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Abstract
In this paper, we present a constructive proof of the amenability of C(X), where X is a compact space.
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The concept of amenability for a Banach algebra A was introduced by Johnson in
1972 [5], and has proved to be of enormous importance in Banach algebra theory.
Several modifications of this notion were introduced in [2, 3].

Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation is a
continuous linear map D : A — X such that

D(ab) =aD(b) + D(a)b (a,be A).

For x € X, set ad, : a — ax — xa, A — X. Then ad, is the inner derivation induced
by x.

The dual of a Banach space X is denoted by X™*; in the case where X is a
Banach A-bimodule, X* is also a Banach A-bimodule. For the standard dual module
definitions, see [1].

According to Johnson’s original definition, a Banach algebra A is amenable if, for
every Banach A-bimodule X, every derivation from A into X™* is inner.

It is known that C(X), for a compact space X, is an amenable Banach algebra,
[4, Theorem 5.1.87]. Here, we give a constructive proof of this result. First, we prepare
some preliminaries.

DEFINITION 1. Let A be a Banach algebra. An approximate diagonal for A is a net
(ug) in AQA such that, for each a € A,

aug —uga — 0 and am(uy) — a.

© 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 $16.00

414

https://doi.org/10.1017/5S0004972709001063 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709001063

2] Amenability of C(X) 415

Here, and in what follows, = always denotes the product morphism from A®A into
A, specified by 7 (a ® b) = ab.

It proved very useful in the classical theory of amenability to have characterizations
in terms of virtual diagonals or approximate diagonals. Later, Johnson [6] obtained
the following theorem.

THEOREM 2. A Banach algebra A is amenable if and only if it has a bounded
approximate diagonal.

LEMMA 3 [4, Proposition 0.3.30]. For Banach algebras A and B, if u =Y ux ®
vy € A® B, then

||M||p<—

n
24 —kj
ZM 2 vie ),
j=1

where ¢ = €', 0 =2 /n and ||u | represents the projective tensor norm of u.

LEMMA 4. Letn € Nandlet z, wg (k =1, ..., n) be complex numbers. Let { = et

where 8 =21 /n. Then
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PROOF. Fork € {1, ..., n},let R =3 j_; ze¢*| and Ty = [Y_}_; w;¢ /| Then

IXn:R T < i(R2+T2)
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= n 4 ot

We have
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j<t

For 1 < j < <n, ¢*/ is an nth root of unity and ¢¢=/ # 1, so Yoo k=i =,
This implies that

ZRk_nZ|Ze| +2Re Y 2z ZC"“ ”—nzlul

j<t

Similarly,
n n
D TE=n) lwil
k=1 j=1
We, therefore, have
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COROLLARY 5. Let X be a compact space. Let u = ZZ:] ury @ vy € C(X) ® C(X).

Then
1 - 2 - 2
nmusz(E:mm + 2]w|),
=1 j=1
where || - || is the uniform norm on C(X).

MAIN THEOREM. Let X be a compact Hausdorff space. Then C(X) has a bounded
approximate diagonal and so it is amenable.

PROOF. Let F be a finite subset of C(X) and € > 0. For every x € X, there exists a
neighborhood V, of x such that if s € V, and a € F, then |a(s) — a(x)| < &/2. Since
X is compact, there exist xq, . .., x, € X such that

XCVIU---UVy (Vi =Vy).

There exist nonnegative continuous functions %1, . .., h, such that Supp(hx) C Vi
and h1 +---+ h, =1 on X (see [7, Theorem 2.13]).

For k=1,...,n, let ux=+vhx and u=>j_, ux Qug. Clearly, m(u)=
> hx = 1. We prove that:
(D ullp =15
(2) llau —uall, <eforalla € F.

Claim (1) is clear from Corollary 5. Now we prove claim (2). For a € F, let
ar = a — a(xy). Then, for any s € Vi, |ax(s)| < €/2. We have

n
au — ua = Z(auk Qur —ur  auy)
k=1
n

((a —a(x))ui @ ug — ug @ (a — alxy))ui)

k=1
n n
= Zakuk R ux — Z U Q aguy.
k=1 k=1

Therefore,

n
Z Up @ agig

k=1

lau —ualp <

n
Z apug & Uk
k=1

+
p

p
Denote n = /2 and write

1
Z arui @ ux = Z —akug @ J/nu.
By Corollary 5,

Jn
& 1
Zak”k®uk 55( >§77-
k=1 p

Similarly || ux ® axuill, < €/2. This completes the proof. O

n
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