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tions and their inverse scattering transforms. Riemann–Hilbert problems are formulated to analyse
the inverse scattering problems, and the Sokhotski–Plemelj formula is used to determine Gelfand–
Levitan–Marchenko-type integral equations for generalised matrix Jost solutions. Soliton solutions
are constructed through the reflectionless transforms associated with poles of the Riemann–Hilbert
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1 Introduction

Non-local integrable non-linear Schrödinger (NLS) equations are generated from matrix spectral
problems under specific symmetric reductions on potentials [3]. The corresponding inverse scat-
tering transforms have been recently presented, under zero or non-zero boundary conditions, and
there still exist N-soliton solutions in the non-local cases [2, 4, 15]. Such soliton solutions can be
constructed more generally from the Riemann–Hilbert problems with the identity jump matrix
[51] and by the Hirota bilinear method [16]. Some vector or matrix generalisations [5, 10, 32]
and other interesting non-local integrable equations [20, 44] were also presented. We would like
to propose a class of general non-local reverse-space matrix NLS equations and analyse their
inverse scattering transforms and soliton solutions through formulating and solving associated
Riemann–Hilbert problems.

The Riemann–Hilbert approach is one of the most powerful approaches for investigating inte-
grable equations and particularly constructing soliton solutions [42]. Many integrable equations,
such as the multiple wave interaction equations [42], the general coupled non-linear Schrödinger
equations [46], the generalised Sasa–Satsuma equation [13], the Harry Dym equation [47]
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and the AKNS soliton hierarchies [27], have been studied by formulating and analysing their
Riemann–Hilbert problems associated with matrix spectral problems.

A general procedure for formulating Riemann–Hilbert problems can be described as follows.
We start from a pair of matrix spectral problems, say,

− iφx = Uφ, −iφt = Vφ, U = A(λ) + P(u, λ), V = B(λ) + Q(u, λ), (1.1)

where i is the unit imaginary number, λ is a spectral parameter, u is a potential and φ is an m × m
matrix eigenfunction. The compatibility condition of the above two matrix spectral problems,
that is, the zero curvature equation:

Ut − Vx + i[U , V ] = 0, (1.2)

where [·, ·] is the matrix commutator, presents an integrable equation. To establish an associated
Riemann–Hilbert problem for the above integrable equation, we adopt the following equivalent
pair of matrix spectral problems:

ψx = i[A(λ),ψ] + P̌(u, λ)ψ , ψt = i[B(λ),ψ] + Q̌(u, λ)ψ , P̌ = iP, Q̌ = iQ, (1.3)

where ψ is also an m × m matrix eigenfunction. We often assume that A and B are constant com-
muting m × m matrices, and P and Q are trace-less m × m matrices. The equivalence between
(1.1) and (1.3) follows from the commutativity of A and B. The properties (detψ)x = (detψ)t = 0
are two consequences of trP = trQ = 0. There exists a direct connection between (1.1)
and (1.3):

φ =ψEg, Eg = eiA(λ)x+iB(λ)t. (1.4)

It is important to note that for the pair of matrix spectral problems in (1.3), we can impose the
asymptotic conditions:

ψ± → Im, when x or t → ±∞, (1.5)

where Im stands for the identity matrix of size m. From these two matrix eigenfunctions ψ±, we
need to pick the entries and build two generalised matrix Jost solutions T±(x, t, λ), which are
analytic in the upper and lower half-planes C+ and C

− and continuous in the closed upper and
lower half-planes C̄+ and C̄

−, respectively, to formulate a Riemann–Hilbert problem on the real
line:

G+(x, t, λ) = G−(x, t, λ)G0(x, t, λ), λ ∈R, (1.6)

where two unimodular generalised matrix Jost solutions G+ and G− and the jump matrix G0

are generated from T+ and T−. The jump matrix G0 carries all basic scattering data from the
scattering matrix Sg(λ) of the matrix spectral problems, defined through

ψ−Eg =ψ+EgSg(λ). (1.7)

Solutions to the associated Riemann–Hilbert problems (1.6) provide the required generalised
matrix Jost solutions in recovering the potential of the matrix spectral problems, which solves the
corresponding integrable equation. Such solutions G+ and G− can be presented by applying the
Sokhotski–Plemelj formula to the difference of G+ and G−. A recovery of the potential comes
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from observing asymptotic behaviours of the generalised matrix Jost solutions G± at infinity
of λ. This then completes the corresponding inverse scattering transforms. Soliton solutions can
be worked out from the reflectionless transforms, which correspond to the Riemann–Hilbert
problems with the identity jump matrix G0.

In thispaper, we first present a class of non-local reverse-space matrix NLS equations by mak-
ing a specific group of non-local reductions and then analyse their inverse scattering transforms
and soliton solutions, based on associated Riemann–Hilbert problems. One example with two
components is{

ip1,t(x, t) = p1,xx(x, t) − 2[γ1p1(x, t)p∗
1(−x, t) + γ2p2(x, t)p∗

2(−x, t)]p1(x, t),

ip2,t(x, t) = p2,xx(x, t) − 2[γ1p1(x, t)p∗
1(−x, t) + γ2p2(x, t)p∗

2(−x, t)]p2(x, t),
(1.8)

where γ1 and γ2 are arbitrary non-zero real constants.
The rest of the paper is organised as follows. In Section 2, within the zero curvature formu-

lation, we recall the Ablowitz–Kaup–Newell–Segur (AKNS) integrable hierarchy with matrix
potentials, based on an arbitrary-order matrix spectral problem suited for the Riemann–Hilbert
theory, and conduct a group of non-local reductions to generate non-local reverse-space matrix
NLS equations. In Section 3, we build the inverse scattering transforms by formulating Riemann–
Hilbert problems associated with a kind of arbitrary-order matrix spectral problems. In Section
4, we compute soliton solutions to the obtained non-local reverse-space matrix NLS equations
from the reflectionless transforms, that is, the special associated Riemann–Hilbert problems on
the real axis where an identity jump matrix is taken. The conclusion is given in the last section,
together with a few concluding remarks.

2 Non-local reverse-space matrix NLS equations

2.1 Matrix AKNS hierarchy

Let m and n ≥ 1 be two arbitrary integers, and α1 and α2 are different arbitrary real constants.
We focus on the following matrix spectral problem:

− iφx = Uφ = U(p, q; λ)φ, U =
[
α1λIm p

q α2λIn

]
, (2.1)

where λ is a spectral parameter, and p and q are two matrix potentials:

p = (pjl)m×n, q = (qlj)n×m. (2.2)

When m = 1, that is, p and q are vectors, (2.1) gives a matrix spectral problem with vector
potentials [37]. When there is only one pair of non-zero potentials pjl, qlj, (2.1) becomes the
standard AKNS spectral problem [1]. On account of these, we call (2.1) a matrix AKNS matrix
spectral problem, and its associated hierarchy, a matrix AKNS integrable hierarchy. Because
of the existence of a multiple eigenvalue of ∂U

∂λ
, we have a degenerate matrix spectral problem

in (2.1).
To construct an associated matrix AKNS integrable hierarchy, as usual, we begin with the

stationary zero curvature equation:

Wx = i[U , W ], (2.3)
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corresponding to (2.1). We search for a solution W of the form:

W =
[

a b
c d

]
, (2.4)

where a, b, c and d are m × m, m × n, n × m and n × n matrices, respectively. Obviously, the
stationary zero curvature equation (2.3) equivalently presents⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ax = i(pc − bq),

bx = i(αλb + pd − ap),

cx = i(−αλc + qa − dq),

dx = i(qb − cp),

(2.5)

where α = α1 − α2. We take W as a formal series:

W =
[

a b

c d

]
=

∞∑
s=0

Wsλ
−s, Ws = Ws(p, q) =

[
a[s] b[s]

c[s] d[s]

]
, s ≥ 0, (2.6)

and then, the system (2.5) exactly engenders the following recursion relations:

b[0] = 0, c[0] = 0, a[0]
x = 0, d[0]

x = 0, (2.7a)

b[s+1] = 1

α
(−ib[s]

x − pd[s] + a[s]p), s ≥ 0, (2.7b)

c[s+1] = 1

α
(ic[s]

x + qa[s] − d[s]q), s ≥ 0, (2.7c)

a[s]
x = i(pc[s] − b[s]q), d[s]

x = i(qb[s] − c[s]p), s ≥ 1. (2.7d)

Let us now fix the initial values:

a[0] = β1Im, d[0] = β2In, (2.8)

where β1 and β2 are arbitrary but different real constants, and take zero constants of integration
in (2.7d), which says that we require

Ws|p,q=0 = 0, s ≥ 1. (2.9)

In this way, with a[0] and d[0] given by (2.8), all matrices Ws, s ≥ 1, defined recursively, are
uniquely determined. For example, a direct computation, based on (2.1), generates that

b[1] = β

α
p, c[1] = β

α
q, a[1] = 0, d[1] = 0; (2.10a)

b[2] = − β

α2
ipx, c[2] = β

α2
iqx, a[2] = − β

α2
pq, d[2] = β

α2
qp; (2.10b)
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⎧⎪⎪⎨
⎪⎪⎩

b[3] = − β

α3
(pxx + 2pqp), c[3] = − β

α3
(qxx + 2qpq),

a[3] = − β

α3
i(pqx − pxq), d[3] = − β

α3
i(qpx − qxp);

(2.10c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b[4] = β

α4
i(pxxx + 3pqpx + 3pxqp),

c[4] = − β

α4
i(qxxx + 3qxpq + 3qpqx),

a[4] = β

α4
[3(pq)2 + pqxx − pxqx + pxxq],

d[4] = − β

α4
[3(qp)2 + qpxx − qxpx + qxxp];

(2.10d)

where β = β1 − β2. Using (2.7d), we can derive, from (2.7b) and (2.7c), a recursion relation for
b[s] and c[s]: [

c[s+1]

b[s+1]

]
=	

[
c[s]

b[s]

]
, s ≥ 1, (2.11)

where 	 is a matrix operator:

	 = i

α

[
(∂x + q∂−1

x (p ·) + [∂−1
x (· p)]q) −q∂−1

x (· q) − [∂−1
x (q ·)]q

p∂−1
x (· p) + [∂−1

x (p ·)]p −∂x − p∂−1
x (q ·) − [∂−1

x (· q)]p

]
. (2.12)

The matrix AKNS integrable hierarchy is associated with the following temporal matrix
spectral problems:

− iφt = V [r]φ = V [r](p, q; λ)φ, V [r] =
r∑

s=0

Wmλ
r−s, r ≥ 0. (2.13)

The compatibility conditions of the two matrix spectral problems (2.1) and (2.13), that is, the
zero curvature equations:

Ut − V [r]
x + i[U , V [r]] = 0, r ≥ 0, (2.14)

yield the so-called matrix AKNS integrable hierarchy:[
p

q

]
t

= i

[
αb[r+1]

−αc[r+1]

]
, r ≥ 0. (2.15)

The first non-linear integrable system in this hierarchy gives us the standard matrix NLS
equations:

pt = − β

α2
i(pxx + 2pqp), qt = β

α2
i(qxx + 2qpq). (2.16)
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When m = 1 and n = 2, under a special kind of symmetric reductions, the matrix NLS equa-
tions (2.16) can be reduced to the Manokov system [39], for which a decomposition into
finite-dimensional integrable Hamiltonian systems was made in [8].

2.2 Non-local reverse-space matrix NLS equations

Let us now take a specific group of non-local reductions for the spectral matrix:

U†(−x, t, −λ∗) = −CU(x, t, λ)C−1, C =
[

1 0

0 
2

]
, 
†

i =
i, i = 1, 2, (2.17)

which is equivalent to

P†(−x, t) = −CP(x, t)C−1. (2.18)

Henceforth, † stands for the Hermitian transpose, ∗ denotes the complex conjugate, 
1,2 are two
constant invertible Hermitian matrices, and for brevity, we adopt⎧⎪⎪⎨

⎪⎪⎩
A(x, t, λ) = A(u(x, t), λ),

A†(f (x, t, λ)) = (A(f (x, t, λ)))†,

A−1(f (x, t, λ)) = (A(f (x, t, λ)))−1,

(2.19)

for a matrix A and a function f .
The matrix spectral problems of the matrix NLS equations (2.16) are given as follows:

− iφx = Uφ = U(p, q; λ)φ, −iφt = V [2]φ = V [2](p, q; λ)φ. (2.20)

The involved Lax pair reads

U = λ�+ P, V [2] = λ2�+ Q, (2.21)

where �= diag(α1Im, α2In), �= diag(β1Im, β2In), and

P =
[

0 p

q 0

]
, Q =

[
a[1]λ+ a[2] b[1]λ+ b[2]

c[1]λ+ c[2] d[1]λ+ d[2]

]
= β

α
λ

[
0 p

q 0

]
− β

α2

[
pq ipx

−iqx −qp

]
.

(2.22)
In the above matrices P and Q, p and q are defined by (2.2), and a[s], b[s], c[s], d[s], 1 ≤ s ≤ 2, are
determined in (2.10).

Based on (2.18), we arrive at

q(x, t) = −
−1
2 p†(−x, t)
1. (2.23)

The vector function c in (2.5) under such a non-local reduction could be taken as:

c(x, t, λ) =
−1
2 b†(−x, t, −λ∗)
1. (2.24)

It is easy to see that those non-local reduction relations ensure that

a†(−x, t, −λ∗) =
1a(x, t, λ)
−1
1 , d†(−x, t, −λ∗) =
2d(x, t, λ)
−1

2 , (2.25)
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where a and d satisfy (2.5). For instance, under (2.23) and (2.24), we can compute that

(a†(−x, t, −λ∗))x = −a†
x(−x, t, −λ∗)

= i[c†(−x, t, −λ∗)p†(−x, t) − q†(−x, t)b†(−x, t, −λ∗)]

= i{[
1b(x, t, λ)
−1
2 ][−
2q(x, t)
−1

1 ] − [−
1p(x, t)
−1
2 ][
2c(x, t, λ)
−1

1 ]}
= −i
1[b(x, t, λ)q(x, t) − p(x, t)c(x, t, λ)]
−1

1 =
1ax(x, t, λ)
−1
1 ,

from which the first relation in (2.25) follows. Furthermore, by using the Laurent expansions for
a,b,c and d, we can get ⎧⎪⎪⎨

⎪⎪⎩
(a[s])†(−x, t) = (−1)s
1a[s](x, t)
−1

1 ,

(b[s])†(−x, t) = (−1)s
2c[s](x, t)
−1
1 ,

(d[s])†(−x, t) = (−1)s
2d[s](x, t)
−1
2 ,

(2.26)

where s ≥ 0. It then follows that

(V [2])†(−x, t, −λ∗) = CV [2](x, t, λ)C−1, Q†(−x, t, −λ∗) = CQ(x, t, λ)C−1, (2.27)

where V [2] and Q are defined in (2.21) and (2.22), respectively.
The above analysis guarantees that the non-local reduction (2.18) does not require any new

condition for the compatibility of the spatial and temporal matrix spectral problems in (2.20).
Therefore, the standard matrix NLS equations (2.16) are reduced to the following nonlocal
reverse-space matrix NLS equations:

ipt(x, t) = β

α2
[pxx(x, t) − 2p(x, t)
−1

2 p†(−x, t)
1p(x, t)], (2.28)

where 
1 and 
2 are two arbitrary invertible Hermitian matrices.
When m = n = 1, we can get two well-known scalar examples [3]:

ipt(x, t) = pxx(x, t) − 2σp2(x, t)p∗(−x, t), σ = ∓1. (2.29)

When m = 1 and n = 2, we can obtain a system of non-local reverse-space two-component NLS
equations (1.8).

3 Inverse scattering transforms

3.1 Distribution of eigenvalues

We consider the non-local reduction case and so q is defined by (2.23). We are going to analyse
the scattering and inverse scattering transforms for the non-local reverse-space matrix NLS equa-
tions (2.28) by the Riemann–Hilbert approach (see, e.g., [9, 14, 42]). The results will prepare the
essential foundation for soliton solutions in the following section.

Assume that all the potentials sufficiently rapidly vanish when x → ±∞ or t → ±∞. For the
matrix spectral problems in (2.20), we can impose the asymptotic behaviour: φ ∼ eiλ�x+iλ2�t,
when x, t → ±∞. Therefore, if we take the variable transformation:

φ =ψEg, Eg = eiλ�x+iλ2�t,
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then we can have the canonical asymptotic conditions: ψ → Im+n, when x, t → ∞ or − ∞. The
equivalent pair of matrix spectral problems to (2.20) reads

ψx = iλ[�,ψ] + P̌ψ , P̌ = iP, (3.1)

ψt = iλ2[�,ψ] + Q̌ψ , Q̌ = iQ. (3.2)

Applying a generalised Liouville’s formula [34], we can obtain

detψ = 1, (3.3)

because (detψ)x = 0 due to tr P̌ = tr Q̌ = 0.
Recall that the adjoint equation of the x-part of (2.20) and the adjoint equation of (3.1) are

given by:

iφ̃x = φ̃U , (3.4)

and

iψ̃x = λ[ψ̃ ,�] + ψ̃P, (3.5)

respectively. Obviously, there exist the links: φ̃ = φ−1 and ψ̃ =ψ−1. Each pair of adjoint
matrix spectral problems and equivalent adjoint matrix spectral problems do not create any new
condition, either, except the non-local reverse-space matrix NLS equations (2.28).

Let ψ(λ) be a matrix eigenfunction of the spatial spectral problem (3.1) associated with an
eigenvalue λ. It is easy to see that Cψ−1(x, t, λ) is a matrix adjoint eigenfunction associated with
the same eigenvalue λ. Under the non-local reduction in (2.18), we have

i[ψ†(−x, t, −λ∗)C]x = i[−(ψx)†(−x, t, −λ∗)C]

= −i{(−i)(−λ)[ψ†(−x, t, −λ∗),�] + (−i)ψ†(−x, t, −λ∗)P†(−x, t)}C
= λ[ψ†(−x, t, −λ∗),�]C +ψ†(−x, t, −λ∗)C[−C−1P†(−x, t)C]

= λ[ψ†(−x, t, −λ∗)C,�] +ψ†(−x, t, −λ∗)CP(x, t).

Thus, the matrix

ψ̃(x, t, λ) :=ψ†(−x, t, −λ∗)C, (3.6)

presents another matrix adjoint eigenfunction associated with the same original eigenvalue λ.
That is to say that ψ†(−x, t, −λ∗)C solves the adjoint spectral problem (3.5).

Finally, we observe the asymptotic conditions for the matrix eigenfunction ψ , and see that by
the uniqueness of solutions, we have

ψ†(−x, t, −λ∗) = Cψ−1(x, t, λ)C−1, (3.7)

when ψ → Im+n, x or t → ∞ or − ∞. This tells that if λ is an eigenvalue of (3.1) (or (3.5)),
then −λ∗ will be another eigenvalue of (3.1) (or (3.5)), and there is the property (3.7) for the
corresponding eigenfunction ψ .
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3.2 Riemann–Hilbert problems

Let us now start to formulate a class of associated Riemann–Hilbert problems with the variable
x. In order to clearly state the problems, we also make the assumptions:

α = α1 − α2 < 0, β = β1 − β2 < 0. (3.8)

In the scattering problem, we first introduce the two matrix eigenfunctions ψ±(x, λ) of (3.1) with
the asymptotic conditions:

ψ± → Im+n, when x → ±∞, (3.9)

respectively. It then follows from (3.3) that detψ± = 1 for all x ∈R. Because

φ± =ψ±E, E = eiλ�x, (3.10)

are both matrix eigenfunctions of (2.20), they must be linearly dependent, and as a result, one
has

ψ−E =ψ+ES(λ), λ ∈R, (3.11)

where S(λ) is the corresponding scattering matrix. Note that det S(λ) = 1, thanks to detψ± = 1.
Through the method of variation in parameters, we can transform the x-part of (2.20) into the

following Volterra integral equations for ψ± [42]:

ψ−(λ, x) = Im+n +
∫ x

−∞
eiλ�(x−y)P̌(y)ψ−(λ, y)eiλ�(y−x) dy, (3.12)

ψ+(λ, x) = Im+n −
∫ ∞

x
eiλ�(x−y)P̌(y)ψ+(λ, y)eiλ�(y−x) dy, (3.13)

where the asymptotic conditions (3.9) have been imposed. Now, the theory of Volterra integral
equations tells that by the Neumann series [18], we can show that the eigenfunctions ψ± exist
and allow analytic continuations off the real axis λ ∈R provided that the integrals on their right-
hand sides converge (see, e.g., [6]). From the diagonal form of � and the first assumption in
(3.8), we can see that the integral equation for the first m columns of ψ− contains only the
exponential factor e−iαλ(x−y), which decays because of y< x in the integral, if λ takes values in
the upper half-plane C

+, and the integral equation for the last n columns of ψ+ contains only
the exponential factor eiαλ(x−y), which also decays because of y> x in the integral, when λ takes
values in the upper half-plane C+. Therefore, we see that these m + n columns are analytic in the
upper half-plane C

+ and continuous in the closed upper half-plane C̄
+. In a similar manner, we

can know that the last n columns of ψ− and the first m columns of ψ+ are analytic in the lower
half-plane C

− and continuous in the closed lower half-plane C̄
−.

In what follows, we give a detailed proof for the above statements. Let us express

ψ± = (ψ±
1 ,ψ±

2 , · · · ,ψ±
m+n), (3.14)

that is, ψ±
j denotes the jth column of φ± (1 ≤ j ≤ m + n). We would like to prove that ψ−

j ,

1 ≤ j ≤ m, and ψ+
j , m + 1 ≤ j ≤ m + n, are analytic at λ ∈C

+ and continuous at λ ∈ C̄
+; and

ψ+
j , 1 ≤ j ≤ m, and ψ−

j , m + 1 ≤ j ≤ m + n, are analytic at λ ∈C
− and continuous at λ ∈ C̄

−. We
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only to prove the result for ψ−
j , 1 ≤ j ≤ m, and the proofs for the other eigenfunctions follow

analogously.
It is easy to obtain from the Volterra integral equation (3.12) that

ψ−
j (λ, x) = ej +

∫ x

−∞
R1(λ, x, y)ψ−

j (λ, y) dy, 1 ≤ j ≤ m, (3.15)

and

ψ−
j (λ, x) = ej +

∫ x

−∞
R2(λ, x, y)ψ−

j (λ, y) dy, m + 1 ≤ j ≤ m + n, (3.16)

where the ei are standard basis vectors of Rm+n and the matrices R1 and R2 are defined by:

R1(λ, x, y) = i

[
0 p(y)

e−iαλ(x−y)q(y) 0

]
, R2(λ, x, y) = i

[
0 eiαλ(x−y)p(y)

q(y) 0

]
. (3.17)

Let us prove that for each 1 ≤ j ≤ m, the solution to (3.15) is determined by the Neumann series:

∞∑
k=0

φ−
j,k(λ, x), (3.18)

where

φ−
j,0(λ, x) = ej, phi−j,k+1(λ, x) =

∫ x

−∞
R1(λ, x, y)φ−

j,k(λ, y) dy, k ≥ 1. (3.19)

This will be true if we can prove that the Neumann series converges uniformly for x ∈R and
λ ∈ C̄

+. By the mathematical induction, we can have

|φ−
j,k(λ, x)| ≤ 1

k!
(∫ x

−∞
‖P(y)‖dy

)k
, 1 ≤ j ≤ m, k ≥ 0, (3.20)

for x ∈R and λ ∈ C̄
+, where | · | denotes the Euclidean norm for vectors and ‖ · ‖ stands for the

Frobenius norm for square matrices. By the Weierstrass M-test, this estimation guarantees that

φ−
j (λ, x) =

∞∑
k=0

φ−
j,k(λ, x), 1 ≤ j ≤ m, (3.21)

uniformly converges for λ ∈ C̄
+ and x ∈R, and all φ−

j (λ, x), 1 ≤ j ≤ m, are continuous with

respect to λ in C̄
+, since so are all φ−

j,k(λ, x), 1 ≤ j ≤ m, k ≥ 0.
Let us now consider the differentiability of φ−

j (λ, x), 1 ≤ j ≤ m, with respect to λ in C
+ (sim-

ilarly, we can prove the differentiability with respect to x in R). Fix an integer 1 ≤ j ≤ m and
a number μ in C

+. Choose a disc Br(μ) = {λ ∈C | |λ−μ| ≤ r} with a radius r> 0 such that
Br(μ) ⊆C

+, and then we can have a constant C(r)> 0 such that |αxe−iαλx| ≤ C(r) for λ ∈ Br(μ)
and x ≥ 0. We define the following Neumann series:

∞∑
k=0

φ−
j,λ,k(λ, x), (3.22)
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where φ−
j,λ,0 = 0 and

φ−
j,λ,k+1(λ, x) =

∫ x

−∞
R1,λ(λ, x, y)φ−

j,k(λ, y) dy +
∫ x

−∞
R1(λ, x, y)φ−

j,λ,k(λ, y) dy, k ≥ 0, (3.23)

with the φ−
j,k being given by (3.19) and R1,λ being defined by:

R1,λ(λ, x, y) = ∂

∂λ
R1(λ, x, y) =

[
0 0

α(x − y)e−iαλ(x−y)q(y) 0

]
. (3.24)

We can readily verify by the mathematical induction that

|φ−
j,λ,k(λ, x)| ≤ 1

k!
{[

C(r) + 1
] ∫ x

−∞
‖P(y)‖dy

}k
, k ≥ 0, (3.25)

for x ∈R and λ ∈ Br(μ). Therefore, by the Weierstrass M-test, the Neumann series defined by
(3.22) converges uniformly for x ∈R and λ ∈ Br(μ); and by the term-by-term differentiability
theorem, it converges to the derivative of φ−

j with respect to λ, due to ψ−
j,λ,k = ∂

∂λ
φ−

j,k , k ≥ 0.
Therefore, φ−

j is analytic at an arbitrarily fixed point μ ∈C
+. It then follows that all φ−

j , 1 ≤ j ≤
m, are analytic with respect to λ in C

+. The required proof is done.
Based on the above analysis, we can then form the generalised matrix Jost solution T+ as

follows:

T+ = T+(x, λ) = (ψ−
1 , · · · ,ψ−

m ,ψ+
m+1, · · · ,ψ+

m+n) =ψ−H1 +ψ+H2, (3.26)

which is analytic with respect to λ in C
+ and continuous with respect to λ in C̄

+. The generalised
matrix Jost solution:

(ψ+
1 , · · · ,ψ+

m ,ψ−
m+1, · · · ,ψ−

m+n) =ψ+H1 +ψ−H2 (3.27)

is analytic with respect to λ in C
− and continuous with respect to λ in C̄

−. In the above definition,
we have used

H1 = diag(Im, 0, · · · , 0︸ ︷︷ ︸
n

), H2 = diag(0, · · · , 0︸ ︷︷ ︸
m

, In ). (3.28)

To construct the other generalised matrix Jost solution T−, we adopt the analytic counterpart
of T+ in the lower half-plane C

−, which can be generated from the adjoint counterparts of the
matrix spectral problems. Note that the inverse matrices φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1 solve
those two adjoint equations, respectively. Then, stating ψ̃± as:

ψ̃± = (ψ̃±,1, ψ̃±,2, · · · , ψ̃±,m+n)T , (3.29)

that is, ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ m + n), we can verify by similar arguments that
we can form the generalised matrix Jost solution T− as the adjoint matrix solution of (3.5),
that is,

T− = (ψ̃−,1, · · · , ψ̃−,m, ψ̃+,m+1, · · · , ψ̃+,m+n)T = H1ψ̃
− + H2ψ̃

+ = H1(ψ−)−1 + H2(ψ+)−1,
(3.30)
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which is analytic with respect to λ in C
− and continuous with respect to λ in C̄

−, and the other
generalised matrix Jost solution of (3.5):

(ψ̃+,1, · · · , ψ̃+,m, ψ̃−,m+1, · · · , ψ̃−,m+n)T = H1ψ̃
+ + H2ψ̃

− = H1(ψ+)−1 + H2(ψ−)−1, (3.31)

is analytic with respect to λ in C
+ and continuous with respect to λ in C̄

+.
Now we have finished the construction of the two generalised matrix Jost solutions, T+ and

T−. Directly from detψ± = 1 and using the scattering relation (3.11) between ψ+ and ψ−, we
arrive at

lim
x→∞ T+(x, λ) =

[
S11(λ) 0

0 In

]
, λ ∈ C̄

+, limx→−∞T−(x, λ) =
[

Ŝ11(λ) 0
0 In

]
, λ ∈ C̄

−, (3.32)

and

det T+(x, λ) = det S11(λ), det T−(x, λ) = det Ŝ11(λ), (3.33)

where we split S(λ) and S−1(λ) as follows:

S(λ) =
[

S11(λ) S12(λ)

S21(λ) S22(λ)

]
, S−1(λ) = (S(λ))−1 =

[
Ŝ11(λ) Ŝ12(λ)

Ŝ21(λ) Ŝ22(λ)

]
, (3.34)

S11, Ŝ11 being m × m matrices, S12, Ŝ12 being m × n matrices, S21, Ŝ21 being n × m matrices and
S22, Ŝ22 being n × n matrices. Based on the uniform convergence of the previous Neumann series,
we know that S11(λ) and Ŝ11(λ) are analytic in C

+ and C
−, respectively.

In this way, we can introduce the following two unimodular generalised matrix Jost solutions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G+(x, λ) = T+(x, λ)

[
S−1

11 (λ) 0

0 In

]
, λ ∈ C̄

+;

(G−)−1(x, λ) =
[

Ŝ−1
11 (λ) 0

0 In

]
T−(x, λ), λ ∈ C̄

−.

(3.35)

Those two generalised matrix Jost solutions establish the required matrix Riemann–Hilbert
problems on the real line for the non-local reverse-space matrix NLS equations (2.28):

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈R, (3.36)

where the jump matrix G0 is

G0(x, λ) = E

[
Ŝ−1

11 (λ) 0

0 In

]
S̃(λ)

[
S−1

11 (λ) 0

0 In

]
E−1, (3.37)

based on (3.11). In the jump matrix G0, the matrix S̃(λ) has the factorisation:

S̃(λ) = (H1 + H2S(λ)) (H1 + S−1(λ)H2), (3.38)

which can be shown to be

S̃(λ) =
[

Im Ŝ12

S21 In

]
. (3.39)
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Following the Volterra integral equations (3.12) and (3.13), we can obtain the canonical
normalisation conditions:

G±(x, λ) → Im+n, when λ ∈ C̄
± → ∞, (3.40)

for the presented Riemann–Hilbert problems. From the property (3.7), we can also observe that

(G+)†(−x, t, −λ∗) = C(G−)−1(x, t, λ)C−1, (3.41)

and thus, the the jump matrix G0 possesses the following involution property:

G†
0(−x, t, −λ∗) = CG0(x, t, λ)C−1. (3.42)

3.3 Evolution of the scattering data

To complete the direct scattering transforms, let us take the derivative of (3.11) with time t and
use the temporal matrix spectral problems:

ψ±
t = iλ2[�,ψ±] + Q̌ψ±. (3.43)

It then follows that the scattering matrix S satisfies the following evolution law:

St = iλ2[�, S]. (3.44)

This tells the time evolution of the time-dependent scattering coefficients:

S12 = S12(t, λ) = S12(0, λ) eiβλ2t, S21 = S21(t, λ) = S21(0, λ) e−iβλ2t, (3.45)

and all other scattering coefficients are independent of the time variable t.

3.4 Gelfand–Levitan–Marchenko-type equations

To obtain Gelfand–Levitan–Marchenko-type integral equations to determine the generalised
matrix Jost solutions, let us transform the associated Riemann–Hilbert problem (3.36) into{

G+ − G− = G−v, v = G0 − Im+n, on R,

G± → Im+n as λ ∈ C̄
± → ∞,

(3.46)

where the jump matrix G0 is defined by (3.37) and (3.38).
Let G(λ) = G±(λ) if λ ∈C

±. Assume that G has simple poles off R: {μj}R
j=1, where R is an

arbitrary integer. Define

G̃±(λ) = G±(λ) −
R∑

j=1

Gj

λ−μj
, λ ∈ C̄

±; G̃(λ) = G̃±(λ), λ ∈C
±, (3.47)

where Gj is the residue of G at λ=μj, that is,

Gj = res(G(λ), λj) = lim
λ→μj

(λ−μj)G(λ). (3.48)
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This tells that we have {
G̃+ − G̃− = G+ − G− = G−v, on R,
G̃± → Im+n as λ ∈ C̄

± → ∞.
(3.49)

By applying the Sokhotski–Plemelj formula [12], we get the solution of (3.49):

G̃(λ) = Im+n + 1

2π i

∫ ∞

−∞
(G−v)(ξ )

ξ − λ
dξ . (3.50)

Further taking the limit as λ→μl yields

LHS = lim
λ→μl

G̃ = Fl −
R∑

j 
=l

Gj

μl −μj
,

RHS = Im+n + 1

2π i

∫ ∞

−∞
(G−v)(ξ )

ξ −μl
dξ ,

where

Fl = lim
λ→μl

(λ−μl)G(λ) − Gl

λ−μl
, 1 ≤ l ≤ R, (3.51)

and consequently, we see that the required Gelfand–Levitan–Marchenko-type integral equations
are as follows:

Im+n − Fl +
R∑

j 
=l

Gj

μl −μj
+ 1

2π i

∫ ∞

−∞
(G−v)(ξ )

ξ −μl
dξ = 0, 1 ≤ l ≤ R. (3.52)

All these equations are used to determine solutions to the associated Riemann–Hilbert problems
and thus the generalised matrix Jost solutions. However, little was yet known about the existence
and uniqueness of solutions. In the case of soliton solutions, a formulation of solutions, where
eigenvalues could equal adjoint eigenvalues, will be presented for non-local integrable equations
in the next section.

3.5 Recovery of the potential

To recover the potential matrix P from the generalised matrix Jost solutions, as usual, we make
an asymptotic expansion:

G+(x, t, λ) = Im+n + 1

λ
G+

1 (x, t) + O

(
1

λ2

)
, λ→ ∞. (3.53)

Then, plugging this asymptotic expansion into the matrix spectral problem (3.1) and comparing
O(1) terms generates

P = lim
λ→∞ λ[G+(λ),�] = −[�, G+

1 ]. (3.54)

This leads exactly to the potential matrix:

P =
[

0 −αG+
1,12

αG+
1,21 0

]
, (3.55)
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where we have similarly partitioned the matrix G+
1 into four blocks as follows:

G+
1 =

[
G+

1,11 G+
1,12

G+
1,21 G+

1,22

]
=

[
(G+

1,11)n×n (G+
1,12)n×m

(G+
1,21)m×n (G+

1,22)m×m

]
. (3.56)

Therefore, the solutions to the standard matrix NLS equations (2.16) read

p = −αG+
1,12, q = αG+

1,21. (3.57)

When the non-local reduction condition (2.18) is satisfied, the reduced matrix potential p solves
the non-local reverse-space matrix NLS equations (2.28).

To conclude, this completes the inverse scattering procedure for computing solutions to the
non-local reverse-space matrix NLS equations (2.28), from the scattering matrix S(λ), through
the jump matrix G0(λ) and the solution {G+(λ), G−(λ)} of the associated Riemann–Hilbert
problems, to the potential matrix P.

4 Soliton solutions

4.1 Non-reduced local case

Let N ≥ 1 be another arbitrary integer. Assume that det S11(λ) has N zeros {λk ∈C, 1 ≤ k ≤ N},
and det Ŝ11(λ) has N zeros {λ̂k ∈C, 1 ≤ k ≤ N}.

In order to present soliton solutions explicitly, we also assume that all these zeros, λk and
λ̂k , 1 ≤ k ≤ N , are geometrically simple. Then, each of ker T+(λk), 1 ≤ k ≤ N , contains only a
single basis column vector, denoted by vk , 1 ≤ k ≤ N ; and each of ker T−(λ̂k), 1 ≤ k ≤ N , a single
basis row vector, denoted by v̂k , 1 ≤ k ≤ N :

T+(λk)vk = 0, v̂kT−(λ̂k) = 0, 1 ≤ k ≤ N . (4.1)

Soliton solutions correspond to the situation where G0 = Im+n is taken in each Riemann–Hilbert
problem (3.36). This can be achieved if we assume that S21 = Ŝ12 = 0, which means that the
reflection coefficients are taken as zero in the scattering problem.

This kind of special Riemann–Hilbert problems with the canonical normalisation conditions in
(3.40) and the zero structures given in (4.1) can be solved precisely, in the case of local integrable
equations [21, 42], and consequently, we can exactly work out the potential matrix P. However,
in the case of non-local integrable equations, we often do not have

{λk|1 ≤ k ≤ N} ∩ {λ̂k|1 ≤ k ≤ N} = ∅. (4.2)

Without this condition, the solutions to the special Riemann–Hilbert problem with the identity
jump matrix can be presented as follows (see, e.g., [32]):

G+(λ) = Im+n −
N∑

k,l=1

vk(M−1)klv̂l

λ− λ̂l

, (G−)−1(λ) = Im+n +
N∑

k,l=1

vk(M−1)klv̂l

λ− λk
, (4.3)

where M = (mkl)N×N is a square matrix with its entries:

mkl =

⎧⎪⎨
⎪⎩

v̂kvl

λl − λ̂k

, if λl 
= λ̂k ,

0, if λl = λ̂k ,

1 ≤ k, l ≤ N , (4.4)
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and we need an orthogonal condition:

v̂kvl = 0, if λl = λ̂k , 1 ≤ k, l ≤ N , (4.5)

to guarantee that G+(λ) and G−(λ) solve

(G−)−1(λ)G+(λ) = Im+n. (4.6)

Note that the zeros λk and λ̂k are constants, that is, space- and time-independent, and so we
can easily determine the spatial and temporal evolutions for the vectors, vk(x, t) and v̂k(x, t),
1 ≤ k ≤ N , in the kernels. For instance, let us compute the x-derivative of both sides of the first
set of equations in (4.1). Applying (3.1) first and then again the first set of equations in (4.1), we
arrive at

P+(x, λk)
(dvk

dx
− iλk�vk

)
= 0, 1 ≤ k ≤ N . (4.7)

This implies that for each 1 ≤ k ≤ N , dvk
dx − iλk�vk is in the kernel of P+(x, λk), and thus, a

constant multiple of vk , since λk is geometrically simple. Without loss of generality, we can
simply take

dvk

dx
= iλk�vk , 1 ≤ k ≤ N . (4.8)

The time dependence of vk :

dvk

dt
= iλ2

k�vk , 1 ≤ k ≤ N , (4.9)

can be achieved similarly through an application of the t-part of the matrix spectral problem,
(3.2). In consequence of these differential equations, we obtain

vk(x, t) = eiλk�x+iλ2
k�twk , 1 ≤ k ≤ N , (4.10)

and completely similarly, we can have

v̂k(x, t) = ŵke−iλ̂k�x−iλ̂2
k�t, 1 ≤ k ≤ N , (4.11)

where wk and ŵk , 1 ≤ k ≤ N , are arbitrary constant column and row vectors, respectively, but
need to satisfy an orthogonal condition:

ŵkwl = 0, if λl = λ̂k , 1 ≤ k, l ≤ N , (4.12)

which is a consequence of (4.5).
Finally, from the solutions in (4.3), we get

G+
1 = −

N∑
k,l=1

vk(M−1)klv̂l, (4.13)

and thus, the presentations in (3.57) yield the following N-soliton solution to the standard matrix
NLS equations (2.16):

p = α

N∑
k,l=1

vk,1(M−1)klv̂l,2, q = −α
N∑

k,l=1

vk,2(M−1)klv̂l,1. (4.14)
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Here for each 1 ≤ k ≤ N , we split vk = ((vk,1)T , (vk,2)T )T and v̂k = (v̂k,1, v̂k,2), where vk,1 and v̂k,1

are m-dimensional column and row vectors, respectively, and vk,2 and v̂k,2 are n-dimensional
column and row vectors, respectively.

4.2 Reduced non-local case

To compute N-soliton solutions for the non-local reverse-space matrix NLS equations (2.28), we
need to check if G+

1 defined by (4.13) satisfies an involution property:

(G+
1 (−x, t))† = CG+

1 (x, t)C−1. (4.15)

This equivalently requires that the potential matrix P determined by (3.55) satisfies the non-local
reduction condition (2.18). Thus, the N-soliton solution to the standard matrix NLS equations
(2.16) is reduced to the N-soliton solution:

p = α

N∑
k,l=1

vk,1(M−1)klv̂l,2, (4.16)

for the non-local reverse-space matrix NLS equations (2.28), where we split vk =
((vk,1)T , (vk,2)T )T and v̂k = (v̂k,1, v̂k,2), 1 ≤ k ≤ N , as before.

Let us now show how to realise the involution property (4.15). We first take N distinct zeros of
det T+(λ) (or eigenvalues of the spectral problems under the zero potential): λk ∈C, 1 ≤ k ≤ N ,
and define

λ̂k =
{−λ∗

k , if λk 
∈ iR, 1 ≤ k ≤ N ,

any value ∈ iR, if λk ∈ iR, 1 ≤ k ≤ N ,
(4.17)

which are zeros of det T−(λ). We recall that the ker T+(λk), 1 ≤ k ≤ N , are spanned by:

vk(x, t) = vk(x, t, λk) = eiλk�x+iλ2
k�twk , 1 ≤ k ≤ N , (4.18)

respectively, where wk , 1 ≤ k ≤ N , are arbitrary column vectors. These column vectors in (4.18)
are eigenfunctions of the spectral problems under the zero potential associated with λk , 1 ≤ k ≤
N . Furthermore, following the previous analysis in Subsection 3.1, the ker T−(λk), 1 ≤ k ≤ N ,
are spanned by:

v̂k(x, t) = v̂k(x, t, λ̂k) = v
†
k (−x, t, λk)C = w†

ke−iλ̂k�x−iλ̂2
k�tC, 1 ≤ k ≤ N , (4.19)

respectively. These row vectors are eigenfunctions of the adjoint spectral problems under the zero
potential associated with λ̂k , 1 ≤ k ≤ N . To satisfy the orthogonal property (4.12), we require the
following orthogonal condition:

w†
kCwl = 0, if λl = λ̂k , 1 ≤ k, l ≤ N , (4.20)

on the constant columns {wk | 1 ≤ k ≤ N}. Interestingly, the situation of λk = λ̂k occurs only when
λk ∈ iR and λ̂k = −λ∗

k .
Now, we can directly see that if the solutions to the specific Riemann–Hilbert problems, deter-

mined by (4.3) and (4.4), satisfy the property (3.41), then the corresponding matrix G+
1 possesses

the involution property (4.15) generated from each non-local reduction in (2.17). Accordingly,
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the formula (4.16), together with (4.3), (4.4), (4.18) and (4.19), presents the required N-soliton
solutions to the non-local reverse-space matrix NLS equations (2.28).

When m = n = N = 1, we choose λ1 = iη1, λ̂1 = −iη1, η1 ∈R and denote w1 = (w1,1, w1,2)T .
Then, we can obtain the following one-soliton solution to the non-local reverse-space scalar NLS
equations in (2.29):

p(x, t) = 2η1iw1,1w∗
1,2

ε|w1,1|2e−η1x+iη2
1 t + |w1,2|2eη1x+iη2

1 t
, (4.21)

where ε= ±1, η1 is an arbitrary real number, and w1,1 and w1,2 are arbitrary complex numbers but
satisfy σ |w1,1|2 + |w1,2|2 = 0, which comes from the involution property (4.15). The condition
for w1 implies that we need to take σ = −1. This solution has a singularity at x = − ln εσ

2η1
when

εσ > 0, and the case of ε= 1 and σ = −1 can present the breather one-soliton in [4].
When m = 1, n = 2 and N = 1, we take C = diag(1, γ1, γ2), where γ1 and γ2 are arbitrary

non-zero real numbers. Then the non-local reverse-space matrix NLS equations (2.28) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ip1,t(x, t) = β

α2

[
p1,xx(x, t) − 2

(
1

γ1
p1(x, t)p∗

1(−x, t) + 1

γ2
p2(x, t)p∗

2(−x, t)

)
p1(x, t)

]
,

ip2,t(x, t) = β

α2

[
p2,xx(x, t) − 2

(
1

γ1
p1(x, t)p∗

1(−x, t) + 1

γ2
p2(x, t)p∗

2(−x, t)

)
p2(x, t)

]
.

(4.22)

According to our formulation of solutions above, this system has the following one-soliton
solution: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1(x, t) = α(λ1 + λ∗
1)w1,1w∗

1,2

|w1,1|2ei[αλ∗
1x−β(λ∗

1)2t] + (γ1|w1,2|2 + γ2|w1,3|2)e−i(αλ1x+βλ2
1t)

,

p2(x, t) = α(λ1 + λ∗
1)w1,1w∗

1,3

|w1,1|2ei[αλ∗
1x−β(λ∗

1)2t] + (γ1|w1,2|2 + γ2|w1,3|2)e−i(αλ1x+βλ2
1t)

,

(4.23)

provided that w1 = (w1,1, w1,2, w1,3)T satisfies the orthogonal conditions:

w2
1,1 + γ1w2

1,2 + γ2w2
1,3 = 0, |w1,1|2 + γ1|w1,2|2 + γ2|w1,3|2 = 0.

Note that the product γ1γ2 could be either positive or negative.

5 Concluding remarks

The paper aims to present a class of non-local reverse-space integrable matrix non-linear
Schrödinger (NLS) equations and their inverse scattering transforms. The main analysis is based
on Riemann–Hilbert problems associated with a kind of arbitrary-order matrix spectral problems
with matrix potentials. Through the the Sokhotski–Plemelj formula, the associated Riemann–
Hilbert problems were transformed into Gelfand–Levitan–Marchenko-type integral equations,
and the corresponding reflectionless problems were solved to generate soliton solutions for the
non-local reverse-space matrix NLS equations.

The Riemann–Hilbert technique, which is very effective in generating soliton solutions (see
also, e.g., [22, 48]), has been recently generalised to solve various initial-boundary value prob-
lems of continuous integrable equations on the half-line and the finite interval [11, 23]. There
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are many other approaches to soliton solutions that work well and are easy to use, among which
are the Hirota direct method [19], the generalised bilinear technique [25], the Wronskian tech-
nique [17, 33] and the Darboux transformation [35, 40]. It would be significantly important to
search for clear connections between different approaches to explore dynamical characteristics
of soliton phenomena.

We also emphasise that it would be particularly interesting to construct various kinds of solu-
tions other than solitons to integrable equations, such as positon and complexiton solutions [24,
41], lump and rogue wave solutions [38]–[31], Rossby wave solutions [50], solitonless solutions
[28, 29, 43] and algebro-geometric solutions [7, 26], from a perspective of the Riemann–Hilbert
technique. Another interesting topic for further study is to establish a general formulation of
Riemann–Hilbert problems for solving generalised integrable equations, for example, integrable
couplings, super integrable equations and fractional analogous equations.
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