈ Ker(θ) and x ∈ G, the commutator [x , y] lies
in Ker(θ) and [[x , y], y] = 1. Therefore, Proposition 3.4 implies that x yx−1 = yθ(y)

for every x ∈ G and y ∈ Ker(θ), namely, G is θ-abelian. ∎

Note that Proposition 4.3 generalizes [30, Proposition 2] from absolutely torsion-
free pro-p groups to 1-smooth pro-p groups. From Proposition 4.3, we may deduce
Theorem 1.2.

Proposition 4.4 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair. If G is solvable,
then G is locally uniformly powerful.

Proof Let N be the positive integer such that G(N) ≠ {1} and G(N+1) = {1}. Then
for every 1 ≤ n ≤ N , the pro-p pair ResG n(G) is 1-smooth, and G(n) is solvable, and
moreover θ∣G(n) ≡ 1 if n ≥ 2.

Suppose that N ≥ 3. Since G(N−1) is meta-abelian and θ∣G(N−1) ≡ 1, Proposition
4.3 implies that G(N−1) is a free abelian pro-p group, and therefore G(N) = {1},
a contradiction. Thus, N ≤ 2, and G is meta-abelian. Therefore, Proposition 4.3
implies that the pro-p pair G is θ-abelian, and hence G is locally uniformly powerful
(cf. §3.1). ∎

Proposition 4.4 may be seen as the 1-smooth analogue of Ware’s Theorem 4.2.
Corollary 1.3 follows from Proposition 4.4 and from the fact that a locally uniformly
powerful pro-p group is Bloch–Kato (cf. §3.1).

Corollary 4.5 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair. If G is solvable,
then G is Bloch–Kato.

This settles the Smoothness Conjecture for the class of solvable pro-p groups.
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4.3 A Tits’ alternative for 1-smooth pro-p groups

For maximal pro-p Galois groups of fields one has the following Tits’ alternative (cf.
[28, Corollary 1]).

Theorem 4.6 Let K be a field containing a root of 1 of order p (and also
√
−1 if p = 2).

Then either GK is θK-abelian, or GK(p) contains a closed nonabelian free pro-p group.

Actually, the above Tits’ alternative holds also for the class of Bloch–Kato pro-
p groups, with p odd: if a Bloch–Kato pro-p group G does not contain any free
nonabelian subgroups, then it can complete into a θ-abelian pro-p pair G = (G , θ)
(cf. [17, Theorem B], this Tits’ alternative holds also for p = 2 under the further
assumption that the Bockstein morphism β∶H1(G ,Z/2) → H2(G ,Z/2) is trivial, see
[17, Theorem 4.11]).

Clearly, a solvable pro-p group contains no free nonabelian subgroups.
A pro-p group is p-adic analytic if it is a p-adic analytic manifold and the map

(x , y) ↦ x−1 y is analytic, or, equivalently, if it contains an open uniformly powerful
subgroup (cf. [6, Theorem 8.32])—e.g., the Heisenberg pro-p group is analytic.
Similarly to solvable pro-p groups, a p-adic analytic pro-p group does not contain
a free nonabelian subgroup (cf. [6, Corollary 8.34]).

Even if there are several p-adic analytic pro-p groups which are solvable (e.g.,
finitely generated locally uniformly powerful pro-p groups), none of these two classes
of pro-p groups contains the other one: e.g.,

(a) the wreath product Zp ≀Zp ≃ Z
Zp
p ⋊Zp is a meta-abelian pro-p group, but it is

not p-adic analytic (cf. [23]) and
(b) if G is a pro-p-Sylow subgroup of SL2(Zp), then G is a p-adic analytic pro-p

group, but it is not solvable.
In addition, it is well-known that also for the class of pro-p completions of right-

angled Artin pro-p groups one has a Tits’ alternative: the pro-p completion of a right-
angled Artin pro-p group contains a free nonabelian subgroup unless it is a free
abelian pro-p group (i.e., unless the associated graph is complete)—and thus it is
locally uniformly powerful.

In [18], it is shown that analytic pro-p groups which may complete into a 1-smooth
pro-p pair are locally uniformly powerful. Therefore, after the results in [18] and [25],
and Theorem 1.2, it is natural to ask whether a Tits’ alternative, analogous to Theorem
4.6 (and its generalization to Bloch–Kato pro-p groups), holds also for all torsion-free
1-smooth pro-p pairs.

Question 4.7 Let G = (G , θ) be a torsion-free 1-smooth pro-p pair, and suppose that
G is not θ-abelian. Does G contain a closed nonabelian free pro-p group?

In other words, we are asking whether there exists torsion-free 1-smooth pro-
p pairs G = (G , θ) such that G is not analytic nor solvable, and yet it contains no
free nonabelian subgroups. In view of Theorem 4.6 and of the Tits’ alternative for
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Bloch–Kato pro-p groups [17, Theorem B], a positive answer to Question 4.7 would
corroborate the Smoothness Conjecture.

Observe that—analogously to Question 3.7—Question 4.7 is equivalent to asking
whether an absolutely torsion-free pro-p group which is not abelian contains a
closed nonabelian free subgroup. Indeed, by Proposition 3.4 (in fact, just by [18,
Proposition 5.6]), if G = (G , θ) is a torsion-free 1-smooth pro-p pair and Ker(θ) is
abelian, then G is θ-abelian.
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