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ON FUNCTIONAL REPRESENTATIONS OF A RING 
WITHOUT NILPOTENT ELEMENTS 

BY 

KWANGIL KOH 

1. In [3, p. 149], J. Lambek gives a proof of a theorem, essentially due to 
Grothendieck and Dieudonne, that if P is a commutative ring with 1 then P is 
isomorphic to the ring of global sections of a sheaf over the prime ideal space of R 
where a stalk of the sheaf is of the form P/0P, for each prime ideal P, and 
0P={re R\ra=0, 3a $P}. In this note we will show, this type of representation 
of a noncommutative ring is possible if the ring contains no nonzero nilpotent 
elements. If R is a ring with 1, let X(R) be the set of prime ideals of R. For each 
ideal A of R define the support of A to be {P e X(R) \ A£P} and let us write this 
set as supp (A). Let r={supp 04) | A is an ideal of P}. Then (Z(P), r) is a topo­
logical space which is compact (refer [1, p. 143]). If J? is a ring without nilpotent 
elements then for any prime ideal P, 0P is an ideal of R which is contained in P. 
Moreover 0P=P if and only if P is a minimal prime ideal as it is in the case of a 
commutative ring and, furthermore, any minimal prime ideal P is a completely 
prime ideal in the sense that R/P is an integral domain. A principal result of this 
note is as follows: 

Let R be a ring with 1 without nilpotent elements. Then R is isomorphic to the 
ring of global sections of a sheaf of rings tjpexa?) P/0p o v e r XÇK) where R/0P is a 
ring without nilpotent elements and P/0P is an integral domain if and only if P is a 
minimal prime ideal. 

2. Let R be a ring and P be an ideal in R. Then P is called a prime ideal provided 
that R/P is a prime ring and P is called a completely prime ideal provided that R/P 
is an integral domain. If R is a commutative ring then a prime ideal is a com­
pletely prime ideal, however, if R is not commutative, then a prime ideal may fail 
to be a completely prime ideal. If S is a nonempty subset of P, let Sr={r e R \ sr=0 
for every s e S}, Sl={r e R \ rs=0 for every seS} and if Sr=Sl then let S1 = Sr. 

2.1. PROPOSITION. Let R be a ring without nilpotent elements and let x be a 
nonzero element of R. Then {x}r is a two-sided ideal ofR, {x}r={x}1, x $ {x}1, Rftx}1 

has no nilpotent elements and ifreR and rx e {x}1 then r e {x}1. 

Proof. See [5]. 

2.2. PROPOSITION. (Stewart). Let R be a ring without nilpotent elements and 
for each x^O in P, let Z(x)={I\ I is an ideal of P, x$I, ifrxelthen rel, and 
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R/I has no nilpotent elements). Then any maximal member ofZ(x) is a completely 
prime ideal. In particular, {x}1 is contained in a completely prime ideal. 

Proof, see [5]. 

2.3. PROPOSITION. If P is a prime ideal of a ring R without nilpotent elements 
then 0P={r e R | ra=0, 3a $P} is an ideal, 0 P CP and P/0P is a ring without nil-
potent elements. 

Proof. If rl9 r2 e 0P then there exist al9 a2 in R\P such that r1a1=0=r2a2. Hence 
by 2.1, r1Ra1 = 0 = r2Ra2. Let axra2$P for some r in R. Then (r1 — r2)a1ra2=0. 
Therefore, r± — r2e0P. Clearly if re0P and xe R then rx and xr are elements of 
0P. It is also clear that 0 P £ P . If a e R such that an e 0P for some integer n, then 
any=0 for some y $P. Therefore, by 2.1, (ay)n=0 and a e 0P. 

2.4. THEOREM. Let R be a ring without nilpotent elements. Then P is a minimal 
prime ideal if and only ifP=0P and in this case, P is a completely prime ideal. 

Proof. Let P be a minimal prime ideal. Suppose P^0P Then there is a e P such 
that a $ Op since 0 P £ P by 2.3. Let M=R\P. Then M is an m-system, that is for 
any x,y e M there is re R such that xry e M. Let S={a, a2, a3,...} and let 
T={reR | r^O, r = aiox0a

hx.. . ^ x n a ^ + 1 for some nonnegative integer n where 
Xj e M îorj=0, 1, 2 , . . . , n and i0, in + i are nonnegative integers and il9..., in are 
positive integers}. We let ra° = r=a°r for any r e R. We will prove that T = Mu S 
u Tis an m-system. It is clear that 0 <£ T. Let x, y be two elements in T. Let x e M. 
If y e M or y e S then clearly there is r e R such that xry e T since M is an m-system 
and {an}1^P for any n. For if xan—0 for some w then (xd)(xa).. .(xa) is zero by 
2.1 and this in turn implies xa=0=nax and aeOP. This is impossible. Now let 
y e T. Then y = aiox0a

ii21.. .a^x^n + i for some xxe M, f = 0 , . . . , «. Since M is 
an m-system, there exist r0, rl9 r2,...,rn such that xr0x0r1x1r2x2.. .rnxn G Af. Let 
w=xr0x0r1x1r2X2.. .J*n*n- Let Ï = Ï'0 + ÏIH h/n+i« If wy=0 then wyeT and 
therefore, x P y n I V 0 . So suppose wy=0. Then by 2.1, 0 = [(a<w)(ûivv)... 
(a'w)]/(w + 2) and ^w = 0 and {«i}15ÉP. This is impossible. A similar argument shows 
that when xe Su T, xRy n I V 0 . Let t̂ be an ideal of P which is maximal with 
respect to the property that V r\ A=0. Then A is a prime ideal and >4çP and 
4̂ ^ P. This contradicts the minimality of P. Thus, 0 P =P. Conversely, suppose 

0 P = P and P' is a prime ideal contained in P. Then for any x e P there exists 
a $P such that x a = 0 e P ' . This means that xRa=0^P' by 2.1, and xeP'. Thus 
P'=P is a minimal prime ideal of P . By 2.3 P/0P is a ring without nilpotent ele­
ments. Thus, P/0P is an integral domain. 

2.5. COROLLARY. Let U be the subspace of X(R) which consists of all minimal 
prime ideals of R. Then II is a Hausdorjf space with a base of open and closed sets. 

Proof. Let Pl9 P2eU such that P i ^ P 2 . Then by 2.4, Pi = 0Pj for i= 1, 2. Hence, 
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0P l£P2- Let x G 0Pl such that x $ P2 and let s $ Px such that xs=0. Then RxRsR=0 
by 2.1. Hence supp (RxR) n supp (RsR) = 0 and Px G supp (ifaR) and P2 G supp 
CRxIQ. Now for any aeR supp(RaR) = II\supp({a}1). Thus, the assertion holds 
true. 

2.6. PROPOSITION. If Ris a ring without nilpotent elements then the right singular 
ideal of R is zero and the left singular ideal of R is zero. 

Proof. If not, there is x^O in R such that {x}1 n 1^0 for each nonzero right 
(or left in case the left singular ideal is not zero) ideal /. In particular x1 n xR^O. 
Hence, there is reR such that xr^O but x(xr)=0=(xr)(xr) which is impossible. 

2.7. EXAMPLE. A maximal right (or left) ring of quotients of a ring without 
nilpotent elements may not be a ring without nilpotent elements. For example, 
let R=Z/(2)[x, y], the polynomial ring in two variables x, y over the field of integers 
modulo 2 such that xy^yx. Then R is an integral domain such that xR r\yR=0. 
By [2] Qr(R), the maximal right quotients of R, is a simple ring which is regular. 
Hence, if Qr(R) is a ring without nilpotent elements then Qr(R) would be a strongly 
regular ring and since it is simple, Qr(R) would be a division ring and xR riyR^O. 

2.8. PROPOSITION. Let R be a ring without nilpotent elements and assume 1 G R. 

If P is a prime ideal of R, let R/P be the injective hull of the right R-module R/P. 

ThenOP = (R/P)\ 

Proof. If (R/P)1$0P then there is r0 e (R/P) such that r0 $ 0P and r0y^0 for 
any yeR\P. That is (w^^P for any y e R\P. Let T={xeR/P | x({r0}1)=0}. 
For each yeT, define fy:r0x->yx for all x G R. Then/y is an jR-homomorphism 
from r0R into R/P. Letfy be an extension offy to R. Then y=fy(ro)=fy(l)ro = 0 
since /„(1) e R/P. Therefore, r={0}. Let b e R/P. Then b({r0})^P since {ro} 1^^ 
and b = b+PeT={0}. This is impossible. Conversely, suppose OpfiR/P)1. Then 
CR/P)0P#0 and there exist xe(R/P), ae0P such that xa^Q. Since (R/P) is an 
essential extension of R/P, xaR n R/P=N is a nonzero submodule of R/P. Hence, 
there is a right ideal J in R such that / ^ P and J/P=N. Since <ZGOP, there is 
b $P such that 06=0 and by 2.1, aRb=0. Therefore Nb=0. This is impossible 
since P is a prime ideal. Thus (R/P)1^0P^(R/P)1. 

2.9. PROPOSITION. Le/ S=Upex(ft) JR/Op. For each reR, define r to be the 
function from X(R) into S such that f(P) = r+0P. Let U be any open set in X(R) 
and let f(U)={r(P) \PeU}. Let p be the topology on S generated by {r(U) \reR, 
U is open in X(R)}. Then (*S, p) forms a topological space and each point f(P0) of S 
is contained in an open set which is homeomorphic to its image in X(R) under the 
canonical projection r(P) -> P, i.e. S is a sheaf of rings over X(R). (Refer to [4].) 

Proof. Straightforward. 

3.0. PROPOSITION. If Ris a ring without nilpotent elements and seR, then reOP 

for all P G supp ((s-)) if and only if(s) e {r}1 where (s) is an ideal generated by s. 
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Proof. By 2.1, Rftr}1 is a ring without nilpotent elements. Now the condition 
that r e Op for all Pesupp((y)) is equivalent to that of sef>{{r}iGpocPa where 
Pa e X(R). Hence, 5,+{r}1 is an element of rad (^/{r}1), the intersection of prime 
ideals of Rftr}1-. Hence s e {r}1. 

3.1. THEOREM. If Ris a ring without nilpotent elements then every section of the 
sheaf S of rings over X(R) described in Proposition 2.9 has the form r for some 
reR. 

Proof. Let / : X(R) -> S be any section. For each P e X(R), there exists r±e R 
such that f(P)=r1(P). Hence, by Lemma 3.2 of [4, p. 11] there exists an open set, 
say supp ((s)) for some se R such that P e supp ((s)) and f(P') = f1(P') for all 
Pf e supp {{s)). Since X(R) is compact, there exist su s2>.. .,sm and rl9 r 2 , . . . , rm 

in R such that \J?=1 supp (&)) = X(R) and f(P0 = ^ ' ) for any P ' e supp ((st)). 
Hence, for any P G supp (fe)) n supp ((.y,)) = supp (foX^)), i, 7 = 1, 2 , . . . , m, 
ri — rj G Op. Therefore, by 3.0, sisj(ri—rj)=0. This means that si(ri--rj)sj(ri — rj)==0 
since {̂ (Vj — r,)}1 is an ideal and this, in turn, implies that ^fo—ry)^i(ri—r;)4yy = 0 
and Ji(rf—ry)^=0 since P is a ring without nilpotent elements. Since AXK)=U?=i 
supp (00), 1 G 2P-1 P ^ P and 1 = 2im=i bisiU for some é*, t{ in P . 

Define 0 = 2H*i fA^'i- Since si(ri—rJ
:)sj=0, by 2.1 ^fo—7^)0/^ = 0 for any 

è/, /= 1, 2, 3 , . . . , m. Therefore, 5,
iriè^y=«yiryèi5'y. For any Sy, 

Sja = s^iVifi+Vai25rafa + • • • +Syrm6m.ymfm 

= j/yftiJri^+Jyrift25
,2^+ • • • +siribmsmtm 

Thus, 

(a- r y ) jy = 0. 

Recall that s}- $ Py. It follows that a—rjE 0P/ and a=ry for ally = 1, 2 , . . . , /w. Thus, 

/ = & 
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