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Summary

Within hybrid zones that are maintained by a balance between selection and dispersal, linkage

disequilibrium is generated by the mixing of divergent populations. This linkage disequilibrium

causes selection on each locus to act on all other loci, thereby steepening clines, and generating a

barrier to gene flow. Diffusion models predict simple relations between the strength of linkage

disequilibrium and the dispersal rate, σ, and between the barrier to gene flow, B, and the reduction

in mean fitness, W- . The aim of this paper is to test the accuracy of these predictions by

comparison with an exact deterministic model of unlinked loci (r¯ 0±5). Disruptive selection acts

on the proportion of alleles from the parental populations (p, q) : W¯ exp[®S (4 pq)β], such that

the least fit genotype has fitness e−S. Where β'1, fitness is reduced for a wide range of

intermediate genotypes ; where β(1, fitness is only reduced for those genotypes close to p¯ 0±5.

Even with strong epistasis, linkage disequilibria are close to σ#p!

i

p!
j
}r

ij
, where p!

i
, p!

j
are the

gradients in allele frequency at loci i, j. The barrier to gene flow, which is reflected in the

steepening of neutral clines, is given by

B¯&
¢

−¢

(Wa "/ra®1) dx,

where ra , the harmonic mean recombination rate between the neural and selected loci, is here 0±5.

This is a close approximation for weak selection, but underestimates B for strong selection. The

barrier is stronger for small β, because hybrid fitness is then reduced over a wider range of p. The

widths of the selected clines are harder to predict : though simple approximations are accurate for

β¯1, they become inaccurate for extreme β because, then, fitness changes sharply with p.

Estimates of gene number, made from neutral clines on the assumption that selection acts against

heterozygotes, are accurate for weak selection when β¯1 ; however, for strong selection, gene

number is overestimated. For β"1, gene number is systematically overestimated and, conversely,

when β!1, it is underestimated.

1. Introduction

Hybrid zones (clusters of clines at multiple loci or

traits) separate partially reproductively isolated popu-

lations. They act as barriers to gene exchange between

the diverging populations, and may themselves pro-

mote divergence either as sites of reinforcement of

* Corresponding author. e-mail : n.barton!ed.ac.uk

prezygotic isolation, or as sources of novel recom-

binant genotypes (‘hybrid speciation’). On the other

hand, hybrid zones act as semi-permeable barriers,

which allow exchange of genetic material. This gene

flow may impede divergence, and may aid adaptation

in either population.

As well as giving insight into these processes, hybrid

zones allow quantitative study of the genetic basis of

reproductive isolation, and its effects on gene flow.

However, existing theory is largely based on the

https://doi.org/10.1017/S0016672399004334 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672399004334


N. H. Barton and M. Shpak 180

simplest models : heterozygote disadvantage (Bazykin,

1969), multiplicative across loci, or selection favouring

different alleles in different places (Haldane, 1948;

Fisher, 1950). It also rests mainly on the diffusion

approximation (Fisher, 1937; Haldane, 1948;

Nagylaki, 1975), which assumes that selection is

weak. In fact, reproductive isolation involves strong

gene interactions. Here, we examine whether con-

clusions based on simpler models are robust to various

kinds of epistasis, and find how far they hold for

strong selection.

In the absence of detailed information on the

genetic basis of reproductive isolation, and its effects

on fitness, it is hard to know what models of epistasis

are appropriate. One way of classifying an epistatic

selection scheme is by the number of genes which

interact with each other. At one extreme, disruptive

selection might act on one additive trait, so that fitness

depends on interactions among very many loci, and is

lower for all individuals with a mixed genotype. At the

other extreme, particular pairs of loci might interact,

such that recombinant pairs have lower fitness. In this

case, an individual of mixed ancestry might have

maximum fitness, if all coadapted pairs remain

together, or minimum fitness, if all such pairs are

recombined: there is a high variance in fitness among

genotypes with the same average ancestry.

Another way of classifying epistatic models is to ask

whether the transition between the divergent popu-

lations necessarily requires a reduction in mean fitness.

With disruptive selection on a single trait, divergence

must involve a fitness loss of the same magnitude as

the eventual reproductive isolation. With interactions

among pairs of genes, divergence is also opposed by

natural selection, though the fitness loss may be

spread over a number of separate transitions, each

only weakly selected.

In less symmetrical models, there may be a path of

relatively fit genotypes connecting the parental geno-

types, which facilitates divergence by any mechanism

(see Bateson, 1909; Dobzhansky, 1937; Muller, 1942;

Barton & Charlesworth, 1984; Gavrilets & Gravner,

1997; Orr, 1995, 1997). If incompatibilities tend to be

due to recessive alleles, as under the dominance theory

of Haldane’s Rule (Orr, 1995), then fit intermediate

genotypes also become more likely. If fit ancestral

paths exist, then they might be recreated across hybrid

zones, reducing the fitness loss and the barrier to gene

exchange. Such selection of the fitter hybrid genotypes

could scatter the clines that make up a hybrid zone,

invalidating inferences made assuming concordance.

In the extreme, fit hybrid genotypes might escape

from the hybrid zone (perhaps with the aid of random

drift) to found a recombinant species (Rieseberg,

1995; McCarthy et al., 1995; Arnold, 1996).

In this paper, we examine the robustness of

inferences to different degrees of epistasis. We con-

centrate on disruptive selection on a single additive

trait, which is just the proportion of genes derived

from one of the parental taxa. This model is chosen

for two reasons. First, this makes it possible to

compare approximations with exact deterministic

calculations, avoiding the (considerable) difficulties

introduced by random drift in individual-based

simulations. Secondly, this model seems most likely to

introduce systematic distortions in cline shape:

depending on the pattern of epistasis, the marginal

selection on each allele may become much weaker or

stronger towards the centre of the hybrid zone. We

leave aside the important questions of whether

speciation involves transition via a chain of fit

genotypes, and how new species may descend from fit

hybrids. We concentrate on ‘endogenous selection’,

in which selection acts against hybrids regardless of

location. A similar analysis can be carried through for

‘exogenous selection’, where different genotypes are

favoured in different places ; again, this is an important

issue for future work (see Kruuk et al., in press).

Our analysis is based on a series of approximations,

each of which is compared with exact results. The first,

and most accurate, level of approximation is to

represent migration between neighbouring demes by

diffusion through a continuous habitat, and discrete

generations by continuous time. Next, the variance of

the trait is divided into a genic contribution, de-

termined by allele frequencies, and a component due

to pairwise linkage disequilibria (Bulmer, 1985) ; the

linkage disequilibria are taken to be in a ‘quasi-

equilibrium’ between dispersal and recombination.

We then reduce the dynamics of the 2n haploid

genotype frequencies to those of the trait mean and

variance. This requires that the n loci are equivalent,

and that the distribution of the trait be determined by

the mean and variance. Since the trait we consider is

bounded by fixation for one or other set of parental

alleles, and since linkage disequilibria may be strong,

it is not adequate to assume a normal distribution; we

take the more general approach of assuming a Beta

distribution, or its discrete analogue. Finally, and

most difficult, we consider ways of simplifying

calculation of the selection response, using various

kinds of selection gradient. Thus, as well as examining

issues peculiar to hybrid zones, this paper can be seen

as a more general examination of alternative approxi-

mations to multilocus systems.

We first consider the effect of epistasis on allele

frequencies alone. Even in the absence of linkage

disequilibria, epistasis is still important, because it

influences the marginal effects of each allele, and

therefore distorts multilocus clines. We then ask

whether linkage disequilibria can be approximated by

assuming a short-term ‘quasi-linkage equilibrium’

between dispersal and recombination, disregarding

the associations among loci generated directly by
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epistasis. Next, we find whether the barrier to gene

flow at a neutral locus, which is determined from the

shape of the cline at that locus, can be predicted from

the pattern of mean fitness, in the presence of epistasis.

Finally, we find how the width of the selected clines,

and hence the number of genes inferred from

observations on neutral markers, depends on the

pattern of epistasis.

2. Methods

In making exact calculations, we assume no linkage

between any of the n genes ; this ensures that there is

a symmetrical solution, in which all loci are equivalent.

We assume that selection acts on the viability of

diploid individuals, which depends solely on an

additive trait, p. This is just the proportion of selected

genes derived from one of the parental taxa. Individual

fitness is chosen as W¯ exp[®S (4pq)β] (as in Barton

& Gale, 1993), so that the least fit genotype has fitness

e−S. Throughout, S is a measure of the total selection

acting, while sCS}n refers to the selection on each of

n loci. The nature of epistasis depends on the

parameter β. For β(1, fitness drops only for

genotypes close to intermediate, whereas for β'1, it

is depressed by a slight amount of introgression (Fig.

1).

Exact deterministic calculations can be done if one

assumes that all loci are equivalent, and that each

carries either ‘0 ’ or ‘1 ’ alleles. Then, one need only

follow the frequency of haplotypes carrying k¯ 0, 1,

…n ‘1 ’ alleles. More precisely, one must assume that

all genotypes are equally frequent, for a given p¯k}n

(Kondrashov, 1984; Barton, 1992; Doebeli, 1996;

Shpak & Kondrashov, 1998). This requires that there

be no linkage, and that selection acts only on p. These

conditions are not, however, sufficient : for example,

with stabilizing selection in a single population, this

1

0·5

0

W

0 p 1

β=0·25

β=4

Fig. 1. Individual fitness, W¯ exp[®S(4pq)β], plotted against the trait, p ; S¯ 2, β¯ 0±25, 0±5, 1, 2, 4 (bottom to top).

symmetrical solution is unstable, and the population

fixes for any combination that approaches the optimal

phenotype (Wright, 1935). The symmetrical solution

is stable for certain forms of disruptive selection, but

it is not known how generally it is valid. In a hybrid

zone, some kinds of epistasis can cause clines to

become staggered (e.g. Hatfield et al., 1992; see

Barton & Shpak, 2000).

Suppose that selection acts on diploids. We must

follow the number of ‘1 ’ genes inherited from the

mother and father, respectively, ²i, j´. Given the

assumption that genotypes are equiprobable, con-

ditional on ²i, j´, we can calculate the expected

heterozygosity of an ²i, j´ individual, B
hri,j

, and hence

can allow selection to act both against heterozygotes,

against recombinants (with intermediate i­j) and in

relation to environment. The proportion of gametes

carrying k ‘1 ’ alleles is (Barton, 1992) :

g$
k
¯ 3

n

i="

3
n

j="

3
min[i,j]

"=max[!,i+j−n]

0 h

k®11 0
1

21
h

,

B
hri,j

W
i,j,h

Wa g
i
g
j
, (1)

where

h¯ i­j®2l,

B
hri,j

¯
0 i11 0

n®i

j®11
0nj1

,

Wa ¯ 3
n

i="

3
n

j="

B[h r i, j]W
i,j,h

g
i
g
j
.

The sum here is over l, which is the number of loci

homozygous for ‘1 ’ alleles ; this is related to the

number of heterozygous loci by h¯ (i­j®2l ). Note

that if the number of ‘1 ’ alleles in the diploid zygote

is even, then so is the number of heterozygous loci,

and vice versa. Thus, h changes in steps of 2, as the
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degree of overlap, l, changes in steps of 1. The simplest

interpretation of (1) is that mating is random, so that

the frequency of ²i, j´ zygotes is g
i
g
j
, and that diploid

viability, W
i,j,h

, depends both on the number of ‘1 ’

alleles inherited from either parent, ²i, j´, and the

number of heterozygous loci, h. However, W
i,j,h

g
i
g
j

might more generally represent the relative con-

tribution of ²i, j´ genotypes, including non-random

mating among haploids (see Barton & Turelli, 1991).

Equation (1) specifies a symmetrical solution in

which all haplotypes with a given number of ‘1 ’ alleles

are equally frequent. However, even when all evol-

utionary processes act symmetrically, this symmetrical

solution may be unstable towards asymmetrical

fluctuations. For example, stabilizing selection on a

set of unlinked loci causes fixation of any genotype

with phenotype at the optimal value; if this is not

possible, at most one locus may remain polymorphic,

so as to bring the mean close to the optimum (Wright,

1935). The symmetrical solution involves poly-

morphism at all loci, and so gives a much higher

variance than any of the stable equilibria. The stability

of the symmetrical solution depends on a 2n¬2n

matrix, whose elements are the derivatives of new

genotype frequencies with respect to changes in

genotype frequency. Barton & Shpak (2000) show

how this matrix can be reduced to the product of

matrices, each of dimension no more than

(n­1)¬(n­1) ; the method extends to spatially

structured models. We have used this method to check

that the symmetrical solutions derived below are

stable, for β¯ 0±25, 1, 4 and S¯ 0±1, 1. In every case,

the leading eigenvalue is close to 1, reflecting neutral

shifts of the whole cline to left or right. (The slight

deviation from 1 arises because the spatial range is

finite.)

The exact model of (1) extends to include an

unlinked neutral locus. We now follow u
i
, the

frequency of a neutral allele at the marker locus,

within gametes carrying i ‘1 ’ alleles at the n selected

loci. Since the frequency amongst offspring from a

union between gametes in classes i and j is just

(u
i
­u

j
)}2, we have:

u$
k
g$
k
¯ 3

n

i="

3
n

j="

(u
i
­u

j
)

2

3
min[i,j]

"=max[!,i+j−n]

0 h

k®11 0
1

21
h

B
hri,j

W
i,j,h

Wa g
i
g
j
. (2)

A similar approach was used by Barton (1995) to

follow the probability of fixation of a rare selected

allele, given selection on n other loci. Equation (2)

could readily be extended to find the probability of

identity by descent of a pair of neutral genotypes

drawn from different genetic backgrounds, F
k,k«, or the

frequency of neutral genotypes at two or more

unlinked marker loci. Algorithms for simulating

the exact model in a cline are available from

http:}}helios.bto.ed.ac.uk}evolgen}, as a set of

Mathematica 3.0 packages.

In our analytical approximations, we take space

and time to be continuous. The effects of selection and

gene flow are added, the latter being represented by a

diffusion equation. The equation for the change in

allele frequencies or, equivalently, the mean, p- , of the

additive trait p, is :

¦pa
¦t

¯ 0¯
σ#

2

¦#pa
¦x#

­∆pa
s
, (3)

where ∆pa
s
is the change due to selection. The change

in genotype frequency is given by a similar equation,

and leads, by a change in variables, to diffusion

equations for the linkage disequilibria (see Barton,

1983, 1986). This diffusion approximation can be

justified for a variety of discrete or continuous

population structures, in the limit where selection is

weak (Nagylaki, 1975).

The most difficult task is to approximate the change

in mean allele frequency due to selection, ∆pa
s
. This

would be trivial if the population were described in

terms of the full distribution of p. However, we wish

to describe the population in terms of the mean and

variance alone, and so must make some assumption

about the form of the full distribution. We will show

that pairwise linkage disequilibria can be approxi-

mated as being in a balance between dispersal and

recombination. We then approximate the full dis-

tribution of p by choosing some standard distribution,

with mean pa and variance determined by pa and by the

pairwise linkage disequilibria. This distribution can be

taken to be continuous, in which case we choose a

Beta distribution: this is constrained to the range 0%
p%1, and converges to the normal when the variance

is small :

ψ(p)¯
Γ[α]

Γ[αpa ]Γ[αqa ]
pαpa −"

qαqa−" where the variance is �¯
paqa

α­1
. (4)

The mean fitness can then be calculated by

integrating the product of (4) with the individual

fitness, W[p]. It is more efficient to expand W¯
e−S(%pq)

β

as a Taylor series, and integrate each term.

This gives :

Wa ¯&"

!

e−S(%pq)
β

ψ(p) dp

¯&"

!

3
¢

k=!

(®4βS )j

j !

Γ[α]

Γ[αpa ]Γ[αqa ]
pαpa +jβ−"qαqa+jβ−"dp

¯ 3
¢

j=!

(®4βS )j

j !

Γ[α]Γ[αpa­jβ]Γ[αqa­jβ]

Γ[αpa ]Γ[αqa ]Γ[α­2jβ]
. (5)
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Table 1. Comparison of �arious approximations to the selection response

β¯1}4 β¯1 β¯ 4

Deme: 11 12 13 11 12 13 11 12 13

Exact ∆pa
s

0±0519 0±0434 0±0104 0±0480 0±0371 0±0102 0±0428 0±0289 0±0071

Hypergeometric 0±0403 0±0403 0±0103 0±0459 0±0368 0±0103 0±0431 0±0294 0±0068
Beta 0±0243 0±0275 0±0083 0±0444 0±0356 0±0097 0±0427 0±0301 0±0077
Hypergeometric : L

"
0±0828 0±1000 0±0236 0±0760 0±0572 0±0137 0±0581 0±0282 0±0050

Hypergeometric : L
"
, L

#
0±0527 0±0519 0±0118 0±0506 0±0383 0±0103 0±0411 0±0306 0±0074

Beta: L
"

0±0512 0±0930 0±0462 0±0755 0±0575 0±0139 0±0569 0±0275 0±0048
Beta: L

"
, L

#
0±0323 0±0441 0±0175 0±0492 0±0379 0±0103 0±0391 0±0296 0±0071

The first row (‘Exact ∆pa
s
’) shows the change in Pa due to selection in demes 11–13, calculated exactly for a stepping-stone

model with m¯ 0±5, 20 demes, S¯1, and β¯ 0±25, 1 and 4. The simulation was run for 50 generations, by which time
equilibrium was approached, and the change due to selection was balanced by the change due to migration. The
‘Hypergeometric ’ approximation assumes that the distribution of p follows a discrete hypergeometric with observed mean
and variance. The ‘Beta’ approximation assumes a continuous Beta distribution, again with the observed mean and variance.
The following rows show approximations which include the selection gradient just on the mean (L

"
), or on the mean and the

variance (L
"
, L

#
) ; these are calculated assuming either a discrete hypergeometric distribution, or a continuous Beta

distribution.

For the parameter values used here (S% 2), only the

first few terms in (5) need be included.

A more accurate approximation is to take p to

follow a discrete distribution, ψ
i
, with i¯ 0, 1}2n,…,

1 ; a natural choice is a hypergeometric distribution,

which is obtained by binomial sampling from an

underlying Beta distribution:

ψ
i
¯ 02n

i 1
(αpa )

i
(αqa )

#n−i

(α)
#n

(6)

where the variance is

�¯ paqa 0 1

α­1
­

1

2n1
and

(α)
#n

3α(α­1)… (α­2n®1).

With this discrete distribution, and with moderate

numbers of genes, it is most efficient to find the mean

fitness by summing (6) directly. These choices are

arbitrary: there is no guarantee that the form of the

actual distribution of p approaches a Beta or

hypergeometric distribution in the limit of (say)

extreme allele frequency or weak selection. However,

these forms are at least mathematically tractable.

By assuming that loci are equivalent, we have

reduced the dynamics from those of 2n haplotype

frequencies to the distribution of a single trait, p. The

dynamics can be further simplified to those of a single

variable, pa , by assuming a form for the distribution of

p, and approximating its variance by assuming that

pairwise linkage disequilibria are generated primarily

by dispersal. The remaining problem, therefore, is to

find the change in mean, pa , due to selection. This can,

of course, be calculated directly : the distribution of p

after selection is equal to the distribution before

selection, multiplied by the relative fitness, W}Wa .
Table 1 compares the exact change in mean due to

selection, calculated using the actual equilibrium

distribution of p, with that assuming a discrete

hypergeometric, or a continuous Beta distribution.

Both are accurate for β¯1, 4. However, for β¯ 0±25,

the continuous Beta approximation becomes inac-

curate. This is because fitnesses change sharply near to

fixation for β!1 (Fig. 1).

It would be useful to find an approximation to this

exact selection response which would give a more

intuitive understanding, and which would be ana-

lytically tractable. For an additive trait with a

Gaussian distribution of breeding values, the change

in mean is just equal to the product of the genetic

variance and the selection gradient on the mean, ¦
pa

log[Wa ] (Lande, 1976). However, the use of selection

gradients to describe selection on non-Gaussian

distributions requires considerable care. In general,

the response of a multilocus system to selection is

proportional to a set of selection gradients, which are

the partial derivatives of log mean fitness with respect

to the variables that describe the system. (For a full

discussion, see Turelli & Barton (1994).) For example,

if we choose to describe the full system in terms of the

allele frequencies, p
i
, and linkage disequilibria, D

ij
,

D
ijk

,…, the selection response will be proportional to

the gradients ¦
pi

log[Wa ], ¦
Dij

log[Wa ], ¦
Dijk

log[Wa ],….

If we consider just the distribution of diploid

phenotypes, p¯ 0, "

#n
,…,1, then the description can

be reduced to the 2n moments of this distribution, C
k

®E[(p®pa )k]. Then:

∆pa ¯ 3
#n

k="

C
k+"

¦ log[Wa ]
¦C

k

. (7)

Note that moments of order higher than 2n can be

expressed in terms of lower-order moments, and so
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are redundant. The selection gradient ¦
Ck

log[Wa ] is the

partial derivative of log mean fitness with respect to

the kth moment, keeping all other moments constant.

For a continuous distribution, this is just proportional

to the kth derivative of the fitness, evaluated at the

mean:

¦ log[Wa ]
¦C

k

¯
1

k !Wa
¦kW

¦pa k )
pa

. (8)

For a distribution which is close to Gaussian, it is

more convenient to describe the distribution in terms

of the cumulants, K
i
, since the higher cumulants are

small. The change in mean due to selection is then

given exactly by:

∆pa ¯ 3
#n

k="

K
k+"

¦ log[Wa ]
¦K

k

. (9)

The selection gradient ¦
Kk

log[Wa ] is the partial

derivative of log(mean fitness) with respect to the kth

cumulant, keeping all other cumulants constant. For

a continuous distribution, this is just proportional to

the kth derivative of the mean fitness, with respect to

translations of the distribution. The selection gradient

on the cumulants can also be expressed as being

proportional to the expectation of the kth derivative

of the individual fitness :

¦ log[Wa ]
¦K

k

¯
1

k !Wa
¦kWa

¦pa k
¯

1

k !Wa E9¦kW

¦pk : . (10)

These results can be obtained by expanding W as a

Taylor series ; see Turelli & Barton (1994).

Considerable difficulties arise in applying selection

gradients based on either moments or cumulants to

discrete distributions, especially when the fitness

functions are not smooth (β!1 ; Fig. 1). For a

smooth fitness function, (7)–(10) are almost exact :

approximating the selection gradient by (7) or (9)

involves approximating the fitness function by a 2nth-

order polynomial. However, this approximation

breaks down when there are sharp changes in fitness

between adjacent values of p ; this is a problem when

β!1 (Fig. 1). Even with a smooth fitness function (β

&1), the sums in (7), (9) do not converge quickly:

neglecting selection on the variance and higher

moments is therefore inaccurate. Finally, with

gradients based on cumulants, the method breaks

down altogether, because even for plausible fitness

functions, the expectation of the kth derivative of

fitness can be infinite : see (10). Although the fitnesses

realized by discrete genotypes p¯ 0, 1}2n,… ,1 can

take reasonable values, the continuous function from

which they are calculated may have derivatives that

approach infinity at p¯ 0, 1.

For distributions which are close to a continuous

Beta, or a discrete hypergeometric, selection gradients

are best defined with respect to those distributions.

The selection gradient with respect to the mean is now

defined as the partial derivative of log(mean fitness)

with respect to changes in the mean, keeping the

variance fixed, and keeping the distribution in the

chosen form. The selection gradient with respect to

the variance is defined in a similar way. (We do not

consider selection gradients on higher moments here :

these could be defined by considering deviations of the

higher moments away from the specified form.) The

change in mean due to selection on the mean and

variance is then given by the first two terms of (7) or

(9) ; these are equivalent since the second and third

cumulants are the same as the corresponding central

moments. This can be seen as an extension of the

traditional assumption in quantitative genetics that

the breeding value follows a Gaussian distribution;

the Beta or hypergeometric forms are appropriate

when, as here, the trait is confined to the range ²0,1´,
and when allele frequencies may approach fixation.

Table 1 compares the exact selection response with

that calculated using the first two selection gradients

(L
"
,L

#
), or just the selection gradient on the mean

(L
"
). Accounting for selection on the mean and

variance is accurate, for both the discrete hyper-

geometric and continuous Beta approximations.

However, accounting for selection on the mean alone

is inaccurate. Thus, the response to selection depends

on selection on both the mean and variance, and is

mediated by the skew as well as by the additive genetic

variance (7, 9).

3. Allele frequency clines

In this and the following sections we set out diffusion

approximations for cline shape, following Barton

(1983, 1986). If selection is weak relative to re-

combination, then linkage disequilibria can be

neglected. Assume linkage equilibrium, and assume

that all allele frequencies are equal to pa ; the variance

of p is then �¯ paqa}2n. Multiply both sides of (3) by ¦
x

pa and integrate :

σ#

4 0
¦pa
¦x1

#

¯®&pa

!

∆pa
s
dpa «. (11)

The form on the right is valid only if fitness does not

depend explicitly on position.

At linkage equilibrium, and with large numbers of

genes, higher moments are negligible (C
k
C n"−k), and

so it may be accurate to consider just the first selection

gradient : ∆pa
s
¯ �¦

pa
log[W[pa ]]. A more drastic simpli-

fication, which applies when n is large enough that the

variance around the mean is small, is that the mean

fitness is equal to the fitness of an individual at the

mean (¦
pa
log[Wa ]¯ ¦

pa
log[W[pa ]]) ; then, the selection

gradient on the mean is ¦
pa
log[Wa ]¯ ¦

pa
W[pa ]}Wa .
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Fig. 2. Cline width, plotted against selection strength S
for epistasis β¯ 0±25, 1, 4. The dots show values from the
exact model, with n¯10 genes, and m¯ 0±5, starting
from a sharp step. Width is scaled relative to σ, which
here is equal to om¯o0±5 deme spacings. This model
was run for 40}S generations for S! 0±8, and 50
generations for S" 0±8; there were C 20}oS demes for S
!1, and 20 demes for S"1. Selection acts on diploids,
and is followed by migration of diploid adults ; allele
frequencies are measured in the gamete pool. The thin
continuous line shows the approximation in which the
selection response is calculated for a population following
a discrete hypergeometric distribution, with linkage
equilibrium variance paqa}n. The thick continuous curve is
calculated in the same way, but accounts for the pairwise
linkage disequilibrium generated by dispersal. The dashed
lines show various approximations to the selection
response; all allow for the increased variance in p due to
pairwise linkage disequilibrium. The thick short dashed

Substituting W[pa ]¯ exp[®S(4 paqa )β] into (11), and

assuming that Wa C1, gives :

nσ#

2S 0
¦pa
¦x1

#

¯
β

4(β­1)
(4 paqa )β+" (12)

We define the width of the cline, w, as the inverse of

the maximum slope. In this symmetrical model, the

maximum slope is at pa ¯ 0±5; thus, the simple

approximation of (12) gives

w¯ 2σ ’ 0 n

2S

(β­1)

β 1.
For large β, where fitness is reduced only for

intermediate individuals (upper curves in Fig. 1), the

cline width approaches

2σ ’ 0 n

2S1.
For small β, where fitness is reduced by even slight

introgression (lower curves in Fig. 1), the cline

becomes wide

0wU 2σ ’ n

2Sβ1.
This is because for small β there is little selection

amongst the genotypes found at the centre, and so the

clines there are shallow.

For β¯1, the simple approximation

w¯ 2σ ’ 0 n

2S

(β­1)

β 1¯ 2σ ’ n

S

is very close to that derived from (11), assuming a

discrete hypergeometric distribution and linkage equi-

librium. This is because the variance around the mean

makes little difference to the selection gradients when

the fitness varies smoothly with p. However, for β¯
0±25, (12) predicts a width 20% greater than (11), and

for β¯ 4, a width 12% narrower. The error arises

because the fitness function W(p) varies sharply with

p when β is far from 1 (Fig. 1), and so variation

around the mean has a substantial effect on the

selection response. In the following, therefore, we

concentrate on approximations which take account of

variation in p.

Fig. 2 shows how cline width decreases as selection

becomes stronger, for three values of β. The thin

line approximates p to a continuous Beta distribution.
The long dashed line further approximates this
continuous distribution by assuming that the mean fitness
equals the fitness of an individual at the mean, pa . The
thin short dashed line assumes a discrete hypergeometric
distribution, but allows only for the selection gradient on
the mean, ¦

p
log[Wk ].
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Fig. 3. The width of a cline maintained by epistasis W¯
exp[®S(4pq)β], plotted against the parameter β. The
curves correspond to those in Fig. 2.

continuous curve in Fig. 2 shows the prediction

derived from (11), assuming a discrete hypergeometric

distribution and linkage equilibrium. This scales

almost precisely with 1}oS, giving a straight line on

this log–log plot. In the limit of weak selection, this

agrees well with the exact solution for n¯10 genes,

calculated by iterating (1) from an initial sharp step

(dots in Fig. 2). As selection becomes stronger, the

clines become narrower than predicted by (11),

because linkage disequilibria inflate the variance of p,

and hence increase the response to selection. Fig. 3

shows the dependence of cline width on epistasis, β,

for selection S¯ 0±25. Even for such weak selection,

the clines are substantially narrower than expected at

linkage equilibrium (compare the continuous line with

the dots). We consider the effects of linkage dis-

equilibrium in more detail below.

Since (11) gives the gradient of pa as a function of pa ,
it can be integrated to give distance as a function of pa ,
and hence cline shape. Mean allele frequency is

plotted on a logit scale (i.e. log(p}q)) against distance

(scaled to σ) in Fig. 4 for weak selection (S¯ 0±25),

and in Fig. 5 for strong selection (S¯1). (The logit

scale is chosen because it expands the tails of the cline,

and because simple models of single-locus clines give

approximately straight lines on this scale.) For all

values of β, there is close agreement with the linkage

equilibrium prediction for S¯ 0±25 (compare the thin

continuous line with the dots in Fig. 4). However, for

stronger selection (S¯1 ; Fig. 5) the clines are

narrowed substantially by linkage disequilibria. For

small β, where fitness is reduced by even slight

introgression (lower curves in Fig. 1), alleles rapidly

approach fixation at the edges. Indeed, under the

simplest approximation, where the selection gradient

is calculated from the fitness of a mean individual

(12), fixation is reached at a finite distance. For β¯
1, the cline is close to a straight line on a logit scale,

p

p

0·99

0·9

–20 –10 10 20x

0·1

0·01

0·9

0·99

p

–20 –10 10 20x

0·1

0·01

0·9

0·99

–20 –10 10 20x

0·1

0·01

β=0·25

β=1

β=4

Fig. 4. Allele frequency is plotted against distance, for
epistasis β¯ 0±25, 1, 4 ; note the logit scale on the vertical
axis. Selection is S¯ 0±25, and distance is scaled relative
to σ. The filled circles show the exact solution, starting
with a sharp step and iterating for 800 generations. The
curves show various approximations, and are labelled as
in Figs 2, 3.

and so has a similar shape to other simple models of

clines (Barton & Gale, 1993). For large β, where

fitness is reduced only for intermediate individuals

(upper curves in Fig. 1), the marginal selection on

each allele is weak near the edges of the cline (pa '1),

and increases towards the centre. This induces a sharp

step in the cline, qualitatively similar to what would be

produced by a localized barrier to gene flow, or by

linkage disequilibria. This step forms slowly, since

introgression out to the tails of the cline is essentially

neutral for β"1 : although the central region
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Fig. 5. As for Fig. 4, but with stronger selections (S¯
10).

approaches equilibrium in approximately 50

generations for S¯ 0±25, the tails only equilibrate

after approximately 500 generations.

4. QLE approximations for linkage disequilibrium

Now, consider the effect of linkage disequilibria. For

the moment, we represent the population in terms of

allele frequencies and linkage disequilibria, rather

than the distribution of the trait p. Throughout, we

refer to the proportion of P alleles in an individual as

p, and the mean of that additive trait in the population

as pa . We refer to allele frequencies at a particular locus

i as p
i
, and to linkage disequilibria between loci i and

j as D
ij
. If selection and recombination are both weak,

the diffusion approximation gives

¦D
ij

¦t
¯®r

ij
D

ij
­

σ#

2

¦#D
ij

¦x#

­σ#
¦p

i

¦x

¦p
j

¦x
­3

k

D
ijk

2

¦ log[Wa ]
¦p

k

­3
k,"

(D
ijkl

®D
ij
D

kl
)

2

¦ log[Wa ]
¦D

kl

­… (13)

(Barton, 1986 equation 8b). The first term on the right

is due to recombination at a rate r
ij

between loci i and

j. The second term represents the diffusion of linkage

disequilibria from place to place. The third term is due

to dispersal, which mixes populations with different

allele frequencies, and therefore generates associations

between loci, D
ij
, by the Wahlund effect (Li & Nei,

1974; Barton, 1979). The fourth term is due to

selection on locus k, which has an indirect effect on the

association between i and j through the three-way

association D
ijk

. The sum includes the special cases k

¯ i and k¯ j ; with two alleles at each locus, D
iij

¯®(p
i
®q

i
)D

ij
, and D

ijj
¯®(p

j
®q

j
)D

ij
. The fifth

term represents the effect of epistatic selection on

associations between k and l ; terms representing

selection for higher-order associations have been

omitted. Again, this includes special cases such as

k¯ i and k¯ j ; for example, with two alleles at each

locus, D
ijij

¯ p
i
q
i
p
j
q
j
­(p

i
®q

i
) (p

j
®q

j
)D

ij
. Higher-

order terms arise from higher-order disequilibria.

If recombination is much faster than selection, then

the population will rapidly approach a ‘quasi-

equilibrium’, that is, a short-term balance between

recombination and the forces generating linkage

disequilibria (Barton & Turelli, 1991 ; Nagylaki, 1993).

Since the latter are O(s) (where s is a measure of the

strength of selection on each locus), linkage dis-

equilibria are O(s}r)'1. To leading order in s}r :

D
ij
¯

1

r
ij

0σ#
¦p

i

¦x

¦p
j

¦x
­p

i
q
i
p
j
q
j

¦ log[Wa ]
¦D

ij

1­O00sr1
#1. (14)

Here, the selection terms have simplified dramatically,

because the leading contribution to associations

between loci i and j comes from the pairwise epistasis

specifically for that association (k, l¯ i, j or j, i ;

Barton, 1986; Hastings, 1986). If one or both of the

loci i or j are neutral, or if there is purely directional

selection on them (i.e. multiplicative selection), (14)

simplifies to

D
ij
¯

σ#

r
ij

¦p
i

¦x

¦p
j

¦x
­O00sr1

#1. (15)

Equations (14), (15) rest on the diffusion ap-

proximation, and therefore require that r'1. For

loose linkage, disequilibria change appreciably
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Fig. 6. Dark circles show the linkage disequilibrium, at
the centre of the hybrid zone between two selected loci,
plotted against selection S for epistasis β¯ 0±25, 1, 4.
Light circles show linkage disequilibrium between a
neutral marker and a selected locus. Linkage disequilibria
are measured in the gamete pool. These values are based
on the exact model of 10 unlinked loci, run as for Fig. 2.
Different neutral alleles were held fixed at either end of
the range. The continuous curves show the QLE
approximation, allowing only for the contribution from
dispersal (15). The dashed curves show the full QLE
approximation for the disequilibrium between selected
loci, which included a small contribution from epistasis
(14). These QLE predictions are calculated from the
actual mean fitness under the exact model.

through the life cycle ; consequently, the approxi-

mation to continuous time implied by the diffusion

equation may be inaccurate. Changes through the life

cycle can be understood as follows. Let D
ij

be the

association between loci i and j in gametes. Im-

mediately after random union, the association between

two genes derived from the same gamete is also D
ij
.

The association between genes derived from different

gametes is zero; following Barton & Turelli (1991), we

denote this cross-genome association by D
ij
¯ 0.

Suppose that migration of diploid individuals

increases the association between two genes derived

from the same parent by ∆
m

D
ij
. Assuming equal

genotype frequencies across the sexes, there is an

equal increase in the association between two genes

derived from different parents (∆
m

D
i,j

¯∆
m

D
ij
).

Recombination exchanges associations within

genomes for associations across genomes; hence, the

association in the next generation of gametes is

D$
ij
¯ r

ij
∆

m
D

i,j
­(1®r

ij
) (D

ij
­∆

m
D

ij
)

¯ (1®r
ij
)D

ij
­∆

m
D

ij
.

At equilibrium, D
ij
¯∆

m
D

ij
}r

ij
in the gamete pool.

Immediately after dispersal, the association between

genes from the same parent is ∆
m

D
ij
(1­1}r

ij
), and

the cross-genome association is ∆
m

D
ij
. We take ∆

m
D

ij

to be given by the diffusion approximation, in which

case (15) is valid for the gametic associations. Kruuk

et al. (in press) show that, in the absence of selection,

the QLE linkage disequilibrium is indeed given by

(15), if it is measured in gametes, or before dispersal

of diploid adults.

The contribution of epistasis to pairwise linkage

disequilibrium, and hence to the variance of the

additive trait, p, can be found using the QLE

approximation (14). Since n(n®1)}2 pairs of genes

contribute to the mean pairwise linkage dis-

equilibrium, Da , and since the variance in p is

�¯
paqa­(n®1)Da

2n
,

the selection gradient on linkage disequilibrium is

¦ log[Wa ]
¦D

ij

¯
2

n(n®1)

¦ log[Wa ]
¦Da ¯

1

n#

¦ log[Wa ]
¦�

. (16)

Fig. 6 shows that (15), which neglects this direct

contribution from epistasis, is an excellent approxi-

mation, even for loose linkage (r
ij
¯ 0±5) and strong

selection, and even for associations between selected

loci, where epistasis would be expected to contribute

to the disequilibrium (second term in 14). The dashed

curves in Fig. 6 were calculated by substituting (16)

into (14); they show that epistasis makes a negligible

contribution to linkage disequilibrium. Barton (1986)

argued that with large numbers of loci, the gradients

in allele frequency are maintained to some degree by

selection on all the loci, and so increase faster with n

than does the contribution from epistasis between any

particular pair of loci. This argument assumed that

the epistatic coefficient, ¦
Dij

log[W ], in (14) is of the

same order in n as the directional selection coefficient

which generates the gradients in allele frequency. That

is reasonable if interactions are between small numbers

of genes. However, if all genes interact via one trait, as

here, pairwise epistasis must decrease as 1}n#, whereas

directional selection decreases as 1}n (16). This is a
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stronger effect than that identified by Barton (1986).

Fig. 6 shows that, at least with the kind of epistasis

assumed here, the contribution of epistasis to dis-

equilibrium is negligible even with as few as n¯10

genes.

5. The effect of linkage disequilibria on neutral allele

frequencies

The positive linkage disequilibria generated by dis-

persal allow selection on all the loci to act on each

locus, and therefore sharpen clines in allele frequency.

This sharpening further strengthens linkage disequi-

libria, leading to a positive feedback which can

generate a sharp step at the centre of a set of

multilocus clines (Barton, 1983). This process can also

be viewed at the level of the trait, p. Dispersal between

populations with different means inflates the genetic

variance, reflecting increased linkage disequilibrium.

This increased variance speeds the response to

selection, sharpening clines and thus further inflating

the variance. We first examine the effect of linkage

disequilibria on a neutral cline (following Barton,

1986), and then turn to the more complicated question

of the effect on selected clines.

Consider a neutral locus, i. The diffusion equation

for allele frequencies (3) now includes terms due to

linkage disequilibrium with all the selected loci, and

with all the selected sets of loci :

¦p
i

¦t
¯

σ#

2

¦#p
i

¦x#

­3
i1j

D
ij

2

¦ log[Wa ]
¦p

j

­ 3
i1j1k

D
ijk

2

¦ log[Wa ]
¦D

jk

…. (17)

In the limit of weak selection (s' r'1), linkage

disequilibria are generated primarily by dispersal.

Dropping terms due to selection on linkage disequi-

libria (i.e. epistasis : ¦
Djk

log[Wa ],…), and substituting

in the QLE approximation for pairwise associations

(15):

¦p
i

¦t
¯

σ#

2

¦#p
i

¦x#

­
σ#

2

¦p
i

¦x
3
i1j

1

r
ij

¦p
j

¦x

¦ log[Wa ]
¦p

j

. (18)

If we suppose that selected loci are randomly scattered

over the genome, independent of the strength of

selection on them or the steepness of the associated

clines, we can replace the recombination rates r
ij

by

their harmonic mean, ra . Provided that individual

fitness does not depend explicitly on location or on

genotype frequencies, the spatial gradient in log mean

fitness is equal to the sum Σ
j
¦
x
p
j
¦
pj

log[Wa ]. (Since

linkage disequilibria are assumed to be weak (C s}r),

terms such as ¦
x
D

jk
¦
Djk

log[Wa ] are of higher order in

(s}r).) Thus:

¦p
i

¦t
¯

σ#

2

¦#p
i

¦x#

­
σ#

2ra
¦p

i

¦x

¦ log[Wa ]
¦x

. (19)
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Fig. 7. Filled circles show the gradient in frequency at a
neutral locus which is associated with clines at n¯10
selected loci. The continuous curve shows the gradient
predicted from the mean fitness, ¦

x
p
i
CWk −"/ra (20), where

ra ¯ 0±5 for unlinked loci. Both are plotted against
distance, X, scaled relative to σon}2S. The three panels
show epistasis β¯ 0±25, 1, 4. Calculations are as for Fig.
2, with S¯ 0±5, but were run for 10 times as long, and
over 50% more demes, in order for the neutral clines to
equilibrate properly. Gradients are calculated as simple
differences between adjacent demes. The continuous curve
is a cubic spline interpolation onto the values calculated
from mean fitnesses in each deme.

At equilibrium, this integrates to give a simple relation

between the mean fitness and the gradient in frequency

of the neutral marker :

¦p
i

¦x
¯CWa −"/ra , (20)

where C is a constant determined by boundary

conditions.

Fig. 7 shows that, for S¯ 0±5, the gradient in
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neutral allele frequency is close to that predicted from

the mean fitness. However, with stronger selection the

observed gradient becomes steeper than expected

from the mean fitness. One possibility is that this

discrepancy arises from the direct effects of epistasis

on the neutral allele frequency. These are mediated by

third- and higher-order associations such as D
ijk

, and

were neglected in deriving (20). This neglect can be

justified on the grounds that epistasis has effects which

are of second order in s}r. The QLE approximation

for the three-way association, D
ijk

, is similar to (15),

and involves terms such as ¦
x
p
i
¦
x
D

jk
; since D

jk
is

order s}r, the effect of pairwise epistasis, which is

mediated by three-way associations, is of order (s}r)#.

Similarly, all higher-order disequilibria make a neg-

ligible contribution in the limit s' r, provided the

locus i is neutral or, more generally, is not involved in

epistatic interactions with any other loci (Barton,

1986). However, with strong selection, and large

numbers of loci, the effect of linkage disequilibria on

mean fitness can become substantial. For example,

with disruptive selection (Fig. 1) the positive linkage

disequilibria generated by dispersal increase the

variance in p, and hence increase mean fitness.

However, inspection of the higher-order terms shows

that these reduce the gradient in neutral allele

frequency below that expected from the mean fitness

(20). Neglecting these terms therefore cannot account

for the breakdown of (20) for S&1.

Equation (20) implies that in the centre of the

hybrid zone, where mean fitness is low, neutral clines

will be steep. Overall, the effect is to induce a step in

neutral allele frequency, proportional to the gradient

at the edge. This is just the same effect as would be

induced by a localized barrier to gene flow. The

barrier strength is defined as (Nagylaki, 1976) :

B3
∆p

i

¦
x
p
i r³¢

. (21)

Here, ∆p
i
is the step in frequency of the neutral allele

frequency due to selection on other loci, and ¦
x
p
i r+

is

the gradient in neutral allele frequency just outside the

region in which mean fitness is reduced. If gene flow is

asymmetrical, such that the gradients on either side of

the hybrid zone differ (¦
x
p
i r−

1 ¦
x
p
i r+

), two different

values of B must be defined, corresponding to gene

flow in either direction.

The definition of (21) applies to the ideal case where

the barrier to gene flow is sharply localized, so that the

gradient just outside the barrier can be measured

unambiguously. In reality, a physical barrier is spread

over some distance in which density or dispersal are

reduced, and a genetic barrier is spread over some

distance in which mean fitness is reduced. Moreover,

the neutral clines may be curved away from the

barrier. In the simulations described below, linear

clines were maintained artificially, by fixing their

endpoints at p
i
¯ 0, 1. This ensures a steady influx of

neutral alleles, and allows accurate measurement of ¦
x

p
i r³ from the difference in allele frequency between n

adjacent demes. Accurate empirical measurements of

barrier strength (e.g. Szymura & Barton, 1991) require

first that, outside the hybrid zone, neutral alleles are

changing more slowly than the timescale set by

selection within the zone, and secondly that large

samples are taken from a sufficiently long transect.

The barrier strength can be related to mean fitness

in two ways, both using (20). First, the ratio of

gradients at centre and edge depends on the relative

fitness at the centre. Defining the cline width as w¯
1}(¦

x
p
i rx=!

) :

B¯w∆p
i 0 Wa

!

Wa
−¢
1−"/r

a

, (22)

where Wa
−¢ ¯Wa

¢ is the mean fitness of the parental

taxa. (We have assumed that the parental taxa have

the same mean fitness ; if they differ, the gradients, and

hence the rates of introgression, will differ in pro-

portion to Wa −"/ra . The barrier to gene flow will be

greater for gene flow into the fitter population.) The

step in allele frequency, defined as the excess over the

allele frequency in the absence of the barrier, can be

found by integrating (20) (Barton, 1986) :

B¯&
¢

−¢
00 Wa

x

Wa
−¢
1−"/r

a

®11dx. (23)

Fig. 8 compares the prediction of (23) with exact

calculations of the barrier to flow of an unlinked

neutral marker ; the prediction is based on the actual

pattern of mean fitness found from the exact calcu-

lations. The barrier is somewhat stronger for small β,

because then, fitness is reduced over a wider range of

allele frequencies (lower curves in Fig. 1). There is a

good fit for weak selection, but with S&1 the barrier

is stronger than expected from the reduction in mean

fitness (continuous curve in Fig. 8). Indeed, when

selection becomes very strong, the predicted barrier

strength decreases (right of Fig. 8). This is because

linkage disequilibria then greatly inflate the variance

at the centre, which generates extreme individuals and

hence raises the mean fitness at the centre (upper

dashed lines in Fig. 10).

The dashed lines in Fig. 8 show the barrier strength

predicted for multiplicative selection against hetero-

zygotes (29). Fitness is defined as (1®s)k, where k is

the number of heterozygous loci, and s¯S}n.

Epistasis with β¯ 0±25 gives a stronger barrier,

because mean fitness is reduced over a wider range of

allele frequencies ; conversely, epistasis with β¯ 4

gives a weaker barrier, because fitness is only reduced

for a narrow range of genotypes. In comparing these

models, S has been defined such that the least fit

genotype has fitness C e−S. However, the mean fitness
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Fig. 8. Barrier strength is plotted against selection, S, for
epistasis β¯ 0±25, 1, 4. Barrier strength is scaled relative
to σ. The filled circles show the exact solution, run as for
Fig. 7. The continuous curve shows the diffusion
approximation of (23). The dashed lines show the barrier
strength predicted for selection against heterozygotes (29).

at the centre of the hybrid zone differs between the

models. With selection against heterozygotes, the

mean fitness is reduced to close to e−S/# at the centre,

where half the loci are on average heterozygous. In the

epistatic model, mean fitness would approach the

minimum e−S at linkage equilibrium, and with large

numbers of loci ; however, variation around the mean

trait value raises the mean fitness substantially. In

addition, the width of the region of reduced fitness

differs between the models. These factors make it hard

to predict how the barrier to gene flow will differ

between different models of selection. However, in

each case the barrier strength scales with oS, as is

reflected in the straight lines on the left of Fig. 8.

6. The effect of linkage disequilibria on selected

allele frequencies

We now consider how linkage disequilibria between

selected loci sharpen each of the clines in allele

frequency that makes up a hybrid zone. The response

of the mean allele frequency, pa , to selection is given by

a sum whose leading term is the product of the

additive genetic variance with the selection gradient

on the mean (7, 9). This applies even in the presence

of linkage disequilibria. However, the variance of p is

inflated by pairwise linkage disequilibria

0�¯
paqa­(n®1)Da

2n 1,
and higher moments by higher-order disequilibria,

which increases the response to selection, and hence

steepens the clines. As before, we replace the linkage

disequilibria by their QLE approximations. Matters

are somewhat more complicated than for a neutral

marker, because all higher-order terms now contribute

to leading order in s}r : while dispersal makes no

significant contribution to third- and higher-order

disequilibria, epistasis does (see Turelli & Barton,

1994). In order to obtain a simple expression, we

include only the disequilibrium generated by dispersal

(15), on the grounds that epistasis makes a relatively

small contribution to disequilibrium (Fig. 6). Even

with this simplification, pairwise epistasis between loci

i and j contributes via the association D
iij

¯®(p
i
®q

i
)

D
ij
. Thus, we cannot obtain a simple expression in the

limit of weak selection (s' r) ; further approximations

must be made. Terms involving coincident indices,

such as D
iij

, are small for large n, and so are dropped.

To find the variance, �, we use (15), replacing the

recombination rate r
ij

by its harmonic mean, ra . Given

the variance, and given some assumption about the

form of the distribution which determines the higher

moments, the selection response can be expressed as a

function of pa and (¦
x
pa )#. This allows (3) to be solved

numerically, using any of the various methods for

calculating the selection response discussed above

(Table 1).

An analytical expression can be obtained if the

selection response is approximated by the product of

the variance with the selection gradient on the mean.

Proceeding as for (18), the allele frequency at locus i

is :

0¯
σ#

2

¦#p
i

¦x#

­
p
i
q
i

2

¦ log[Wa ]
¦p

i

­

1

2
3
j1i

D
ij

¦ log[Wa ]
¦p

j

. (24)
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Substituting for D
ij

from (15), and replacing the

recombination rates r
ij

by their harmonic mean, ra :

0¯
σ#

2

¦#p
i

¦x#

­
p
i
q
i

2

¦ log[Wa ]
¦p

i

­

σ#

2ra
¦p

i

¦x
3
j1i

¦p
j

¦x

¦ log[Wa ]
¦p

j

. (25)

In considering the effect of linkage disequilibria on

selected loci, we must separate the effects of selection

gradients at other loci from the selection due to the

locus itself. Let WW be the mean fitness excluding the

effects of locus i, such that ¦
x
log[WW ]3Σ

j1i
¦
x
p
j
¦
pj

log[Wa ]. If all loci have the same effect, then

WW ¯Wa "−"/n, while if selection varies across loci,

WW CWa for n(1. Regarding (¦p
i
}¦x)# and WW as

functions of p
i
, and integrating:

σ#

4 0
¦p

i

¦x1
#

¯®&pi

!

ph
i
qh
i

2 0WW [ph
i
]

WW [p
i
]1

#/r
a

¦ log[Wa ]
¦ph

i

dph
i
. (26)

As in (11), (19), this integration involves the as-

sumption that fitness does not explicitly depend on

location, and neglects the change in mean fitness due

to change in variance and higher moments (¦
v
log[Wa ],

etc.), Equation (26) is an extension of (11) which

allows for the linkage disequilibria generated by

dispersal. If there are such a large number of loci

that the variance in p can be ignored, we can set

Wa CWW CW¯ exp[®S(4 pq)β]. Then:

nσ#

2S 0
¦pa
¦x1

#

¯
β

4 &
%p

a qa

!

hβ exp[2φ((4 paqa )β®hβ)] dh

¯
(2φ)−(β+")/

β e#φ(%pq)
β

4β
Γ 91β , 0, 2φ(4 paqa )β:®paqa

2φ
, (27)

where h¯ 4ph qh ,

Γ 91β , 0, c:¯& c

!

t"β−"e−t dt, φ¯
S

ra 01®
1

n1,
where p

i
¯ pa for all i. The cline width is found by

setting 4 paqa ¯1 in (27).

Figs 2–4 compare various approximations for the

cline width and cline shape. The most sophisticated is

to calculate the selection response assuming a discrete

hypergeometric distribution, with variance derived

from (15). This prediction breaks down for strong

selection (thick continuous curve at right of Fig. 2),

and there are some edge effects in the predictions for

cline shape (thick continuous curve in Figs 4, 5). The

effect of linkage disequilibrium is also overestimated

for large β (Fig. 3). Overall, however, there is good

agreement with the exact results (thick continuous line

in Figs 2–5). Allowing just for the selection gradient

on the mean (dotted curve; 26) gives a good prediction

for cline shape for weak selection (Fig. 4), but

underestimates cline width for β!1 (Fig. 3). As-

suming a continuous Beta distribution (which has the

advantage that predictions are independent of

assumptions as to n) gives good predictions for cline

width for β¯1, 4, but not for small β (short dashed

line in Fig. 3) ; this prediction for cline shape is poor

when selection is strong (Fig. 5). Making the further

assumption that the variance around the mean is

negligible (long dashed line; 27) gives fair accuracy

only for βC1 and weak selection (Fig. 2). The most

striking finding is that for a smooth fitness function (β

¯1) all these approximations perform quite well, up

to moderately strong selection (SC1). However,

fitness functions which change sharply, and especially

β!1, require a more elaborate calculation of selection

response.

The cline shape predicted by (27) can be compared

with that for multiple clines maintained by het-

erozygote disadvantage (Barton, 1983). With multi-

plicative selection s against heterozygotes, at each of n

loci, the fitness of an entirely heterozygous individual

is (1®s)n C e−S, where S¯ ns. Substituting Wk ¯
(1®2 spq)n, WW ¯Wk "−"/n into (26) gives :

nσ#

2S 0
¦pa
¦x1

#

¯
1

4φ(2φ­s)
((1®2spaqa )−#φ/s®4φpaqa®1), (28)

where

φ¯
S

ra 01®
1

n1.
Evaluating (28) at paqa ¯ 0±25 shows that the cline

width is

w¯ ’ 0 8φ#

eφ®φ®11 ’ 0
nσ#

2S 1.
Equation (28) differs from the corresponding formula

in Barton (1983),

0nσ#

2S 1 (¦
x
pa )#¯ (e%φpa qa®4φpaqa®1)}(8φ#),

which made the simplifying assumptions that

(1®2spq)n C e−#nspq and that WW CWk . However, the

formulae converge for s'φ.

Fig. 9 compares the exact model (dots) with the

prediction of (28) (continuous curves), for various

numbers of loci. There is good agreement for n¯ 20

loci up to S¯ 2, and for n¯10 loci up to S¯1.

However, for smaller numbers of loci, clines are

substantially wider than is predicted by the diffusion
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Fig. 9. Cline width, plotted against selection strength S
for selection against heterozygotes ; fitness is (1®S)n,
where k is the number of heterozygous loci, and s¯S}n.
The dots show values from the exact model, with m¯ 0±5,
starting from a linear gradient. Results are shown for n¯
1, 2, 5, 10, 20 loci. The dots are joined for clarity. Width
is scaled relative to σ, which here is equal to om¯o0±5
deme spacings. Parameters were as for Fig. 7. The
continuous curves show the prediction of (28), which
accounts for the pairwise linkage disequilibrium generated
by dispersal ; φ¯ (S}ra) (1®1}n). For n¯1, this reduces
to the prediction in the absence of linkage disequilibrium,
4σon}2S (Bazykin, 1969), which shows as a straight line
on this log–log plot.

approximation. One possible source of error is that

the mean fitness is higher than e−#Spq, because the

number of heterozygous loci varies around the

expectation, 2npq. However, at S¯1, with n¯10

loci, the mean fitness is only 1±74% higher than

expected at the centre, whereas the clines are 13±4%

wider than expected. Indeed, the discrepancy does not

arise from the effects of linkage disequilibrium,

because it is seen for a single selected locus (n¯1).

The diffusion approximation breaks down when

selection on each locus becomes strong, because the

clines are then so narrow that the approximation that

change is continuous in time and space fails. For SC
2, linkage disequilibrium is so strong that selection

acts as though on a single locus, so that cline width

becomes almost independent of the number of loci :

the cline widths converge to the same value to the

right of Fig. 9.

With disruptive selection, variation around the

population mean can substantially increase the mean

fitness, thus tending to broaden the clines and reduce

the barrier to gene flow. This effect is shown in Fig. 10,

in which mean fitness is plotted against allele frequency

across the cline, for S¯1 and n¯10 loci. The lower

curve shows the individual fitness as a function of trait

value; this would be the mean fitness of a population

with zero variance. The actual mean fitness is

substantially higher (dots in Fig. 10), because there is

considerable variance around the mean, which

generates extreme individuals with higher fitness. The

genic variance due to heterozygosity at individual loci

10
0

p

1

0·5W

β=0·25

10
0

p

1

0·5W

β=1

10
0

p

1

0·5W

β=4

Fig. 10. Fitness plotted against allele frequency at
selected loci for β¯ 0±25, 1, 4 ; S¯1, n¯10 loci. In each
graph, the lower continuous curve shows individual
fitness as a function of p ; this would be the mean fitness
of a population with zero variance. The dots show the
actual mean fitness across the cline, calculated under the
exact model, as for Figs 2, 3. The short dashed curves
show the approximation in which the mean fitness is
calculated for a population following a discrete
hypergeometric distribution, with linkage equilibrium
variance paqa}2n. The upper long dashed curves are
calculated in the same way, but account for the pairwise
linkage disequilibrium generated by dispersal, using (15).

makes a negligible contribution (lower short dashed

line in Fig. 10). Most of the variance is contributed by

linkage disequilibrium, which in turn is mostly

generated by dispersal into the hybrid zone (Fig. 6).

Thus, the mean fitness is accurately predicted from the
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variance contributed by dispersal (15; upper long

dashed curve in Fig. 10). In this example, the net loss

of mean fitness is roughly halved by the variance from

linkage disequilibrium. It is important to note that

this amelioration of selection against hybrids is for the

most part not due to selection favouring fitter gene

combinations, but rather is a fortuitous consequence

of the mixing of populations. If clines were maintained

by stabilizing selection towards a changing optimum,

one would expect the positive linkage disequilibrium

generated by dispersal to reduce fitness.

With strong selection, the increase in disequilibrium

towards the centre which generates extreme pheno-

types could in principle overcompensate for the lower

fitness of intermediate genotypes. Indeed, under the

QLE approximation for the linkage disequilibrium

generated by dispersal, and the discrete hyper-

geometric approximation to the distribution of geno-

types, the mean fitness can increase towards the

centre. This effect is seen (albeit weakly) for S¯1, β

¯1, 4 (upper dashed curves in Fig. 10). However, we

have not observed this predicted upturn in exact

calculations. First, the clines tend to move so that

there is no deme precisely at the centre (dots in Fig.

10). While selection does not maximize mean fitness in

the presence of recombination and migration (e.g.

Hastings, 1981 ; Barton & Hewitt, 1989), clines do

tend to move so as to prevent the formation of highly

unfit populations with p¯ 0±5. Secondly, the approxi-

mations break down for strong selection and small

numbers of genes, and so their predictions fail when

selection is strong enough that they predict an upturn

in mean fitness. Nevertheless, it is conceivable that for

other models of selection the increased variance at the

centre could cause a net increase in mean fitness. Even

where this is not found, the high variance at the centre

does weaken the force of disruptive selection at the

centre, and hence broadens the clines.

7. Estimating the number of genes responsible for a

barrier to gene flow

Knowledge of the number of genes responsible for

reproductive isolation is crucial for distinguishing

models of speciation. It has recently become feasible

to map such genes directly, just as for other kinds of

quantitative trait loci (Wu & Palapoli, 1994; Lynch &

Walsh, 1998). However, this approach can only be

applied where large numbers of molecular markers

can be scored from controlled crosses. An indirect

approach is to compare the net loss in mean fitness of

a hybrid population with the width of clines at

selected loci. Since the former depends on the total

selection acting, whereas the latter depends primarily

on the selection on each locus, the ratio between them

gives an estimate of gene number. The fitness (or at

least, some component of fitness) can be measured

directly (Barton & Hewitt, 1981), or can be inferred

from the distortion induced in clines for neutral

markers (Szymura & Barton, 1986, 1991). In this

section, we examine the accuracy of the latter method.

The barrier to gene flow at neutral loci, which is

reflected in distortion of neutral clines, is determined

by the pattern of mean fitness across the hybrid zone

(23). This in turn is determined by the shape of the

clines at the underlying selected loci. If selection is

spread over many loci, then each of these clines will be

wide. The barrier will be strong, primarily because

selection is spread over a longer distance; in addition,

the harmonic mean recombination rate is likely to be

lower with larger numbers of genes. Thus, a com-

parison of the net reduction in mean fitness (inferred

from 22) with the net barrier strength (from 23), gives

an estimate of the number of genes under selection

(Barton & Hewitt, 1981 ; Szymura & Barton, 1986,

1991). The net barrier strength is proportional to the

width of the region over which mean fitness is reduced

(23), and therefore to the width of the selected clines.

Hence, this method is more sensitive to the pattern of

selection than are inferences about rates of dispersal

and mean fitness. In most cases, the nature of selection

is unknown, and so estimates of gene number must be

made assuming an arbitrary model, such as multi-

plicative selection against heterozygotes. Errors there-

fore arise not only from the approximation of selection

and gene flow by selection gradients and diffusion, but

also from differences in the widths of clines maintained

in different ways. Here, we investigate the robustness

of estimates of gene number to different kinds of

selection.

For a cline maintained by multiplicative selection

against heterozygotes, the net barrier strength is

found by combining (23), (28) :

B¯φf
H
[φ,φ*] ’ 0 nσ#

2S 1, (29)

where

f
H
[φ,φ*]¯&"

!

((1®2spaqa )−φ*/s®1)o8(1­s}2φ)

o[(1®2spaqa )−#φ/s®4φpaqa®1]
dpa ,

where

φ¯
S

ra 01®
1

n1, φ*¯
S

ra
.

Equation (29) differs from the corresponding formula

in Barton (1986), which made the assumption that

(1®2spaqa )−#φ/s C e−%
φpa qa , and which did not distinguish

the coefficient φ (which describes the effect of the n®1

other loci on one of the n selected loci) from φ* (which

describes the effect of the n selected loci on the neutral

cline). However, the two formulae converge for s'1,

n(1. As the ratio of selection to recombination, φ*

¯S}ra , increases, the mean fitness, Wk , decreases, and
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Fig. 11. Barrier strength, plotted against net selection, S,
against heterozygotes ; fitness is (1®s)n, where k is the
number of heterozygous loci, and s¯S}n. The dots show
values from the exact model, with m¯ 0±5, starting from
a linear gradient. Results are shown for n¯1, 2, 5, 10, 20
loci. Barrier strength is scaled relative to σ, which here is
equal to om¯o0±5 deme spacings. Parameters were as
for Fig. 7. The thick continuous curves show the
prediction of (29), which accounts for the pairwise linkage
disequilibrium generated by dispersal. For n¯1, this
reduces to the prediction in the absence of linkage
disequilibrium, 4σon}2S (Bazykin, 1969), which shows
as a straight line on this log–log plot.

so the term (Wk −"/ra®1)¯ ((1®2spaqa )−φ*/s®1) in the

numerator increases. However, this is compensated by

the narrowing of the clines, which reduces the width of

the region over which neutral allele frequencies are

steepened. Thus, the function f
H
[φ,φ*] lies in a narrow

band (2% f
H
[φ,φ*]% 2o2 for small s). For weak

selection, the net barrier strength is close to the simple

approximation B¯ σ

ra
o2nS. For example, with n¯

10, ra ¯1}2, S¯1, there is only a 13% discrepancy

between this and (29).

Fig. 11 shows that (29) gives an accurate ap-

proximation to the net barrier strength, provided that

selection on each locus is weak enough for the power

law relation BCoS to hold (straight lines to lower

left of Fig. 11). When selection is concentrated on a

single locus, barrier strength is substantially under-

estimated for S" 0±5 (n¯1 ; lower right of Fig. 11).

However, when selection is spread across 10 or more

loci, the prediction is accurate up to SC1. The

approximations to both barrier strength (29; Fig. 11)

and cline width (28; Fig. 9) break down when selection

on each locus is so strong that the hybrid zone is made

up of only a few demes.

Since the barrier strength is approximately pro-

portional to on, a comparison with the net reduction

in mean fitness (C e−S/#, inferred from the gradient in

neutral clines ; 22) and the dispersal rate (σ, inferred

from linkage disequilibria ; 15) gives an estimate of the

number of genes, n. The coupling coefficient, φ*¯
S}ra , can be inferred from the net reduction in mean

fitness, provided that some assumption is made about

the harmonic mean recombination rate, ra . If selection

does in fact act against heterozygotes, errors in

20
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2

n ›

0·1 0·2 0·5 1 2
S

Fig. 12. The number of loci, estimated using (29), on the
assumption that selection acts against heterozygotes.
Estimates are based on clines in neutral allele frequency,
generated with selection against heterozygotes, as in Figs
9, 11. Estimates are plotted against net selection, S, for n
¯1, 2, 5, 10, 20 loci.

estimating gene number arise from two causes. First,

the minimum mean fitness is somewhat greater than

eS/#, because the number of heterozygous loci varies

around the expectation of 2pq, and because the allele

frequency in the deme nearest the centre is not equal

to 0±5. Secondly, the prediction of (29) is inaccurate

for strong selection (right of Fig. 11). Fig. 12 shows

estimates made from clines in neutral allele frequency,

using (29), where selection acts against heterozygotes

at n¯1, 2, 5, 10, 20 loci. These estimates are accurate

for weak selection, but become much too high when

selection is strong and the number of loci small (lower

right of Fig. 12). This is because the actual barrier is

then much stronger than is predicted by (29) (right of

Fig. 11). Nevertheless, when there are more than 10

loci, estimates are reasonably accurate for S!1±5,

which corresponds to a reduction in mean fitness at

the centre of e−S/#C 0±47. This is similar to the value

inferred by Szymura & Barton (1991) for the Bombina

hybrid zone.

In practice, we do not usually know how selection

acts to produce reproductive isolation; estimates of

gene number must then be made by choosing an

arbitrary null model, such as selection against hetero-

zygotes. Fig. 13 shows how estimates of gene number,

made assuming this null model, vary with net selection,

S, when the barrier is in fact maintained by epistasis

amongst n¯10 loci. With β¯1 (middle curve in Fig.

13), the estimate is close to the actual value of n¯10

for weak selection. As with underdominance (Fig. 12),

numbers are overestimated for strong selection (S"
0±75), which corresponds to a reduction in mean

fitness of e−S C 0±47. With epistasis β¯ 0±25 (upper

curve in Fig. 13), fitness is reduced for a wider range

of hybrid genotypes, and so the barrier is stronger ;

hence, the number of genes involved is overestimated

even when selection is weak (nW ¯ 20±6 �. n¯10 for S

¯ 0±1). Conversely, the gene number is underestimated

with epistasis β¯ 4 (nW ¯ 3±38 �. n¯10 for S¯ 0±1).
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Fig. 13. The number of loci, estimated using (29) on the
assumption that selection acts against heterozygotes.
Estimates are based on clines in neutral allele frequency,
generated under the epistatic model with β¯ 0±25, 1, 4.
Parameters are as in Figs 7, 8, with n¯10 loci, and are
plotted against the net selection against heterozygotes, S.

With different numbers of genes, the pattern is similar

to Fig. 12, though estimates remain independent of S

for stronger selection when more genes are involved.

In general, there is a systematic error with weak

selection when β deviates from 1.

8. Discussion

To a close approximation, there is a quasi-equilibrium

between the linkage disequilibrium generated by the

diffusion of parental gene combinations into a hybrid

zone, and its breakdown by recombination (Fig. 6).

This simple relation (15) allows the rate of diffusion,

σ#, to be estimated without any assumptions about

what kind of selection is acting. Linkage dis-

equilibrium with selected loci steepens clines at neutral

loci, and reflects a barrier to the flow of genes between

the hybridizing populations, B. The strength of this

barrier depends primarily on the net reduction in

mean fitness across the hybrid zone

(B¯&
¢

−¢

(Wk −"/ra®1) dx ; 23).

This approximation is accurate provided that selection

is not too strong (S!1, say; Figs. 8, 11), and allows

the pattern of mean fitness to be estimated from

neutral allele frequencies. Again, there is not need for

any assumptions about the nature of selection.

Predicting the shape of the selected clines, and

hence mean fitness across the hybrid zone, is more

difficult, because it does depend on the genetic basis of

fitness differences. In the model of epistasis used here,

selection coefficients tend to zero in the centre of the

hybrid zone when β'1 ; this leads to a cline which is

shallow in the centre but approaches fixation rapidly

(i.e. faster than exponentially) in the tails. Conversely,

if β(1, selection coefficients tend to zero at the

edges, and so there is a sharp central step, flanked by

shallow tails. For the intermediate caseβ¯1, selection

coefficients change smoothly, and cline shape is close

to linear on a logistic scale (Figs. 4, 5). This is a similar

pattern to that seen for selection against heterozygotes.

These distorted cline shapes are unlikely to be observed

directly. The mean fitness, which can be observed

either directly or through its effects on neutral markers,

would not be appreciably distorted even if β were far

from 1. The model of epistasis assumed here is also an

extreme one, in that fitness depends solely on the net

proportion of genes derived from one or other parental

population. If hybrid fitness were reduced by the

separate effects of several independent sets of inter-

acting genes, the average selection coefficient would

not change so drastically across the hybrid zone.

It is important to realize that because the direct

effect of epistasis in producing linkage disequilibrium

is negligible (Fig. 6), the effects of the parameter β on

cline shape and on the barrier to gene flow are not

directly due to epistasis components of fitness vari-

ation. Rather, they are due to the change in additive

selection coefficient with genetic background. The

same effects would be seen in the absence of epistasis,

if selection coefficients changed as a result of

frequency-dependence, or as a result of a changing

environment. Thus, observations on genotype

frequencies in hybrid zones do not tell us about the

epistatic variation segregating within hybrid popu-

lations, or about the relative importance of ‘en-

dogenous’ and ‘exogenous’ selection.

In order to find analytical approximations for the

shape of selected clines, the population must be

described in terms of allele frequencies rather than the

full set of genotype frequencies. This is straight-

forward, since pairwise linkage disequilibrium can be

closely approximated by a quasi-equilibrium between

dispersal and recombination (15). However, predicting

the change in allele frequency due to selection is still

not simple, because some assumption must be made

about the full distribution of genotype frequencies.

This is a general difficulty in understanding the

response of polygenic traits to selection (Turelli &

Barton, 1994). Assuming that the number of ‘1 ’

alleles follows a discrete hypergeometric distribution

gives accurate results (Table 1 ; Figs. 2–5) ; this can be

seen as an extension of the common assumption that

breeding values follow a Gaussian distribution.

However, the further approximation that the pro-

portion of ‘1 ’ alleles follows a continuous Beta

distribution is only accurate for β¯1 ; for more

extreme models of epistasis, there are sharp changes in

fitness with genotype, and so approximating to a

continuous polygenic trait is inaccurate.

The reduction in mean fitness at the centre of a

hybrid zone is a measure of the total selection acting.

In contrast, the width of the region of reduced fitness

reflects the width of each selected cline, which depends

on the selection acting on each locus. Comparison of
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the width and depth of the fitness trough (both of

which can be inferred from the shape of neutral clines)

therefore gives an estimate of the number of genes. If

selection is arbitrarily assumed to act against hetero-

zygotes, estimates will be in error by a factor which

depends on how selection actually acts (Fig. 13). In

addition, the diffusion approximation breaks down

when selection on each locus becomes so strong that

the hybrid zone spans only a few demes (Figs 12, 13).

The exact model used here assumes that all haploid

genotypes with the same number of ‘1 ’ alleles are

equally frequent ; it is thus restricted to unlinked loci.

With some degree of linkage, the harmonic mean

recombination rate will be less than 0±5, and the

barrier to gene flow correspondingly stronger. Barton

& Gale (1993) and Kruuk et al. (in press) investigated

stochastic models with linkage, and found that

predictions for linkage disequilibrium and barrier

strength are accurate up to similar selection strengths

to those seen here. However, further investigation of

the accuracy of estimates of gene number with linkage

is warranted. Note that linkage introduces additional

uncertainty in estimating gene number, since the

harmonic mean recombination rate depends on the

genetic map, and varies randomly with the actual

configuration of selected loci.

We have assumed that disruptive selection acts on

an additive polygenic trait, namely, the proportion of

alleles derived from one or other parental population,

p. The comparison of various analytical predictions

for the selection response (Table 1) may give a more

general insight into methods for approximating

quantitative traits. The properties of the cline in p may

also apply more generally : because the genetic

variance in the trait increases in the centre of the cline,

due to both linkage disequilibrium and increased

heterozygosity, the selection response increases,

steepening the clines into a sharp step. However, the

exact model used in this paper cannot describe (say)

stabilizing selection towards a changing optimum,

because the symmetrical solution is then unstable :

some loci approach fixation for ‘1 ’ alleles, and some

for ‘O’ alleles (Barton, in preparation). Stochastic

simulations are necessary for a full understanding of

clines in polygenic traits.
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