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In convergent geometry, the effect of convergence and compression on the Rayleigh–Taylor
instability (RTI) and Richtmyer–Meshkov instability (RMI) modifies the growth rate and
behaviour of the instabilities. In order to better understand how compression/expansion
caused by axial strain rates (i.e. strain rates normal to the interface) change the instability
dynamics, axial strain rates are applied to RMI in planar geometry, isolated from the effects
of convergence. Potential flow theory for the linear regime shows the growth rate of the
instability is modified to include the background velocity difference of the instability’s
width. Resolved two-dimensional simulations of single-mode RMI showed the potential
flow model is accurate whilst the amplitude is small compared with the wavelength.
The application of strain rate to an RMI-induced mixing layer was investigated using
three-dimensional implicit large eddy simulations (ILES) of the quarter-scale θ -group
case by Thornber et al. (Phys. Fluids, vol. 29, 2017, 105107). Whilst the background strain
rate contributed to the mixing layer’s growth, it was to a smaller extent than expected.
The shear production of axial turbulent kinetic energy from the strain rate modified the
rate of bulk entrainment, affecting the mixing layer’s growth and mixedness, such that
the strained simulations no longer attained the same self-similar state. The capability of
the buoyancy-drag model by Youngs & Thornber (Physica D, vol. 410, 2020, 132517) to
predict the mixing layer width was investigated, using a model calibrated to the unstrained
case. New terms were introduced into the buoyancy-drag model, which correspond to the
shear production of turbulent kinetic energy.

Key words: compressible turbulence, turbulence modelling, turbulent mixing

† Email address for correspondence: bradley.pascoe@sydney.edu.au

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 999 A5-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:bradley.pascoe@sydney.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.832&domain=pdf
https://doi.org/10.1017/jfm.2024.832


B. Pascoe, M. Groom, D.L. Youngs and B. Thornber

1. Introduction

The Richtmyer–Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969) is commonly
described as the impulsive limit of the Rayleigh–Taylor instability (RTI) (Rayleigh 1882;
Taylor 1950). At a fluid interface of different densities, RTI will occur when there is an
acceleration or potential force causing the lighter fluid to be a higher pressure than the
heavier fluid. At a corrugated interface, the misalignment of the density and pressure
gradients will deposit vorticity which will cause the interface perturbations to grow.
RMI is similar except it is caused by an impulsive acceleration, such as shock wave
passing through the interface, as opposed to a continual acceleration. Unlike RTI which
is dependent upon acceleration direction, RMI is unstable whether it is heavy-to-light
or light-to-heavy acceleration. Alongside the Kelvin–Helmholtz instability which applies
to sheared interface layers and helps play a role in the transition to turbulence for
RMI and RTI, these instabilities are collectively known as hydrodynamic instabilities.
These instabilities play a role in the dynamics of supernova stars (Arnett 2000) and are
responsible for a degradation of the performance in inertial confinement fusion (ICF)
(Lindl et al. 2014).

In the linear limit, where amplitudes of sinusoidal perturbations are small compared
with their wavelength, RMI will grow with a constant velocity (Richtmyer 1960; Meyer &
Blewett 1972; Vandenboomgaerde, Mügler & Gauthier 1998). Eventually the amplitudes
saturate, decreasing the growth rate. Asymmetries in the mixing layer begin to form,
developing into bubble and spike structures, representing the penetration of the light
fluid and heavy fluid into one another, respectively. The structures begin to roll-up due to
the shearing motion across the interface which induces the Kelvin–Helmholtz instability
(Brouillette 2002). The mixing layer between the two fluids will develop into a turbulent
mixing zone of some width. The mixing layer width in late time RMI is governed by a
sub-linear power-law formula, W ∼ tθ . The value of θ is dependent upon initial conditions
(Thornber et al. 2010; Groom & Thornber 2020), and Atwood number (At) (Youngs &
Thornber 2020a), where the Atwood number is a measure of the density ratio of the two
fluids,

At = ρ2 − ρ1

ρ2 + ρ1
. (1.1)

The bubbles and spike heights also grow according to θ and achieve a self-similar ratio
(Youngs & Thornber 2020a). Experimentally, this is hard to observe as in the early time
the heights will grow at different rates (Dimonte & Schneider 2000; Groom & Thornber
2023). A detailed review of RMI can be found in the works of Zhou (2017a,b) and Zhou
et al. (2021).

Whilst most commonly analysed in planar or non-convergent geometry, it is notable
that in applications such as ICF and supernova the geometry is spherical. It is of interest
then to analyse these instabilities in convergent geometry, a term used to encompass both
cylindrical and spherical geometries. Some of the first research into the effects of the
convergent geometry on the linear regime were done by Bell (1951) and Plesset (1954).
The model of Bell (1951) allowed for uniform compressibility, but was limited to At = 1,
whilst the model of Plesset (1954) was incompressible but for all Atwood numbers.
Epstein (2004) combined and recast the equations to derive model equations for convergent
geometry which is suitable for all Atwood numbers and uniform compression. The model
showed dependence upon two fluid parameters, the compression rate of the fluid, ρ̇/ρ,
and the convergence rate of the mean interface radius, Ṙ/R. The additional dependence
upon these parameters modifies the growth rate of RMI and RTI in convergent geometry
as compared with planar geometry.
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Impact of axial strain on turbulent mixing layers

There have been many experimental set-ups that have been able to create RMI in either
a converging or diverging geometry. Cylindrically converging shocks have been produced
in annular vertical coaxial shock tubes to analyse RMI (Hosseini, Ogawa & Takayama
2000), for both single-mode perturbations (Lei et al. 2017) as well as polygonal shapes
(Si et al. 2015). Dimotakis & Samtaney (2006) used a gas lens technique to convert a
planar shock to a converging cylindrical shock, which has been applied to investigating
single-mode RMI (Biamino et al. 2015). This method has been extended to create a
converging spherical shock wave (Brasseur et al. 2021). An alternate approach has been
to design the curvature of the shock tube to create a convergent shock wave (Zhai et al.
2010), which has been used to study single-mode interfaces (Luo et al. 2018). Luo et al.
(2019) modified the design so that the transmitted shock exits through the tube as a planar
wave, preventing re-shock and interface deceleration. Divergent cylindrical shock wave
are also possible with this approach and have been applied to single-mode interfaces (Li
et al. 2020), as well as a two interface system with a single-mode perturbation of the inner
interface (Zhang et al. 2023). Musci et al. (2020) utilised detonations to create repeatable
blast waves and investigated the blast-driven instability, a mixture of RMI and RTI, on a
multi-mode interface in cylindrical geometry.

Simulations have been the prominent method to examine multi-mode convergent
geometries, as well as to analyse to a later non-dimensional time. Many simulations
utilise a Cartesian mesh to simulate the spherical or cylindrical geometries, however
the mesh topology can affect the numerics of the simulation. Investigations into the
impacts of using Cartesian geometry have been conducted by Joggerst et al. (2014) and
Woodward et al. (2013), showing that increasing the Cartesian mesh resolution can reduce
the symmetry breaking in implicit large eddy simulations (ILES), however these cases
still observe a mesh imprint on the small-scale mixing. A common approach to modelling
implosions is to simulate a system with an external time-varying high-pressure region to
help drive the implosion (Youngs & Williams 2008), and this has been applied to spherical
two-dimensional (2-D) single-mode (Flaig et al. 2018) as well as three-dimensional (3-D)
multi-mode simulations (El Rafei & Thornber 2020). Bell–Plesset models are able to
describe the initial growth, with accuracy decreasing once the modes begin to saturate
(El Rafei et al. 2019). Lombardini, Pullin & Meiron (2014) used a Bell–Plesset model for a
3-D spherical implosion with a Cartesian mesh, and separates the effects into three terms:
Rayleigh–Taylor/Richtmyer–Meshkov-like, convergence and compression contributions.
Of these contributions, convergence was found to have had the smallest contribution,
followed by compression.

In convergent geometry the instability growth is modified by both radial (axial) strain
rate and angular (transverse) strain rate and these effects are taken into account in the
Bell–Plesset linear perturbation theory. In planar shock tube experiments, RMI and RTI
may be influenced by compression/expansion of the mixing zone due to axial strain
rates from transient waves (Vetter & Sturtevant 1995; Li et al. 2019, 2021). For the bulk
overturning motion seen in the RTI tilted-rig case (Read 1984; Youngs 1989; Andrews
et al. 2014; Ferguson, Wang & Morgan 2023) the interface is stretched in the transverse
direction and thinned in the axial direction. The absence of a persevering mean strain
rate normal to the interface is one of the key differences between planar RMI and
converging RMI. Simulations have been performed on RMI in cylindrical geometry
which show that the velocity difference between the edges of the mixing layer, labelled
the stretching/compression effect, is a significant contributor to the growth rate of the
instability (Ge et al. 2020, 2022). An analysis of the mean mass fraction profile by Ge et al.
(2022) shows that a mixing layer’s width will grow due to three contributions: the velocity
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difference across the mixing layer, the turbulent/penetrative growth from the fluctuating
field and molecular diffusion of the fluids.

In general multi-dimensional compressible flows, Richtmyer–Meshkov/Rayleigh–Taylor
mixing layers are influenced by both axial and transverse strain rates. The purpose of
the present paper is to focus on the effect of axial strain rate and study this in detail
for simple test cases. This is performed by conducting simulations of planar geometry
RMI-induced mixing layers with an applied mean axial strain rate. By isolating the axial
strain rate, the geometric convergence component of the Bell–Plesset effect is removed.
In convergent geometry the radial and angular strain rates are not easily decoupled. This
planar configuration is therefore unique in its ability to be able to isolate the effect of a
mean strain rate normal to the interface and determine how it affects the development of
RMI and the transition to a self-similar mixing layer. This method may also be employed
to investigate the effects of convergence on the mixing layer by applying a transverse strain
rate, however that topic is outside the scope of the current paper.

In § 2 the method used to apply a uniform axial strain rate to the simulation is outlined,
as well as the governing equations utilised. Section 3 analyses the linear regime of a 2-D
single-mode instability using resolved numerical simulations, and compares the results
with the corresponding linear potential flow model. Section 4 looks at strained ILES
of multi-modal narrowband RMI, and assesses the ability of a buoyancy-drag model
to capture the growth rate. In § 5 the main conclusions of the paper are presented,
summarising the ability of the different models to predict the effects of a mean axial strain
rate on RMI.

2. Problem formulation

2.1. Axial strain rate
In order to evaluate the effects of axial strain on the growth of the instability, two different
strain-rate profiles are utilised in a planar configuration. Both strain-rate profiles ensure a
linear mean axial velocity profile through time, given by

ū1(x, t) = S̄(t)x1, (2.1)

where S̄(t) = ∂ ū1/∂x1 is the mean strain rate of the background flow, which is designed to
be uniform through the domain at a given time. By convention here, positive S̄ represents
expansion. The expansion factor, which represents the ratio of the domain length at time t
to the original domain length in the axial direction is given by

Λ(t) = exp
[∫ t

0
S̄(t′) dt′

]
. (2.2)

In an expansion or compression process the mass within the strained domain should be
conserved. If the process is isentropic, with negligible dissipative heating, then the density
and pressure can be calculated using the expansion factor in (2.2) (Durbin & Zeman 1992):

ρ(t) = ρ0Λ
−1(t), (2.3a)

p(t) = p0Λ
−γ (t). (2.3b)

For two different fluids in a strained domain, the fluid densities will change at the same
rate, maintaining the density ratio and Atwood number, as long as the fluids have the
same specific heat ratio, γ . If the specific heat ratios are different, the pressure of the
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two fluids will be different, generating waves and causing one fluid to compress and the
other to expand to achieve a pressure equilibrium. A uniform pressure profile is important
to avoid any unnecessary Rayleigh–Taylor effects, whereby vorticity is generated through
baroclinicity. To ensure that the background expansion process does not generate a mean
pressure gradient, the momentum equation in one dimension can be solved for a uniform
velocity gradient:

ρ
∂u
∂t

+ ρu
∂u
∂x

= −∂p
∂x

+ ρg. (2.4)

With the substitution of (2.1) and ∂p/∂x = 0, the solution requires

g =
(

dS̄
dt

+ S̄2
)

x (2.5)

for the potential force, g. Typically in rapid-distortion theory, the expression dS̄/dt + S̄2

is set to be zero (Durbin & Zeman 1992; Cambon, Coleman & Mansour 1993). This
constrains the systems being modelled to what is labelled the constant velocity case in
§ 2.1.1. By including this potential term, different mean velocity gradient profiles are able
to be modelled (Yu & Girimaji 2007).

2.1.1. Constant velocity
The first strain-rate profile arises from a domain growing or shrinking with a constant
boundary velocity, denoted V0. Likewise, any unperturbed packet of fluid will maintain its
original velocity throughout the strain profile. For a domain with an initial length of L0,
the domain length as a function time varies linearly by

L(t) = L0 + V0R(t − t0), (2.6)

where R(φ) = max(0, φ) is the ramp function, t0 is the initial time at which strain is
applied and t − t0 indicates the time since strain is initially applied. Initialised with a
linear velocity profile, the mean strain rate is initially given by S̄0 = V0/L0. The mean
strain rate will change as the length of the domain changes. The time-varying strain rate
may be expressed as a function of the initial strain rate:

S̄(t) = V0

L(t)
(2.7a)

= S̄0

1 + S̄0R(t − t0)
. (2.7b)

The expansion factor for the constant velocity case is simply given by

Λ(t) = 1 + S̄0R(t − t0). (2.8)

As mentioned previously, the constant velocity case is the default case used in
rapid-distortion theory as it maintains homogeneity in the flow without any potential
forcing.
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2.1.2. Constant strain rate
The second strain-rate profile used is designed for a constant strain rate. For the system
with strain applied at time t0, the strain rate is defined by

S̄(t) = S̄H(t − t0), (2.9)

where H(φ) is the Heaviside step function, equal to unity for φ ≥ 0 and zero otherwise.
For a constant strain rate the domain will grow exponentially as the expansion factor only
requires integrating a constant:

Λ(t) = exp[S̄R(t − t0)]. (2.10)

In this configuration the flow must accelerate in order for the domain to grow
exponentially. To accelerate the flow without a pressure differential, thereby isolating the
strain-rate effects from Rayleigh–Taylor effects, a potential forcing is required. Using a
constant strain rate in (2.5) reduces the required potential term to

g = S̄2x. (2.11)

2.2. Strain-rate non-dimensionalisation
The magnitude of strain rates observed will vary depending upon the application, hence
the necessity for non-dimensionalisation. In rapid-distortion theory, the strain rate is
normalised by using the turbulence to mean-shear timescale ratio, Sk/ε, where S =
(2S̄ijS̄ij)

1/2 (Pope 2000). For the investigation of RMI in the linear regime, an alternative
turbulent timescale is used, which is the initial eddy turnover time for the instability,
λ/ḣ0, where ḣ0 is the initial growth rate of the mixing layer and λ is the effective initial
wavelength. The strain rate is then non-dimensionalised as

Ŝ(t) = S̄(t)λ
ḣ0

, (2.12)

representing the ratio of the initial eddy turnover time to the strain timescale. For
the constant-velocity cases, which has a time-varying strain rate, the initial strain
rate will be utilised, Ŝ0 = Ŝ(t = t0). The unstrained case corresponds to Ŝ = 0, with
the strain contribution increasing with the magnitude of Ŝ. The benefit of this
non-dimensionalisation is that it couples nicely with the common dimensionalisation of
time for RMI,

τ = tḣ0

λ
. (2.13)

Which allows for the substitution, S̄t = Ŝτ , which commonly occurs as observed in the
expansion factor in (2.8) and (2.10). As a result, the expansion factor is proportional to Ŝτ .
Therefore, to simulate large values of Ŝ until late time (large τ ) will require a mesh that is
suitable for the resulting large change in domain size.

It is possible to estimate values of Ŝ for a variety of problems. The Taylor–Sedov blast
wave has a post-shock velocity profile that is roughly linear, with an approximate strain
rate of S̄ ≈ 4/(5(γ + 1)t), which is inversely proportional to time. Including an interface
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that interacts with the blast wave at time t0 (and ignoring any alterations to the profile as a
result), the non-dimensional strain rate across the interface is given by

ŜTS = t0
t

2π

aklAt
. (2.14)

The wavelength is replaced with the effective wavelength of the spherical harmonic mode
l, and the initial growth rate has been decomposed into the impulsive contribution of
Richtmyer (1960). Assuming initial linearity of ak = 0.01, Atwood number At = 0.5
and a dominant mode of l = 60, the peak non-dimensional strain-rate contribution is
20.9 at t = t0, but this rapidly decreases with time. By the time the shock wave has
reached a radius of twice the initial interface radius, the value of Ŝ reduces to 3.7. In
ICF, the fuel–ablator interface may reach speeds of 200 km s−1 at a radius of 200 μm,
around a 4.5× convergence. Assuming a linear velocity profile, or isotropic strain rates,
this gives an axial strain rate of −1 ns−1. Using the initial conditions of λ = 2 μm and
ḣ0/h0 = −63 ns−1 (Weber et al. 2023), along with an initial perturbation size of 20 nm
(Marinak et al. 2001) gives Ŝ = −1.6. Implosion simulations of El Rafei et al. (2019)
have the interface move at an almost constant velocity between the initial shock and the
re-shock. Prior to re-shock, at a convergence factor of 2.7, the strain rate may be estimated
to be −1.2 ns−1, which for the two narrowband cases gives Ŝ = −0.54 and Ŝ = −0.27.
In these applications, it is evident that the timescales of the turbulence and strain are of a
similar order of magnitude, and the strain contribution should not be ignored.

2.3. Governing equations

2.3.1. Five-equation model
For the direct numerical simulation and ILES cases, the five-equation, quasi-conservative
system of equations of Thornber, Groom & Youngs (2018) is used. This augments
the standard conservative, four-equation mass fraction model with a non-conservative
equation for the volume fraction. In the limit of zero diffusivity, conductivity and viscosity
the model reduces to the inviscid volume fraction model of Allaire, Clerc & Kokh (2002)
and Massoni et al. (2002):

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0, (2.15a)

∂ρui

∂t
+ ∂

∂xj
(ρuiuj + pδij) = ∂σij

∂xj
+ ρgi, (2.15b)

∂ρE
∂t

+ ∂

∂xj
((ρE + p)uj) = ∂

∂xj
(σijui + qi + qdi) + ρgkuk, (2.15c)

∂ρYa

∂t
+ ∂

∂xj
(ρYauj) = ∂

∂xj

(
D12ρ

∂Ya

∂xj

)
, (2.15d)

∂fa
∂t

+ uj
∂fa
∂xj

= ∂

∂xj

(
D12

∂fa
∂xj

)
− MD12

∂f1
∂xj

∂fa
∂xj

+ D12
∂fa
∂xj

∂N
∂xj

1
N

. (2.15e)
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The viscous stress tensor, heat flux and enthalpy flux are given by

σij = μ̄

(
∂ui

∂xj
+ ∂uj

∂xk
− 2

3
∂uk

∂xk
δij

)
, (2.16a)

qj = κ̄
∂T
∂xj

, (2.16b)

qdj = ρD12
∂Yaha

∂xj
. (2.16c)

The thermal conductivity of each species is calculated using kinetic theory,

κa = μa

(
5R
4Wa

+ cp,a

)
, (2.17)

in terms of the molecular weight of each species, Wa, and the specific heat capacity at
constant pressure, cp,a. The mixture quantities for viscosity, μ̄, and thermal conductivity,
κ̄ , are calculated from the species’ values using Wilke’s rule. The binary diffusion
coefficient, D12, is calculated using the Lewis number which is assumed to be equal for
both species:

D12 = κ̄

Leρc̄p
. (2.18)

All simulations are performed using an ideal gas which defines the internal energy and
enthalpy by

e = p
ρ(γ − 1)

, (2.19a)

h = cpT, (2.19b)

where for multi-species closure within a cell, an isobaric approximation is used,

1
γ − 1

= fa
γa − 1

, (2.20)

where the right-hand side is summated for all species as per tensor notation. The model
also uses the number density, N = p/kbT , and the value M = (W1 − W2)/(W1f1 + W2f2).

2.4. Numerical methods
The governing equations are implemented and solved by the multi-block structured,
finite-volume code FLAMENCO. FLAMENCO calculates the inviscid fluxes using a
method of lines Godunov scheme, with a fifth-order scheme to reconstruct the variables
at the interface (Kim & Kim 2005). These values are modified using a low-Mach-number
correction to ensure the correct dissipation rate at low Mach numbers (Thornber et al.
2008a,b), from which the flux is then calculated using a HLLC Riemann solver (Toro,
Spruce & Speares 1994). The viscous and diffusion terms are calculated using centred
second-order finite differences. The time-stepping is performed with a second-order total
variation diminishing Runge–Kutta method (Spiteri & Ruuth 2002).

As there is a linear velocity profile, the fluid domain will grow or shrink according to
the strain rate and strain profile. In order to accurately capture the instability growth, the
mesh of the simulated domain is moved with the fluid. A moving mesh with FLAMENCO
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has previously been used (El Rafei & Thornber 2020), and has been validated in a similar
code employing volume fraction governing equations (Probyn et al. 2014).

To maintain the linear velocity profile during strain application, the boundary conditions
in the direction of strain are inviscid moving walls. The ghost cells are calculated by
copying the cell symmetrically opposite the wall. The velocity of the ghosts cells is
mirrored relative to the wall velocity, as opposed to zero. For example, at the upper
boundary, the normal velocity for the first ghost cell (nx + 1) is calculated by

unx+1 = 2uWall − unx. (2.21)

The wall velocity, uWall, is given by the expected velocity as per the strain profile.

3. Two-dimensional single mode

3.1. Potential flow
A potential flow model for an axially strained system needs to incorporate the velocity
gradient of the flow as well as the change in density. The linearised potential flow model by
Epstein (2004) includes the consideration of a compression ratio for the planar geometry
model. The compression rate, γρ = ρ̇/ρ, is considered uniform in both fluids about the
interface and creates a background fluid velocity given by

ū1(x, t) = ẋ0(t) − γρ(t)(x − x0(t)), (3.1)

where x0(t) is the mean interface position and ẋ0(t) is the mean interface velocity. This
rate of compression is related to the mean strain rate by

∑
S̄ii = −γρ . For the case of only

an axial strain rate, γρ = −S̄(t), the background fluid velocity is

ū1(x, t) = ẋ0(t) + S̄(t)(x − x0(t)), (3.2)

which matches the velocity profile expected for a uniform velocity gradient of S̄(t). The
resulting solution provided by Epstein (2004) for this case is given by(

S̄(t) + d
dt

)
d
dt

(akρ) = k
ρ2 − ρ1

ρ2 + ρ1
gpakρ, (3.3)

where ak is the amplitude of the mode with wavenumber k and gp = −(1/ρ)[∂p(x0, t)]/∂x
represents the fluid acceleration at the unperturbed interface due to the pressure gradient,
and not the acceleration from external potential. Equation (3.3) can be written more clearly
as

äk − d
dt

(S̄ak) = k
ρ2 − ρ1

ρ2 + ρ1
gpak. (3.4)

Now considering the impulsive limit for a single-mode RMI with gp = 
uδ(t), where 
u
is the change in interface velocity, (3.4) will integrate to

ȧ = aS̄(t) + U0, (3.5)

with

U0 = a0k
ρ2 − ρ1

ρ2 + ρ1

u (3.6)

as prescribed by Richtmyer (1960). This solution suggests a new growth rate that is the
sum of the RMI velocity as well as the background velocity from the strain rate. As such,
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B. Pascoe, M. Groom, D.L. Youngs and B. Thornber

for the case of S̄(t) = 0, (3.5) will reduce to the linear growth rate expected for RMI. For
the case with no RMI velocity, the amplitude will grow with the domain as determined
by the expansion factor. Solutions where both terms are presented will depend upon the
strain-rate profile. It is possible to write a generalised solution using a form similar to Flaig
et al. (2018) and Lombardini et al. (2014) by introducing the intermediate variable α(t),

a(t) = α(t) exp
[∫ t

0
S̄(t′) dt′

]
. (3.7)

The exponential component is identical to the expansion factor, Λ(t), as defined in (2.2).
The resulting differential equation is

α̇(t) = U0Λ(t)−1, (3.8)

which, in turn, provides the general solution,

a(t) = a0Λ(t) + U0Λ(t)
∫ t

0
Λ−1(t′) dt′, (3.9)

where a0 = a(0) = α(0). This general solution has two distinct terms. The first term of
the solution corresponds to the initial amplitude that is expanding/compressing with the
domain due to the strain rate. The second term represents a more complicated relationship
between the RMI velocity and the strain rate. In the absence of a strain rate, the expansion
factor will remain one, and the expression will collapse to the standard RMI impulsive
solution of a0 + U0t. For the two prescribed strain-rate profiles in § 2.1, an exact solution
can be obtained. For constant strain rate applied from time t0, the expansion factor is an
exponential after the time of strain offset. The solution for the system is

a(t > t0) = (a0 + U0t0) exp(S̄(t − t0)) + U0

S̄
(exp(S̄(t − t0)) − 1). (3.10)

For the constant velocity profile, it is easier to characterise the flow in terms of the initial
strain rate, S̄0, see (2.7b). The expansion factor for this case is a linear expression, which
gives the resulting equation,

a(t > t0) = (a0 + U0t0)(1 + S̄0(t − t0)) + U0

S̄0
(1 + S̄0(t − t0)) ln(1 + S̄0(t − t0)).

(3.11)

In both equations the solutions are not defined for a mean strain rate of zero due to its
presence in the denominator. Taking the Taylor series of the expressions will show that the
solutions collapse down to the linear growth rate as the strain rate approaches zero.

Equations (3.10) and (3.11) can be non-dimensionalised by dividing by the wavelength
and introducing the non-dimensional time, τ = tU0/λ, and the non-dimensionalised strain
rate, Ŝ = S̄λ/U0. Substituting the non-dimensionalisations and setting the initial strain
time t0 = 0 for simplicity gives the non-dimensionalised equations,

a(t)
λ

= a0

λ
eŜτ + 1

Ŝ
(eŜτ − 1) (3.12)

for constant strain rate, and

a(t)
λ

= a0

λ
(1 + Ŝ0τ) + 1 + Ŝ0τ

Ŝ0
ln(1 + Ŝ0τ) (3.13)

for constant velocity. The amplitude growth rate for a specific strain-rate profile is therefore
dependent upon the initial linearity (a0/λ) and the non-dimensional strain rate value, Ŝ.
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Impact of axial strain on turbulent mixing layers

A more complicated non-dimensionalisation can be done using the general solution layout
provided by (3.9). The resulting equation takes the form

a(t)
λΛ(t)

= a0 + τ̂, (3.14)

where τ̂ = U0 t̂/λ and

t̂ =
∫ t

0
Λ−1(t′) dt′. (3.15)

This solution normalises the amplitude with respect to the domain expansion, collapsing
the solution down to a straight line in the linear regime. The alternate time t̂ hides the
complexities of the strain rate, however for the unstrained case it will reduce to standard
time.

3.2. Initial conditions
The simulations were conducted on a 2-D domain, with inviscid walls in the x-direction
and periodic boundary conditions in the y-direction. The fluids were set up in a
heavy-to-light configuration at a 3:1 density ratio, resulting in a Atwood number of 0.5.
Instead of a shock wave and amplitude perturbation, a velocity perturbation was used to
replicate the linear growth rate of RMI (Thornber et al. 2010). The velocity potential is
given by

φ(x, t) = sgn(x1 − x0)
U0

k
cos(kx2) exp(−k|x1 − x0|), (3.16)

about the mean interface position, x0. The analytic perturbation is made divergence free
by using the vector potential, Ai:

u1 = − ∂φ

∂x1
= ∂A3

∂x2
− ∂A2

∂x3
, (3.17a)

u2 = − ∂φ

∂x2
= −∂A3

∂x1
. (3.17b)

The vector potential is calculated by

Φ =
∫

φ dx1 = −U0

k2 cos(kx2) exp(−k|x1 − x0|), (3.18a)

A2 = −∂Φ

∂z
, (3.18b)

A3 = ∂Φ

∂y
. (3.18c)

Whilst the potential and perturbation decays to zero as x1 → ±∞, the vector potentials
are multiplied by a factor to ensure that they decay to zero at the finite x1 boundaries of
the domain (Thornber et al. 2010).

The initialisation allows a simple initial growth rate of 1 m s−1 to be used and requires
an initial amplitude of a0 = 0. As the initial amplitude is zero, the growth of the instability
will be entirely due to the second term of the derived equations that represent the coupling
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Property Fluid 1 Fluid 2 Units

Density, ρ 3 1 kg m−3

Pressure, p 100 100 kPa
Molecular mass, W 90 30 g mol−1

Viscosity, μ 1.953125 × 10−4 1.953125 × 10−4 Pa s
Specific heat ratio, γ 5/3 5/3
Lewis number, Le 1 1

Table 1. Fluid properties for the linear regime cases.

between the RMI growth rate and the strain rate. The flat interface is initialised with a
diffuse interface of the form

f1 = 1
2

(
1 − erf

(√
π(x1 − x0)

h

))
, (3.19)

where h is the initial diffusion width set to λ/64.
The pressure was initialised at a uniform value of 100 kPa throughout the domain. Using

this pressure, the Mach number of the flow can reach up to 0.6 at the boundaries of
the domain, however the turbulent Mach number remains around 0.004 throughout the
simulation. The Reynolds number, Re = U0λ/ν, was set to 2048, which is sufficiently
high enough that the linear regime growth rate is not impacted by viscosity (Walchli &
Thornber 2017). The kinematic viscosity for the multi-species system was calculated by
ν = (μ1 + μ2)/(ρ1 + ρ2), and the same dynamic viscosity was used for both fluids. The
Prandtl and Schmidt numbers were set to unity for both fluids, ensuring a Lewis number
of one for calculating the diffusivity (see (2.18)). The initial properties of each fluid are
provided in table 1. This configuration with a non-zero Atwood number, diffusivity and
a flat interface means that an initial asymmetry develops between the bubble and the
spike due to the difference in the mass and volume fraction diffusive fluxes, caused by
the density difference of the two fluids. This phenomenon does not affect the later time
amplitudes or ratio.

For the specified fluid parameters and amplitude growth, it is difficult to ascribe a
particular equivalent shock initialisation as the initial interface is flat, giving an amplitude
and amplitude growth rate of zero for the equivalent problem. An analogous problem could
be defined for a given shock strength by assuming some finite amplitude. With initial
conditions of p = 36.12 kPa, ρ1 = 1.76 kg m−3, ρ2 = 0.56 kg m−3 and ak = 0.015, then
the post-shock conditions and amplitude growth rate of U0 = 1 m s−1 would be achieved
with a shock strength of Ma = 1.8439.

As the domain is expected to grow or shrink depending upon the sign of the imposed
mean strain rate, different grids are used for the compression and the expansion cases. For
the compression cases, the simulation was conducted on a grid of size 20λ× λ, to allow
for the grid to compress by up to a factor of four without boundary effects inhibiting the
growth of the instability. This grid is composed of initially square cells, which become
rectangular as the simulation progress, shrinking with the domain in the x-direction. For
the expansion and unstrained cases, a grid of size 5λ× λ was used, however the cell
density was four times higher in the x-direction to allow the domain to expand up to a
factor of four and still maintain the desired resolution in all directions. In addition to the
unstrained case, four cases were simulated for each strain profile. As listed in table 2, each
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Impact of axial strain on turbulent mixing layers

Strain profile S̄0 (s−1) Ŝ0

Simulation
time (s)

Initial domain
size (m2) Grid resolution ΛF

Unstrained 0.0 0.0 0.02 1.0 × 0.2 2560 × 128 1.00
Constant velocity −37.50 −7.50 0.02 4.0 × 0.2 2560 × 128 0.25
Constant velocity −18.75 −3.75 0.02 4.0 × 0.2 2560 × 128 0.625
Constant velocity 75.0 15.0 0.02 1.0 × 0.2 2560 × 128 2.50
Constant velocity 150.0 30.0 0.02 1.0 × 0.2 2560 × 128 4.00
Constant strain rate −70.0 −14.0 0.02 4.0 × 0.2 2560 × 128 0.25
Constant strain rate −35.0 −7.0 0.02 4.0 × 0.2 2560 × 128 0.50
Constant strain rate 35.0 7.0 0.02 1.0 × 0.2 2560 × 128 2.00
Constant strain rate 70.0 14.0 0.02 1.0 × 0.2 2560 × 128 4.00

Table 2. The strain rates, total simulation time, initial domain size, grid resolution and final expansion factor
for each of the linear regime cases.

(a) (b) (c)

(d ) (e)

x

y

x

y

x

y

x

y

x

y

Figure 1. Visualisation of the volume fraction at τ = 0.1 for the 2-D single-mode simulations. Heavy fluid
( f1 = 1) is red, light fluid ( f1 = 0) is blue. Major ticks indicate a distance of λ/4. (a) Constant boundary
velocity, Ŝ0 = −7.5. (b) Unstrained case. (c) Constant boundary velocity, Ŝ0 = 30. (d) Constant strain rate,
Ŝ = −14. (e) Constant strain rate, Ŝ = 14.

profile has two expansion cases with positive strain rates, and two compression cases with
negative strain rates.

3.3. Results
The final interfaces are plotted for the largest magnitude strain-rate cases in figure 1. The
difference in amplitude is evident between the compression and expansion cases, with
around a factor of three difference in size. The strain rate has also affected the diffusive
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Ŝ0 = 15.00

Ŝ0 = 0
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Figure 2. Amplitude of the single-mode linear regime for (a) constant boundary velocity and (b) constant
strain rate. Solid lines indicate numerical results, dashed lines indicate linear model.

thickness of the interface, making it thicker for the expansion cases, which may inhibit the
roll-up of secondary instabilities. The diffuse thickness has not scaled proportionally with
the expansion factor as the diffusion rate is modified by the change in species gradient
from the strain rate, resulting a diffusive thickness that is proportionally less thick for the
expansion cases when accounting for the expansion factor.

To measure the amplitude of the single-mode RMI, the interface position is taken
to be along the isocontour line for the volume fraction where f1 = 0.5. The amplitude
is calculated by taking the difference of the maximum and minimum x-position of the
interface isocontour line,

a = 0.5[max(xf1=0.5) − min(xf1=0.5)]. (3.20)

The non-dimensionalised amplitude is plotted in figure 2, along with the theoretical
solutions given in (3.12) and (3.13) as derived from the model by Epstein (2004). All cases
initially start off with a linear growth rate, aligned with the unstrained growth rate. This
is expected as the RMI contribution is proportional to t, whilst the strain is a higher-order
correction which provides a smaller contribution for early time. The cases with a negative
strain rate grow more slowly in time, and the positive strain rate cases grow much faster.
For the most strongly compressed constant velocity case, the growth rate of the instability
becomes negative, meaning the domain compression is reducing the amplitude faster than
the instability is naturally growing. The theoretical model does manage to predict this
behaviour in compression and matches the simulation result nicely. By τ = 0.1, the theory
tends to over-predict the amplitude of all the strained cases to some degree, as well as
the unstrained case. At the final time the difference between the model and simulation
increases with the strain-rate value, being larger for the expansion cases and smaller for
the compression cases.

The percentage error is plotted in figure 3 as a function of the non-dimensional
amplitude, showing the expansion cases reaching a larger percentage error than the
compression. In this form it can be seen that the error follows a roughly linear relationship
with the amplitude. The compression cases which use an initially coarser grid in the
y-direction show larger fluctuations in the early time due to the division of small values
and the coarser grid. These oscillations in the error decrease as the grid becomes finer
and as the amplitude values increase with time. Given the roughly linear dependence of
the error on the amplitude, the cause of the error is likely due to the mode saturation,
as even the unstrained case diverges from linear theory. The error remains under 10 % in
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Figure 3. Error in the amplitude for the linear regime under (a) constant velocity and (b) constant strain rate.
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Ŝ0 = –3.75
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Figure 4. Amplitude of the single-mode linear regime for (a) constant velocity and (b) constant strain rate.
Solid lines indicate numerical results, dashed lines indicate linear model.

magnitude whilst a/λ < 0.1, which is considered to be the cut-off for the linear regime
(Brouillette 2002). The actual growth rates simulated here are potentially slightly larger
than what would be expected from a shock initialisation, as the vorticity deposited into the
fluid due to the transmitted/reflected waves will inhibit the instability growth rate (Probyn
et al. 2021).

To see how the instabilities grow with respect to the domain size, it is possible to plot
using the alternate non-dimensionalisaton listed in (3.14). Figure 4 shows the theoretical
results all fall onto a single line, with the simulation results appearing close underneath.
The simulation results are still expected to be below the theoretical growths due to the
growth slowing down as the amplitude of the mode increases. It is interesting to see
that when accounting for the domain growth, the Ŝ0 = −7.5 case shows approximately
linear growth, suggesting it is still growing in the linear regime but the growth is also
being continually offset by the domain compression, which resulted in the net negative
growth rate seen in figure 2. With this non-dimensionalisation the saturation time does
not correspond to a specific value of τ̂ , with the results diverging from the linear trend at
different points along the plot.
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4. Self-similar mixing layer

At late time, RMI can induce a self-similar mixing layer, as indicated by quantities such as
the mean volume fraction collapsing down to a single curve when non-dimensionalised
by the width of the mixing layer, and the molecular mixing fraction, Θ , approaching
an asymptotic value. The effect of axial strain on the development of multi-mode RMI
has not been investigated, and it is unknown if the mixing layer reaches self-similarity.
Using the quarter-scale narrowband case from the θ -group collaboration (Thornber et al.
2017), the effects of axial strain rates on multi-mode RMI can be examined. Axial
strain is added prior to the time at which the mixing layer achieves self-similarity, at a
non-dimensional time of τ = 1. This allows for stronger interaction between the strain
rate and the turbulence in the anisotropic, homogeneous mixing layer than if the strain
was applied at a later time. The original simulations were conducted using ILES, however
additional simulations are performed using the buoyancy-drag model to determine the
accuracy and any required corrections.

4.1. Models

4.1.1. Buoyancy-drag model
The buoyancy-drag mixing model is based on the work by Layzer (1955) and Baker &
Freeman (1981). The model was extended to better describe turbulent mixing by Dimonte
(2000), Hansom et al. (1990), Oron et al. (2001) and Ramshaw (1998). A buoyancy-drag
model was calibrated for the narrowband RMI case used in the θ -group collaboration
(Thornber et al. 2017), which required a modification to the calculation of the effective
length scale to prevent excessive drag at early time (Youngs & Thornber 2020b). This
buoyancy-drag model consisted of two coupled ordinary differential equations:

dW
dt

= V,
dV
dt

= − V2

leff (λ̄, W)
. (4.1a)

The model measures the mixing layer width using the integral width of the mixing layer,

W =
∫ Lx

0
f1 f2 dx, (4.2)

along with a corresponding growth rate or velocity measure, V . The effective length scale
in the drag term was fitted to the form,

leff

λ̄
= max

{
a − b(1 − exp(−cW/λ̄)),

θ

1 − θ

(
W
λ̄

− d
)}

. (4.3)

This model is for the RMI-induced mixing layer and does not try to model shock
transition. The resulting differential equation for the velocity component has no buoyancy
contribution, only a drag contribution. The model for narrowband RMI was extended to
model separate bubble and spike heights by Youngs & Thornber (2020a) for a similar case
to the quarter-scale θ group case:

dhb

dt
= Vb,

dVb

dt
= − V2

b

leff
b (λ̄, hb)

, (4.4a)

dhs

dt
= Vs,

dVs

dt
= − V2

s

leff
s (λ̄, hb)

, (4.4b)
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Impact of axial strain on turbulent mixing layers

Length scale a b c d

Integral width 0.3 0.176 8.35 0.237
Bubble 0.7 0.297 6.0 0.283
Spike 1.4 1.19 0.8 0.70

Table 3. Buoyancy-drag coefficients for At = 0.5, narrowband RMI (Youngs & Thornber 2020a,b).

where the effective length scales for the At = 0.5 case were fitted according to

leff
b

λ̄
= max

{
ab − bs(1 − exp(−cbhb/λ̄)),

θ

1 − θ

(
hb

λ̄
− db

)}
, (4.5a)

leff
s

λ̄
= max

{
as − bs(1 − exp(−cshb/λ̄)),

θ

1 − θ
R

(
hb

λ̄
− ds

)}
. (4.5b)

For the At = 0.5 case, the ILES data (as far as the calculations were conducted) were
accurately modelled with a late-time growth rate of θ = 1/3, the theoretical value of
Elbaz & Shvarts (2018), and this is the value of θ used in the models here. However, if
the ILES calculations were continued to a much later time it is likely that the theoretical
value of θ = 1/4 (Soulard et al. 2018) would be appropriate. The self-similar ratio of
spike-to-bubble height for the spike drag length scale was fitted to the data with R = 1.1.
The remaining coefficients are listed in table 3. The coefficients are the same as those
published previously (Youngs & Thornber 2020a,b) except for cS and dS which have been
modified to better capture the spike growth for this case.

The bubble and spike heights used in these equations are based on novel integral
quantities, first defined in Youngs & Thornber (2020a). These bubble and spike heights
are approximately equal to the bubble and spike values obtained by using the 1 % and
99 % cutoff of the mean volume fraction; however, by being integral quantities they are
less sensitive to statistical fluctuations:

hb/s = 1.1h(2)
b/s, (4.6a)

h(m)
s =

⎡
⎢⎢⎣ (m + 1)(m + 2)

2

∫ ∞

0
x′mf̄1 dx′

∫ ∞

0
f̄1 dx′

⎤
⎥⎥⎦

1/m

, (4.6b)

h(m)
b =

⎡
⎢⎢⎢⎣ (m + 1)(m + 2)

2

∫ 0

−∞
|x′|mf̄2 dx′

∫ 0

−∞
f̄2 dx′

⎤
⎥⎥⎥⎦

1/m

. (4.6c)

These expressions are for when f1 corresponds to the denser fluid (ρ1 > ρ2) and is initially
below the mean interface position (x′ < 0). The integrals are taken with reference to the
mean interface position (x′ = x − xC), which is defined by position where there are equal
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bubble and spike volumes on either side,∫ xC

−∞
f̄2 dx =

∫ ∞

xC

f̄1 dx. (4.7)

Buoyancy-drag models have been applied in spherical geometry in the works of Miles
(2004, 2009) and El Rafei & Thornber (2020). The key modifications used to adjust the
buoyancy-drag model were to use the time-varying wavelength for the drag calculation, as
well as to incorporate the background velocity of the fluid into the growth of the instability.
Using a uniform mean background velocity gradient, S̄, the velocity difference at the ends
of a layer of width W is given by WS̄, giving the new ordinary differential equation for the
width as

dW
dt

= V + WS̄. (4.8)

This is the same correction that arises from the linear regime model in (3.5). As the
quarter-scale narrowband case already has a calibrated buoyancy-drag model for the
unstrained case, it is a great candidate to use to test the accuracy of the background
strain-rate correction whilst using the same drag expression from the unstrained case. El
Rafei & Thornber (2020) calibrated a buoyancy-drag model for a narrowband perturbation
in spherical geometry, however the effective length scales for the bubbles and spikes were
different to the planar case of Youngs & Thornber (2020a). The initial buoyancy-drag
simulations were conducted using equations with the inclusion of the background velocity
correction:

dW
dt

= V + WS̄,
dV
dt

= − V2

leff (λ̄, W)
, (4.9a)

dhb

dt
= Vb + hbS̄,

dVb

dt
= − V2

b

leff
b (λ̄, hb)

, (4.9b)

dhs

dt
= Vs + hsS̄,

dVs

dt
= − V2

s

leff
s (λ̄, hb)

, (4.9c)

using the same drag expressions given in (4.3) and (4.5b).

4.2. Initial conditions

4.2.1. ILES
The ILES cases use the same initialisation as the quarter-scale narrowband case from
the θ -group collaboration (Thornber et al. 2017). Here ILES is conducted using the
inviscid form of (2.15e), instead relying on the inherent numerical dissipation in the shock
capturing scheme to approximate the cascade and removal of energy from the large scales
to the small scales in the high-Reynolds-number limit. The original quarter-scale case
used a domain given by x × y × z = Lx × L × L = 2.8π × 2π × 2π m3. In the y- and
z-directions periodic boundary conditions were used, whilst outflow boundary conditions
were applied in the x-direction. The quarter-scale case was set-up in a heavy-to-light
configuration with unshocked densities of 3 and 1 kg m−3, both with γ = 5/3. The shock
position was initialised in the heavy fluid at x = 3.0 using a Mach 1.8439 shock. The
initial Atwood number was At = 0.5 and the post-shock Atwood number is A+ = 0.487.
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(a) (b)
z

x y

z
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Figure 5. (a) Isosurface for volume fraction f1 = 0.5 for the initial interface. (b) Isosurfaces for f1 = 0.01
(blue) and 0.99 (red) for the mixing layer at τ = 1.

The interface position was given by

S( y, z) = 3.5 + A( y, z). (4.10)

The perturbation A( y, z) is the summation of Fourier modes in the range of λmin = L/32
and λmax = L/16, and a constant power spectrum is used for the perturbations. The
desired overall amplitude of the initial perturbation is 0.1λmin, with the profile shown
in figure 5. The amplitudes and phase for each mode are randomly generated from a
Gaussian distribution using a Mersenne twister algorithm. The Mersenne twister algorithm
is deterministic for a given seed, so the random coefficients are reproducible which allows
for recreation of the interface. The amplitudes of each mode are scaled to achieve the
desired power spectrum and amplitude. A detailed description of the generation of the
perturbation can be found in Thornber et al. (2010, 2017). The interface is initially diffuse
using a volume-fraction profile of

f1 = 1
2

(
1 − erf

(√
π[x − S( y, z)]

δ

))
, (4.11)

where the initial diffuse thickness is δ = L/128 for the quarter-scale case. The fluids are
given a velocity offset of 
u = −291.575 to account for the change in velocity from the
incident shock. This allows the interface to remain stationary after the passage of the
shock.

As given in Thornber et al. (2017), the variance σ 2(t) = ∑
kx,ky

a2/2 = ∫ ∞
0 P(k) dk

is the superposition of the individual modes and in the linear regime may be
approximated as

σ 2(t) = (Cσ0At+
uk̄t)2, (4.12)
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using the initial variance σ0, and the weighted average wavenumber of perturbation,

k̄ =

√√√√√√√
∫ ∞

0
k2P(k) dk∫ ∞

0
P(k) dk

. (4.13)

Given the narrowband, constant power spectrum, the mean wavenumber is equal to
k̄ = √

7/12kmax. For the perturbation type, the plane-averaged volume fraction profile is
given by

f̄1(x) = 1
2

(
1 − erf

(
x√
2σ

))
. (4.14)

This can be related to the integral width through the definition in (4.2), which gives the
relation W = 0.564σ . The initial predicted growth rate for the integral width is obtained
using the time derivative of the variance in (4.12):

Ẇ0 = 0.564k̄At+Cσ0
u. (4.15)

For the quarter-scale case the initial growth rate is Ẇ0 = 12.649 m s−1. Length scales
are non-dimensionalised by the mean wavelength, λ̄ = 2π/k̄, and time scales are
non-dimensionalised by using the initial growth rate and mean wavelength, τ =
tẆ0/λ. This is the same approach used in § 3, which enables the usage of the
same non-dimensionalisation for the strain rate, Ŝ = S̄λ/Ẇ0. Other quantities are
non-dimensionalised using Ẇ0, λ̄, the cross-sectional area 4π2, and the mean post-shock
density, ρ̄+ = 3.51 kg m−3.

The application of the strain rates is applied to the simulation at τ = 1, at which time the
system is in the nonlinear regime and bubble and spike structures have formed, as shown
in figure 5. The strain rate is applied to the flow by adding a linear velocity gradient for the
desired initial strain rate. As the main transmitted and reflected waves have left the domain,
the outflow boundary conditions in the x-direction are replaced with moving inviscid walls
which allows the domain to maintain the background velocity gradient according to the
prescribed strain-rate profile. Four simulations were conducted for each strain profile, as
listed in table 4, with two compressive strain rates and two expansive strain rates for each
profile. The cases are run until a non-dimensional time of τ = 10 or τ = 35 depending
upon the strain rate, such that the domain changes in length by a factor of two. For the
expansion simulations, the solution at τ = 1 is interpolated onto a grid with double the
cells in the x-direction. This is to ensure that the simulations are able to resolve the same
length scales as the unstrained case during the expansion, until Λ(t) = 2. The Appendix
includes results that show the integral properties are unaffected by the introduction of
walls for the unstrained simulation, and that the integral properties are converged for the
expansion case using the base and refined mesh.

4.2.2. Buoyancy-drag model
The buoyancy-drag model is initialised using the data provided in Youngs & Thornber
(2020a). In this work, higher-resolution ILES were conducted to ensure convergence at
the early time of the narrowband RMI. As the buoyancy-drag model does not seek to
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Strain Profile S̄0 (s−1) Ŝ0

Simulation
time (s)

Initial domain
size (m3) Grid resolution ΛF

Unstrained 0.0 0.0 0.711 2.8π × 2π × 2π 720 × 5122 1.00
Constant velocity −2.50 −0.051 0.203 2.8π × 2π × 2π 720 × 5122 0.54
Constant velocity −0.625 −0.013 0.711 2.8π × 2π × 2π 720 × 5122 0.57
Constant velocity 1.25 0.025 0.711 2.8π × 2π × 2π 1440 × 5122 1.86
Constant velocity 5.0 0.102 0.203 2.8π × 2π × 2π 1440 × 5122 1.91
Constant strain rate −4.0 −0.081 0.203 2.8π × 2π × 2π 720 × 5122 0.48
Constant strain rate −1.0 −0.020 0.711 2.8π × 2π × 2π 720 × 5122 0.50
Constant strain rate 1.0 0.020 0.711 2.8π × 2π × 2π 1440 × 5122 2.00
Constant strain rate 4.0 0.081 0.203 2.8π × 2π × 2π 1440 × 5122 2.08

Table 4. The strain cases, total simulation time, domain size, grid resolution and final expansion factor for
each of the ILES cases.

capture the effects of shock compression, the model begins with an offset of τ = 0.08.
The initial conditions given are

W0 = 0.5642Cσ0, (4.16a)

hs0 = hb0 = 1.1 × 2.0Cσ0, (4.16b)

V0 = 0.5642Ck̄σ0
uAt × Fnl
W , (4.16c)

Vb0 = 1.1 × 2.0Ck̄σ0
uAt × Fnl
b , (4.16d)

Vs0 = 1.1 × 2.0Ck̄σ0
uAt × Fnl
s , (4.16e)

with compression factor C = 0.576, and nonlinearity factors Fnl
W = 0.85, Fnl

b = 0.54 and
Fnl

s = 0.96. The equations for the buoyancy-drag model are integrated without any strain
rate applied until τ = 1, after which the applied mean strain rate is included in the
calculation by using the background velocity correction for the length scales, as shown
in (4.8).

4.3. Results

4.3.1. Visualisations
Slices of volume fraction contours of the x–y plane for the constant velocity cases are
shown in figure 6, with the solution at τ = 9.843 shown in the left column and τ = 34.451
in the right column. The rows are organised by increasing strain rate such that the strongest
compression case is displayed in the top row and the strongest expansion case is shown in
the bottom row. For the same τ , the effect of the strain rate on the width of the mixing layer
is evident, with the expansion cases growing much larger than the compression cases. The
expansion cases appear to show more mixing within the mixing layer, showing a larger
amount of intermediate concentration, denoted by white in the images. The compression
cases tend to show sharper transitions between regions of pure concentration, which may
be expected as any diffusive widths are also being compressed.

A comparison of the 3-D isosurfaces of the mixing layers for the same expansion
factor is shown in figures 7 and 8. For the largest strain-rate magnitudes, this occurs at
a much smaller non-dimensional time, τ , than for the moderate magnitude strain rates.
The mixing layer widths for the higher magnitude strain-rate cases appear slightly smaller
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Figure 6. Contours of the volume fraction for the constant velocity ILES cases at z = 0: (a,b,d, f,h) τ = 9.843;
(c,e,g) τ = 34.451; (a) Ŝ0 = −0.051; (b,c) Ŝ0 = −0.013; (d,e) Ŝ0 = 0; ( f,g) Ŝ0 = 0.025; (h) Ŝ0 = 0.102. Heavy
fluid ( f1 = 1) is red, light fluid ( f1 = 0) is blue. Major ticks on the axes correspond to 
x = 
y = 1 m.
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Figure 7. Contour of volume fraction f1 for the expansion mixing layers at Λ ≈ 1.866, bounded by f1 = 0.999
(red) and f1 = 0.001 (blue): (a) Ŝ0 = 0.102, τ = 9.55; (b) Ŝ = 0.081, τ = 8.66; (c) Ŝ0 = 0.025, τ = 35.0;
(d) Ŝ0 = 0.020, τ = 31.7.

than the moderate strain-rate cases, which is a likely result as the mixing layer has had
less time to develop naturally from entrainment and diffusion; in the rapid limit for
expansion, the mixing layer will grow only by the factor of Λ(t), whilst a slower strain
rate will have the turbulent growth of the mixing layer in addition. The bubble and spike
structures are larger for the expansion cases, with the compression cases showing less
variation in the isosurface position. Part of this appears to be due to the merger of bubbles
and spikes into larger structures for the expansion cases compared with the compression
cases. A comparison between different strain profiles can be made by comparing adjacent
figures. There are some slight visual differences of certain structures, however the overall
morphology appears to be very similar between strain profiles for the same expansion
factor.

4.3.2. Width and mix measures
The integral width of the mixing layer for both the ILES and buoyancy-drag cases is plotted
in figure 9. Supporting the visualisations of the mixing layer, the expansion cases grow
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Figure 8. Contour of volume fraction f1 for the expansion mixing layers at Λ ≈ 0.567, bounded by f1 = 0.999
(red) and f1 = 0.001 (blue): (a) Ŝ0 = −0.051, τ = 9.55; (b) Ŝ = −0.081, τ = 7.97; (c) Ŝ0 = −0.013, τ = 35.0;
(d) Ŝ0 = −0.020, τ = 28.9.
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Ŝ0 = 0.102
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Ŝ = –0.020
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Figure 9. Integral width for (a) constant velocity and (b) constant strain rate. Solid lines indicate ILES,
dashed lines indicate buoyancy-drag model.

faster than the unstrained case, and the compression cases grow slower, even experiencing
negative growth rate. It is possible to observe a difference in the trajectories of the integral
width curves between the constant strain rate and the constant velocity. For the expansion
cases, the constant velocity has a strain rate that decreases in magnitude with time.
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Figure 10. Alternate non-dimensionalisation for integral width for (a) constant velocity and (b) constant
strain rate. Solid lines indicate ILES, dashed lines indicate buoyancy-drag model.

This can be observed as the constant-strain-rate expansion cases have steeper gradients
at the end of their simulations compared with the constant velocity, due to the integral
width growing more from the layer stretching with the domain. For the compression
cases, the constant velocity simulations have a strain rate that increases in magnitude
(becomes more negative), and so the trajectory appears to be slightly more negative than
the constant-strain-rate cases. The buoyancy-drag model does used not align with the
ILES, except for the unstrained case for which it was calibrated. The buoyancy-drag model
appears to overestimate the influence of the strain rate on the mixing layer, predicting
a larger integral width for the expansion cases and a smaller integral width for the
compression cases compared to what is observed from the ILES.

The alternate non-dimensionalisation for the system is presented in figure 10, which
in the linear regime was able to collapse the theoretical growth rate down to a single
straight line. The buoyancy-drag model results are included and show that with this
non-dimensionalisation the buoyancy-drag predictions for all strain cases are almost equal
to the unstrained ILES. There is a slight variation in the buoyancy-drag curves. This is
due to the effective drag length scale not being self-similar under the transformation. The
ILES strained results do not collapse down, instead the ILES compression cases grow
at an increased rate compared with the unstrained and the ILES expansion cases have a
decreased growth rate. The failure of the buoyancy-drag model to accurately capture the
physics of this anisotropic strain case suggests further corrections to the buoyancy-drag
model are required, which are explored in § 4.3.7.

The plots for the bubble and spike heights are shown in figures 11 and 12, respectively.
The bubble and spike heights behave in the same manner as the integral width with both
the bubble and spike heights increasing with positive strain rate and decrease with negative
strain rate. The buoyancy-drag model again over-predicts the influence of the strain rate on
the growth rate.

The buoyancy-drag model for the spike height uses a drag term that is calculated from
the bubble height, assuming the ratio of the two heights will achieve a self-similar ratio.
For the quarter-scale narrowband case with Atwood 0.5, the value used in the model is
R = 1.1 (Youngs & Thornber 2020a). Looking at the spike-to-bubble ratio in figure 13
the strain rate causes the ratios to diverge, increasing for expansion and decreasing for
compression. This suggests the spike height is more affected by the strain rate than the
bubble height.

999 A5-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.832


B. Pascoe, M. Groom, D.L. Youngs and B. Thornber

(a) (b)
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Figure 11. Bubble heights for (a) constant velocity and (b) constant strain rate. Solid lines indicate ILES,
dashed lines indicate buoyancy-drag model.
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Figure 12. Spike heights for (a) constant velocity and (b) constant strain rate. Solid lines indicate ILES,
dashed lines indicate buoyancy-drag model.
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Ŝ0 = –0.051
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Figure 13. Ratio of spike-to-bubble height for (a) constant velocity and (b) constant strain rate.
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Ŝ0 = –0.013
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Figure 14. Integral mixing measures for the (a) constant velocity and (b) constant strain rate. Solid lines
indicate ILES results, dashed line is FLAMENCO’s final value from Thornber et al. (2017).

The molecular mixing fraction, an integral mixing measure, is calculated by

Θ(t) =

∫
f1 f2 dx∫
f̄1 f̄2 dx

, (4.17)

where the overbar denotes a planar average in the homogeneous directions. The ILES
result is plotted in figure 14, and included is FLAMENCO’s value of Θ at the final time of
τ = 246 from the θ -group collaboration (Thornber et al. 2017). In the present simulations,
the unstrained case does not yet achieve this value and is instead slowly decreasing towards
it. Immediately after perturbation, the strained cases appear to follow the same trajectory
until around τ = 3. Afterwards, the strain rates cause the molecular mixing fraction to
change. The expansion cases surprisingly become more mixed, remaining above Θ =
0.85. The compressed cases become less mixed, dropping below the steady-state value,
and showing strong negative gradients at the end of their simulations, suggesting they
would continue to decrease in mixedness. The deviations from the self-similar asymptote
suggest that the strain rates changes the behaviour of the mixing layer beyond the effect
of changing the mixing layer’s size through expansion or compression. This is analysed
through the self-similarity of the volume fraction profiles in the following section.

4.3.3. Self-similarity
The denominator of the molecular mixing fraction is the integral width, computed from
the mean volume fraction profile, f̄1, whilst the numerator is an integral over the mean
volume fraction product, f1 f2. The collapse of these two profiles is a key indication of when
the mixing layer has reached a self-similar state. The spatial profiles for f̄1 and f1 f2 are
plotted at the end times of the simulations, τ = 9.843 and 34.451, with constant velocity
in figure 15 and constant strain rate in figure 16. The mean volume fraction profiles at the
earlier time appear very similar, collapsing to the unstrained mean volume fraction profile.
The profile for f1 f2 shows an observable difference. Whilst the edges of the mixing layer
appear to be similar, the peak of the profiles vary noticeably. A peak value of 0.25 would
occur if every cell along the plane was 50 % f1 and 50 % f2. An increase in the peak of f1 f2
for the expansion cases is indicative of greater homogeneity near the mixing layer centre.
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Ŝ0 = –0.013
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Figure 15. Planar-averaged volume-fraction profiles for the constant velocity cases: (a,b) τ = 9.843;
(c,d) τ = 34.451.

Likewise, the compression cases have a reduced maximum suggesting that less mixing has
occurred.

At late time where only the data for the weaker strain cases are available the effects
of the strain rate on mixing becomes more prominent. There is some slight variation
in the mean volume fraction profile on the bubble side. For the mean volume fraction
product, the difference in the maxima at the centre of the mixing layer is evident, with
the expansion case having a much larger peak than the unstrained and the compressed
case. In the θ -group paper (Thornber et al. 2017), the peak of f1 f2 remains almost
unchanged between τ = 25 and τ = 196. The difference observed in the mean volume
fraction product reinforces the observation of the increased mixing (i.e. higher value of
Θ) observed for the expansion case compared with the unstrained case, and suggests the
axial strain rate causes the mixing layer to no longer collapse down to a self-similar profile.

4.3.4. Turbulent kinetic energy
The total turbulent kinetic energy in the domain, defined by

TKE =
∫∫∫

1
2
ρu′′

i u′′
i dx dy dz, (4.18)

is plotted in figure 17. For all cases the turbulent kinetic energy is decreasing due to
dissipation. At late time the unstrained case can be expected to fit a power-law spectrum of
the form t3θ−2 (Thornber et al. 2010). Whilst the unstrained case is heading towards this
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Figure 16. Planar-averaged volume-fraction profiles for the constant-strain-rate cases: (a,b) τ = 9.843;
(c,d) τ = 34.451.
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Figure 17. Total turbulent kinetic energy for (a) constant velocity and (b) constant strain rate.

trend, the strained cases make a deviation. The compression cases show a larger amount of
TKE compared with the unstrained domain, whilst the expansion cases show a decrease in
the total turbulent kinetic energy. This is to be expected from the Reynolds stress transport
equation, where the shear production contributes to the Reynolds stress as

Dρu′′
i u′′

j

Dt
∝ −ρu′′

i u′′
k
∂ ũj

∂xk
− ρu′′

k u′′
j
∂ ũi

∂xk
. (4.19)
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Figure 18. Turbulent kinetic energy in the x-direction for (a) constant velocity and (b) constant strain rate.
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Ŝ = 0.081
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Figure 19. Turbulent kinetic energy in the y-direction for (a) constant velocity and (b) constant strain rate.

In rapid-distortion theory, the primary contributions to the Reynolds stress are shear
production and pressure scrambling. These simulations are not in the rapid-distortion limit,
evident by the dominating role of dissipation on the turbulent kinetic energy. With applied
axial strain rates, there is a strong contribution from ∂ ū1/∂x1 which will only directly
contribute to the x-turbulent kinetic energy. The directional components for the domain
integrated turbulent kinetic energy can be calculated by

TKX =
∫∫∫

1
2
ρu′′

1u′′
1 dx dy dz, TKY =

∫∫∫
1
2
ρu′′

2u′′
2 dx dy dz. (4.20a,b)

The value of TKX is plotted in figure 18 and shows the same trend as the total turbulent
kinetic energy. Due to the negative sign in the Reynolds stress equation, a negative strain
rate corresponds to an increase in the turbulent kinetic energy, which is what is observed
in the simulation results. For the y- and z-directions, the production terms are not expected
to make the same level of contribution as there is no applied mean strain rate to the
flow. The y-turbulent kinetic energy is plotted in figure 19 and whilst it does show an
increase in turbulent kinetic energy for the compression cases, and a decrease for the
expansion, the contribution appears to be diminished compared with what is observed in
the x-turbulent kinetic energy. It can be expected that some of the turbulent kinetic energy
will be redistributed from x to y and z due to the pressure scrambling. To see how the strain
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Ŝ = 0
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Figure 20. Anisotropy of the turbulent kinetic energy for (a) constant velocity and (b) constant strain rate.

rates affect the distribution of the turbulent kinetic energy, it is possible to look at the level
of anisotropy of the flow given by

TKR = 2TKX
TKY + TKZ

. (4.21)

For an isotropic flow, this value would collapse to one. As stated previously, RMI is
observed to be persistently anisotropic both experimentally and in simulations, with
FLAMENCO’s anisotropy at τ = 246 reaching TKR = 1.49 (Thornber et al. 2017). The
anisotropy is plotted in figure 20 and shows a strong divergence from the unstrained
behaviour. This suggests that the pressure scrambling is not able to move the turbulent
kinetic energy to/from the axial direction faster than it is removed/produced at the
simulated strain rates. With insufficient turbulent kinetic energy redistribution the strained
simulations will not achieve the unstrained self-similar anisotropy, instead becoming more
anisotropic during strain application. For the compression cases, the turbulent kinetic
energy becomes focused in the x-direction, reaching values above TKR = 2. The expansion
cases have decreasing TKR, heading towards isotropy. The highest constant-strain-rate case
shows that the decreasing trend continues past isotropy, and the turbulent kinetic energy
is becoming focused in the transverse directions due to the removal of the axial turbulent
kinetic energy by the mean velocity gradients. The changes in turbulent kinetic energy can
explain the changes in the mixing layer growth rate compared with the unstrained case. As
the compression cases have increased axial velocity fluctuations, it is possible for the fluid
to achieve greater entrainment of bulk pure fluid into the mixing layer, lowering Θ , whilst
the expansion cases have lower entrainment thus increasing Θ .

4.3.5. Vorticity
In compressible rapid-distortion theory, the vorticity equation has two linear contributions,
the vortex stretching contribution for 3-D flows and the compressibility contribution
(Blaisdell, Coleman & Mansour 1996):

Dωi

Dt
= ωj

∂ui

∂xj
− ωi

∂uk

∂xk
, (4.22)

where ωi is the vorticity defined by

ωi = εijk
∂uk

∂xj
, (4.23)

999 A5-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.832


B. Pascoe, M. Groom, D.L. Youngs and B. Thornber

101

102

100 101 101

101

102

100

τ

Ω

τ
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Figure 21. Total enstrophy for (a) constant velocity and (b) constant strain rate.

and εijk is the Levi-Civita symbol. If (4.22) is considered with only the mean axial strain
rate, the contributions for the in-plane vorticity, ωx, will cancel out. The out-of-plane
components do not experience vortex stretching directly from the mean strain rate, but
will decrease from the compressibility term for expansion cases, and increase for the
compression cases. In figure 21, the total enstrophy of the domain is plotted. The enstrophy
is given by

Ω =
∫∫∫

ρωiωi dx dy dz. (4.24)

Due to the interpolation process onto the finer grid for the expansion cases, the initial
enstrophy is artificially increased in the direction of the cell-splitting. The total enstrophy
decreases with time, dominated by the dissipation contribution like the turbulent kinetic
energy. Compared with the unstrained case, the expansion cases decrease faster whilst the
compression cases decrease at a slower rate. By including the dissipation, a rudimentary
model can be created for the enstrophy components in each direction:

∂

∂t

⎛
⎝ Ωx

Ωy
Ωz

⎞
⎠ = −2S̄11

⎛
⎝ 0

Ωy
Ωz

⎞
⎠ − εΩ. (4.25)

The dissipation rate, εΩ , is a function of the enstrophy component and is modelled
using the unstrained strain-rate case. The unstrained vorticity components decay with a
power-law exponent n = 1.4,

Ω ∝
(

τ

τ0

)−n

. (4.26)

Equating the derivative and the dissipation rate, and rearranging to remove time
dependence gives the expression

− εΩ = − n

τ0Ω
1/n
0

Ω(n+1)/n. (4.27)

Assuming the strained cases maintain this quasi-equilibrium relationship between the
enstrophy and enstrophy dissipation rate, the model in (4.25) is closed assuming some
initial condition values, τ0 and Ω0.
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Figure 22. Enstrophy in the y–z plane for (a) constant velocity and (b) constant strain rate.
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Figure 23. Enstrophy in the x–z plane for (a) constant velocity and (b) constant strain rate. Solid lines
indicate ILES results, dashed lines indicate the enstrophy model.

Looking at the in-plane component of vorticity in figure 22, there is a small spread in
the values. The derived enstrophy model suggests that the Ωx should remain unchanged
from the unstrained case (hence, the model’s omission from the plot), however there is a
slight variation in the direction consistent with the compressibility effects.

An example of the out-of-plane contribution is shown in figure 23 for the ω2
y component.

Also plotted is the enstrophy model for each case, solved using the values at τ = 3 for the
initial conditions of the differential equation. The model is well aligned with the ILES
results, accurately predicting the relative decrease in enstrophy for the expansion cases
and relative increase for the compression cases as compared with the unstrained case. This
out-of-plane vorticity can be considered responsible for moving fluid through the mixing
layer, whilst the in-plane vorticity mixes the fluid within the layer. Whilst the in-plane
vorticity is slightly decreased for the expansion cases, the decrease in the out-of-plane
vorticity is larger. The expansion cases observe a relative increase in the in-plane vorticity
as a result, and this aligns with the observed increase in the f1 f2 profile and mixedness of
the layer. In contrast, the compression cases see a relative decrease in the in-plane vorticity
compared with the out-of-plane vorticity. This phenomenon can also be explained simply
by thinking of the axis of the effective mixing vortices being tilted in the direction of the
strain rate. For expansion, the axis is tilted towards the x-axis, causing more mixing in the
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in-plane direction as opposed to the out-of-plane direction. For compression the vortex
axis is tilted to point orthogonal to the x-axis, causing less in-plane mixing.

4.3.6. Turbulent mass flux
The turbulent mass flux is a quantity that only arises in variable-density and compressible
flows, resulting from the velocity fluctuations that are correlated to the density fluctuations:

ai = ρ′u′
i

ρ̄
= −u′′

i = ũi − ūi. (4.28)

The turbulent mass flux is responsible for the conversion of potential energy to turbulent
kinetic energy, and acts in source term for the density-specific-volume covariance.
A transport equation for the turbulent mass flux is common in turbulence models for
hydrodynamic instabilities, with the equation first derived by Besnard et al. (1992). As the
flow is primarily one-dimensional, the transverse components should be statistically zero,
and analysis can focus on the axial component (Wong et al. 2022). The axial turbulent
mass flux has a source term from the mean velocity gradient, similar to the Reynolds
stress transport equation,

Da1

Dt
∝ a1

∂ ū1

∂x1
. (4.29)

Whilst this source term is included in the Besnard et al. (1992) k-S-a model (Banerjee
et al. 2010), it is excluded in the k-L-a model (Morgan & Wickett 2015) as it was deemed
insignificant for the cases considered. The profile for the axial turbulent mass flux is plotted
in figure 24 near the simulation end times. As expected from the transport equation, the
compression cases maintain larger values of a1. The profiles are asymmetric for all cases,
showing a greater skew to right, towards the lighter fluid, which was also observed in the
work of Wong et al. (2022) for RMI before and after re-shock. Wong et al. (2022) also
observed the peaks of the profiles tending towards the heavy fluid, however this was for
plots of ρ̄a1. The same trend would be visible if ρ̄a1 were plotted for the strain cases,
however the density scaling has been avoided as the density varies between the cases due
to the compression or expansion, which further exacerbates the difference between the
profiles.

4.3.7. Buoyancy-drag
The results in figures 9, 11 and 12 show that the background velocity correction is
not sufficient to predict the growth of RMI with axial strain. This is in part due
to the vortex tilting that arises due to the axial strain rate, causing a change in the
entrainment and mixing. Three correction terms are proposed for the velocity equation
in the buoyancy-drag model, corresponding to the equivalent terms of d/dt(S̄W). The
corrections are chosen to take this form such that the strain-rate contributions are isolated
and the same effective drag length scale can be used for all cases. For the three mixing
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Ŝ0 = 0
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Figure 24. Axial turbulent mass flux for (a,c) constant velocity cases and (b,d) constant-strain-rate cases:
(a,b) τ = 9.843; (c,d) τ = 34.451.

layer length scales, the new equations are given by

dW
dt

= V + WS̄,
dV
dt

= − V2

leff (λ̄, W)
+ C1S̄V + C2S̄2W + C3

˙̄SW, (4.30a,b)

dhb

dt
= Vb + hbS̄,

dVb

dt
= − V2

b

leff
b (λ̄, hb)

+ Cb1 S̄Vb + Cb2 S̄2hb + Cb3
˙̄Shb, (4.31a,b)

dhs

dt
= Vs + hsS̄,

dVs

dt
= − V2

leff
s (λ̄, hb)

+ Cs1 S̄Vs + Cs2 S̄2hs + Cs3
˙̄Shs. (4.32a,b)

The method used to calculate the optimum coefficients uses all strain cases for the
optimisation process and uses the covariance matrix from the optimisation process to
estimate the uncertainty in the coefficients. Each length scale coefficient set, denoted as θ̂ ,
was optimised separately by minimising the corresponding error, S(θ̂), between the ILES
results and the corrected buoyancy-drag model for the strained cases. For a given set of
coefficients, the buoyancy-drag equations were numerically integrated using an ordinary
differential equation solver. The mean square residual for each strain case was calculated,
and the total error was taken to be the sum of the mean square residuals. The minimisation
process returns the inverse Hessian, H−1

θ̂
, for the coefficient set used. The covariance
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Length scale C1 C2 C3

Integral width −1.863 ± 0.039 0.162 ± 0.058 0.056 ± 0.074
Bubble −1.504 ± 0.056 0.113 ± 0.079 0.041 ± 0.109
Spike −1.665 ± 0.046 0.076 ± 0.147 0.001 ± 0.195

Table 5. Optimised coefficients for the buoyancy-drag model.

matrix, V̂ , is estimated by scaling the inverse Hessian by the reduced chi-squared
statistic χ2,

V̂ = χ2H−1
θ̂

, (4.33a)

χ2 = S(θ̂)/(n − p), (4.33b)

where n is the number of data points used, and p is the degrees of freedom (Vugrin et al.
2007). The variance of each coefficient corresponds to the trace of the covariance matrix.
The optimised coefficients and the standard deviations are listed in table 5.

The C1 coefficient for all length scales has the largest magnitude and the smallest
uncertainty. The range of values for C1 are spread from −1.5 for the bubble to −1.86
for the integral width, suggesting the buoyancy-drag model requires a strain drag term
that replicates the decreased growth from the vortex stretching in expansion cases, and
increased growth for compression cases. The C2 coefficients are all positive, showing a
tighter spread but differing by up to a factor of two between length scales. Unlike the C1
term which may be positive or negative depending upon the sign of the strain rate, the C2
term is always positive causing the correction to increase the growth rate for all strained
cases. The C3 term only activates for the constant velocity cases, whereby it opposes the
C2 term. The optimised coefficients for C3 were the smallest coefficients of the three.
For all length scales, the two standard deviation confidence interval for C3 includes zero,
suggesting the coefficient is not statistically significant.

The corrected buoyancy-drag model for the integral width is presented in figure 25. The
corrected model is well aligned to the ILES results. Likewise, the corrected model for the
bubble height is plotted in figure 26, and also shows close agreement. The results for the
spike height are plotted in figure 27 and it can be seen that this model does not perform
as well as the others as it is not able to capture the compression cases. The reason that
the corrected model does not work for the spikes could be due to the usage of the bubble
height in the effective length scale for the spike drag. Whilst the effective length scales for
the bubble and spike for the unstrained case were able to be approximated as a function of
the bubble height in the work of Youngs & Thornber (2020a), this may not be the case for
the strained cases presented here. This may be in part due to the changing spike-to-bubble
ratio as shown in figure 13.

A physical meaning for the correction terms can be obtained by analysing the turbulent
kinetic energy. A simplified one-dimensional equation for the mean turbulent kinetic
energy may be considered, with the form

ρ̄
Dk
Dt

= −ρ̄ũ′′
1u′′

1
∂ ũ1

∂x1
− ρ̄ε. (4.34)

It is possible to adapt the equation for the evolution of the turbulent velocity, V = √
2k.

Introducing a turbulent length scale L, the Reynolds stress is modelled using a Boussinesq
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Figure 25. Corrected buoyancy-drag model for the integral width: (a) constant velocity and (b) constant
strain rate. Solid lines indicate ILES results, dashed lines indicate the buoyancy-drag model.

5

4

3

2

1

0 10 20 30

5

4

3

2

1

0 10 20 30

τ τ

h B
/λ̄

(a) (b)
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Figure 26. Corrected buoyancy-drag model for bubbles: (a) constant velocity and (b) constant strain rate.
Solid lines indicate ILES results, dashed lines indicate the buoyancy-drag model.

eddy viscosity assumption,

ρ̄ũ′′
i u′′

j = 2
3
ρ̄kδij − μT

(
∂ ũi

∂xj
+ ∂ ũj

∂xi
− 2

3
∂ ũk

∂xk
δij

)
, (4.35a)

μT = Cμρ̄VL, (4.35b)

and the dissipation is given by

ε = Cε

V3

L
. (4.36a)

Assuming only the axial strain rate, S̃11 = ∂ ũ1/∂x1, is non-negligible then the turbulent
velocity evolves according to

DV
Dt

= −Cε

V2

L
− 1

3
VS̃11 + 4

3
CμLS̃2

11. (4.37)
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Figure 27. Corrected buoyancy-drag model for spikes: (a) constant velocity and (b) constant strain rate. Solid
lines indicate ILES results, dashed lines indicate the buoyancy-drag model.

This equation bears similarity to the corrected buoyancy-drag model. The first term
(∝V2/L) is the drag term, which originally corresponded to the dissipation of turbulent
kinetic energy. The second and third terms are the results of the inclusion of the shear
production for the turbulent kinetic energy, and have the same form as the two additional
terms introduced into the buoyancy-drag model that were found to have statistically
significant values. It is evident then that the introduced terms to the buoyancy-drag model
correspond to the effects of shear production on the mixing layer.

5. Conclusion

The influence of axial strain rate on the RMI has been investigated by applying a mean
velocity gradient to the flow. Two different strain-rate profiles were utilised, a constant
velocity profile and a constant-strain-rate profile. These profiles were able to be enforced
in the fluid domain by using a moving mesh, inviscid moving walls boundary conditions,
and source terms for the constant-strain-rate profile. This method allows for the controlled
application of strain rates in planar geometry, mimicking the strain rates observed in
convergent geometry.

A linear potential flow model for RMI and RTI with an axial strain rate, as done by
Epstein (2004), predicts the RMI growth rate to be the sum of the impulsive velocity
and the background velocity difference, ȧ = U0 + aS̄11. Resolved 2-D simulations of a
single-mode RMI at Re = 2048 were conducted to investigate the model for the linear
regime, and utilised a velocity perturbation initialisation. The simulation results showed
agreement with the model, in particular with tracking the negative growth for compression
cases. The error in the model was proportional to the amplitude, which indicated the error
was associated with mode saturation, which is expected for RMI.

The effects of the strain rate on the development of a self-similar mixing layer were
conducted by applying strain to the quarter-scale θ -group case (Thornber et al. 2017), a
3-D, multi-mode, narrowband RMI-induced mixing layer. The simulations were conducted
using ILES, with axial strain applied from τ = 1, prior to the mixing layer achieving
self-similarity. The axial strain increased the mixing layer width for expansion cases
and decreased the width for compression cases, however the effect of the strain rate
on the mixing growth was less than expected. Under strain, the mixing layer no longer
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converged to the same self-similar state. The mixedness of the mixing layer increased
for the expansion cases and decreased for the compression cases, whilst the turbulent
kinetic energy became more focused in the axial direction under compressive strain and
shifted towards the transverse directions under the expansive strain. This is a result of the
shear production of turbulent kinetic energy from the mean velocity gradients, adding
axial turbulent kinetic energy for compressive strain and removing the axial turbulent
kinetic energy for expansion cases. The shear production was not balanced out by pressure
scrambling to re-balance the turbulent kinetic energy, which as a result caused the
compression cases to achieve greater entrainment and decreased the mixedness, whilst
the expansion cases had decreased entrainment and increased mixedness.

The buoyancy-drag model calibrated for the unstrained, narrowband RMI (Youngs &
Thornber 2020a,b) was modified to include the background velocity difference, as was
done for the linear regime and has also been done previously for convergent buoyancy-drag
models (Miles 2009; El Rafei & Thornber 2020). This model was not accurate for
the strained cases, and overestimated the influence of the strain rate as it did not take
into account the shear production contribution which opposes the background stretching
caused by the velocity gradient. Three correction terms were proposed to correct the
velocity evolution under the axial strain rate. The coefficients for each term were calibrated
to fit the strain cases. Whilst the third term was not found to be statistically significant, the
optimised buoyancy-drag model was able to match the ILES results.
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Appendix. Convergence

The ILES are required to resolve the largest scales, leaving the smallest scales to be
modelled by the numerical scheme of the code. Whilst the unstrained quarter-scale
θ -group case is converged (Thornber et al. 2017), the simulations with expansion strain
rates experience decreasing mesh resolution, which can increase the numerical dissipation.
To mitigate this effect on the solution, the expansive cases use a solution interpolated
onto a finer mesh with twice as many cells in the axial direction, ensuring the final
expanded mesh size is not larger than the original mesh size. To show that the integral
properties are converged, the unstrained and the constant-strain expansion case Ŝ = 0.081
were conducted with the original and refined mesh. The results in figure 28 show that the
integral width and molecular mixing fraction are converged. The refined unstrained mesh
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1440 × 5122, Ŝ = 0.081
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also uses the wall boundary condition in the axial direction, showing that the inclusion of
the walls in the x-direction does not affect the solution.
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