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ON FUNCTIONAL REPRESENTATIONS OF A RING
WITHOUT NILPOTENT ELEMENTS

BY
KWANGIL KOH

1. In [3, p. 149], J. Lambek gives a proof of a theorem, essentially due to
Grothendieck and Dieudonne, that if R is a commutative ring with 1 then R is
isomorphic to the ring of global sections of a sheaf over the prime ideal space of R
where a stalk of the sheaf is of the form R/0p, for each prime ideal P, and
0p={r € R | ra=0, 3a ¢ P}. In this note we will show, this type of representation
of a noncommutative ring is possible if the ring contains no nonzero nilpotent
elements. If R is a ring with 1, let X(R) be the set of prime ideals of R. For each
ideal 4 of R define the support of 4 to be {P € X(R) | AL P} and let us write this
set as supp (4). Let »={supp (4) | 4 is an ideal of R}. Then (X(R), 7) is a topo-
logical space which is compact (refer [1, p. 143]). If R is a ring without nilpotent
elements then for any prime ideal P, 0, is an ideal of R which is contained in P.
Moreover 0,=P if and only if P is a minimal prime ideal as it is in the case of a
commutative ring and, furthermore, any minimal prime ideal P is a completely
prime ideal in the sense that R/P is an integral domain. A principal result of this
note is as follows:

Let R be a ring with 1 without nilpotent elements. Then R is isomorphic to the
ring of global sections of a sheaf of rings | s x@ R/0p over X(R) where R/0; is a
ring without nilpotent elements and R/0; is an integral domain if and only if Pis a
minimal prime ideal.

2. Let Rbe aring and P be an ideal in R. Then P is called a prime ideal provided
that R/P is a prime ring and P is called a completely prime ideal provided that R/P
is an integral domain. If R is a commutative ring then a prime ideal is a com-
pletely prime ideal, however, if R is not commutative, then a prime ideal may fail
to be a completely prime ideal. If S is a nonempty subset of R, let S"={re R | sr=0
for every s € S}, S'={r € R | rs=0 for every s € S} and if S'=S" then let S+=S".

2.1. PROPOSITION. Let R be a ring without nilpotent elements and let x be a
nonzero element of R. Then {x}" is a two-sided ideal of R, {x} ={x}, x ¢ {x}, R/{x}*
has no nilpotent elements and if r € R and rx € {x}' then r € {x}\.

Proof. See [5].

2.2. PROPOSITION. (Stewart). Let R be a ring without nilpotent elements and
for each x+#0 in R, let Z(x)={I | I is an ideal of R, x¢ I, if rxeI then r € I, and
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R/I has no nilpotent elements}. Then any maximal member of Z(x) is a completely
prime ideal. In particular, {x}* is contained in a completely prime ideal.

Proof. see [5].

2.3. PROPOSITION. If P is a prime ideal of a ring R without nilpotent elements
then Op={r € R | ra=0, Ja ¢ P} is an ideal, 0,<P and R/0p is a ring without nil-
potent elements.

Proof. If ry, r; € 0p then there exist a;, a; in R\P such that r;a, =0=r,a,. Hence
by 2.1, ryRa;,=0=r,Ra,. Let a,ra, ¢ P for some r in R. Then (r,—ry)a,ra,=0.
Therefore, r, —r, € 0p. Clearly if r € 0, and x € R then rx and xr are elements of
05. It is also clear that 0,<P. If a € R such that a" € 0, for some integer », then
ay=0 for some y ¢ P. Therefore, by 2.1, (ay)"=0 and a € 05.

2.4. THEOREM. Let R be a ring without nilpotent elements. Then P is a minimal
prime ideal if and only if P=0p and in this case, P is a completely prime ideal.

Proof. Let P be a minimal prime ideal. Suppose P#0, Then there is a € P such
that a ¢ 0, since 0, <P by 2.3. Let M=R\P. Then M is an m-system, that is for
any x,ye M there is r€ R such that xrye M. Let S={a,a? a% ...} and let
T={re R| r#0, r=a"x,a*x .. .a"x,a»+1 for some nonnegative integer n where
x;€ M for j=0,1,2,...,nand iy, i, ,; are nonnegative integers and #, .. ., i, are
positive integers}. We let ra®=r=a° for any r € R. We will prove that '=M U §
U T'is an m-system. It is clear that 0 ¢ I'. Let x, y be two elements in I'. Let x € M.
If y € M or y € S then clearly there is r € R such that xry € I" since M is an m-system
and {@"}*< P for any n. For if xa"=0 for some n then (xa)(xa). . .(xa) is zero by
2.1 and this in turn implies xa=0="ax and a € 0;. This is impossible. Now let
yeT. Then y=alox,a"2,.. .a"x,a'+1 for some x, € M, i=0,...,n. Since M is
an m-system, there exist rg, 7y, 75, . . ., 1, such that xroxorix;7oXs. . .ryx, € M. Let
W=XFoXoF1X1¥aXg. . .FnXp. Let i=ig+iy+---+i,.. If wy=0 then wyeT and
therefore, xRy N I's£ . So suppose wy=0. Then by 2.1, 0=[(a'w)(a'w)...
(a'w)]/(n+2) and a'w=0 and {a'} * & P. This is impossible. A similar argument shows
that when xe SU T, xRy N '~ &. Let 4 be an ideal of R which is maximal with
respect to the property that I' " A= . Then 4 is a prime ideal and A< P and
A#P. This contradicts the minimality of P. Thus, 0,=P. Conversely, suppose
0p,=P and P’ is a prime ideal contained in P. Then for any x € P there exists
a ¢ P such that xa=0 € P’. This means that xRa=0<P’ by 2.1, and x € P’. Thus
P’=P is a minimal prime ideal of R. By 2.3 R/0; is a ring without nilpotent ele-
ments. Thus, R/0p is an integral domain.

2.5. COROLLARY. Let II be the subspace of X(R) which consists of all minimal
prime ideals of R. Then 11 is a Hausdorff space with a base of open and closed sets.

Proof. Let P, P, € Il such that P, #P,. Then by 2.4, P;=05, for i=1, 2. Hence,

https://doi.org/10.4153/CMB-1971-063-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1971-063-7

1971] ON FUNCTIONAL REPRESENTATIONS 351

0p, & P,. Let x € 0p, such that x ¢ P, and let s ¢ P, such that xs=0. Then RxRsR=0
by 2.1. Hence supp (RxR) N supp (RsR)=@ and P, € supp (RsR) and P, € supp

(RxR). Now for any a € R supp (RaR)=1II\supp ({a}*). Thus, the assertion holds
true.

2.6. PrROPOSITION. If R is a ring without nilpotent elements then the right singular
ideal of R is zero and the left singular ideal of R is zero.

Proof. If not, there is x#0 in R such that {x}* N 70 for each nonzero right
(or left in case the left singular ideal is not zero) ideal 7. In particular x* N xR#0.
Hence, there is r € R such that xr#0 but x(xr)=0=(xr)(xr) which is impossible.

2.7. EXAMPLE. A maximal right (or left) ring of quotients of a ring without
nilpotent elements may not be a ring without nilpotent elements. For example,
let R=Z/(2)[x, y], the polynomial ring in two variables x, y over the field of integers
modulo 2 such that xysyx. Then R is an integral domain such that xR N yR=0.
By [2] O.(R), the maximal right quotients of R, is a simple ring which is regular.
Hence, if Q,(R) is a ring without nilpotent elements then Q,(R) would be a strongly
regular ring and since it is simple, Q,(R) would be a division ring and xR N yR#0.

2.8. PROPOSITION. Let R be a ring without nilpotent elements and assume 1 € R.
If P is a prime ideal of R, let ﬁfP be the injective hull of the right R-module R/P.
Then 0 =(R//>) L

Proof. If (R/P)*<£0; then there is r, € (R/P) such that r, ¢ 0 and r,y#0 for
any y€ R\P. That is (roy)*<P for any ye R\P. Let T={x € R/P | x({ro,}*)=0}.
For each y € T, define f,:r,x — yx for all x € R. Then f, is an R-homomorphism
from ryR into R/P. Let f, be an extension of f, to R. Then y=f,(ro)=£,(1)r,=0
since f,(1) € R/P. Therefore, T={0}. Let b € R/P. Then b({ro})< P since {ro}*<P
and b=b+P e T={0}. This is impossible. Conversely, suppose 0,& (R/P)*. Then
(R/P)0,#0 and there exist x € (R/P), a € 0p such that xa#0. Since (R/P) is an
essential extension of R/P, xaR N R/P= N is a nonzero submodule of R/P. Hence,
there is a right ideal J in R such that J#P and J/P=N. Since a € 0p, there is
b ¢ P such that ab=0 and by 2.1, aRb=0. Therefore Nb=0. This is impossible
since P is a prime ideal. Thus (R/P)*<0,<(R/P)*.

2.9. PROPOSITION. Let S=|\Jpecxm R/0s. For each re R, define ¥ to be the
function from X(R) into S such that F{(P)=r+0p. Let U be any open set in X(R)
and let #(U)={#(P) | P € U}. Let p be the topology on S generated by {f(U) | r € R,
U is open in X(R)}. Then (S, p) forms a topological space and each point F(P,) of S
is contained in an open set which is homeomorphic to its image in X(R) under the
canonical projection F(P) — P, i.e. S is a sheaf of rings over X(R). (Refer to [4].)

Proof. Straightforward.

3.0. ProrosITION. If R is a ring without nilpotent elements and s € R, then r € 0p
for all P € supp ((5)) if and only if (s) € {r}* where (s) is an ideal generated by s.
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Proof. By 2.1, R/{r}* is a ring without nilpotent elements. Now the condition
that r €0, for all Pesupp ((s)) is equivalent to that of se€ (Nt cp, P, Where
P, € X(R). Hence, s+{r}* is an element of rad (R/{r}+), the intersection of prime
ideals of R/{r}*. Hence s € {r}".

3.1. THEOREM. If R is a ring without nilpotent elements then every section of the
sheaf S of rings over X(R) described in Proposition 2.9 has the form F for some
reR.

Proof. Let f: X(R) — S be any section. For each P € X(R), there exists r, € R
such that f(P)=F,(P). Hence, by Lemma 3.2 of [4, p. 11] there exists an open set,
say supp ((s)) for some s € R such that P e supp ((s)) and f(P")=F,(P’) for all
P’ e supp ((s)). Since X(R) is compact, there exist sy, g, ..., S and ry, rg, ..., Fp
in R such that |Jr; supp ((s;))= X (R) and f(P")=F(P’) for any P’ € supp ((s)).
Hence, for any P esupp ((s;)) N supp ((s))=supp ((s)(sy), i,j=1,2,...,m,
ri—r; € 0p. Therefore, by 3.0, s;5,(r;—r,)=0. This means that s;(r,—r,)s;(r;—r;)=0
since {s,(r;—r,)}* is an ideal and this, in turn, implies that s,(r,—r,)s;s,(r;—r;)s;=0
and s;(r;—r,)s;=0 since R is a ring without nilpotent elements. Since X(R)=J!-,
supp ((s), 1 € >™ 1 Rs;R and 1=, b;s;t; for some by, ¢; in R.

Define a=>", rb;st;. Since s(r;—r;)s;=0, by 2.1 s(r,—r;)bs;=0 for any
b,1=1,2,3,..., m. Therefore, s;r;b;s;=s;r;bs;. For any s,

Sja = Sjrlblsltl +Sjr2b2S2t2+ M +Sjr,,,b,,,smtm
= Sjrjb151t1+Sjrjb2S2t2+ e +s,r,bmsmt,,,

= s;1; (izl b,-sit,-) =s;r; and sfa—r) = 0.

Thus,
(a—ry)s; = 0.
Recall that s; ¢ P,. It follows that a—r,; € 05, and d=7, for all j=1, 2, ..., m. Thus,
f=a.
REFERENCES

1. J. Dauns and K. H. Hofmann, Representation of rings by sections, Memoirs Amer. Math.
Soc., 83, 1968.

2. K. Koh, A note on a certain class of prime rings, Amer. Math. Monthly, 72, 1965.

3. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

4. R. S. Pierce, Modules over commutative regular rings, Memoirs Amer. Math. Soc., 70.
1967.

5. P. N. Stewart, Semi-simple radical classes, Pacific J. Math. 32 (1970), 249-254.

TuULANE UNIVERSITY,
NEW ORLEANS, LOUISIANA
NORTH CAROLINA STATE UNIVERSITY,
RALEIGH, NORTH CAROLINA

https://doi.org/10.4153/CMB-1971-063-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1971-063-7

