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INVEX FUNCTIONS AND
CONSTRAINED LOCAL MINIMA

B.D. CRAVEN

If a certain weakening of convexity holds for the objective and
all constraint functions in a nonconvex constrained minimization
problem, Hanson showed that the Kuhn-Tucker necessary conditions
are sufficient for a minimum. This property is now generalized
to a property, called K-invex, of a vector function in relation
to a convex cone X . DNecessary conditions and sufficient
conditions are obtained for a function f to be XK-invex. This
leads to a new second order sufficient condition for a

constrained minimum.

1. Introduction

A real function f : R’ > R will be called invex, with respect to
n , if for the function n : Rn x Rn g Rn s
(1) flz) - flu) = £ (un(x, u)

holds for each x and u in the domain of f . Here f'{u) is the
Fréchet derivative of f at u . Hanson [5] (see also [4], [7])
introduced this concept, and showed that, if all the functions fi in the

(nonconvex) constrained minimization problem,

(2) Minimize fb(x) subject to f%(x) =0 (£=1,2, ..., m ,

are invex, with respect to the same n , then the Kuhn-Tucker conditions
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necessary for a global minimum of (2) are also sufficient. In fact,
Hanson's proof [5] does not require (1) at all points x and u , since u
may be fixed at the point where the Kuhn-Tucker conditions hold. Define,
therefore, a real function f to be invex in a neighbourhood at u if f
satisfies (1) for a given % , and for all x such that [lzull is
sufficiently small. With this definition, the Kuhn-Tucker necessary
conditions RJecome also sufficient for a local minimum; the proof is the
same as Hanson's. Craven [7] has shown that f has the invex property
wvhen f=ho ¢, with % convex, ¢ differentiable, and ¢' having full
rank. Thus some invex functions, at least, may be obtained from convex
functions by a suitable transformation of the domain space. Such
transformations destroy convexity, but not the invex property; the term
invex, from invariant convex, was introduced in [?] to express this fact.

(In (1), f is convex if n(x, u) =z - u .)
The requirement that all the functions fi in (2) are invex with

respect to the same function 1N may be expressed by forming a vector f ,

whose components are fé (t=0,1,2, ..., m) , and then requiring that
+

(3) fla) - flu) - £iwn(z, w) e’

where RT+1 denotes the nonnegative orthant in Rm+l . More generally,

let K C Rm+l be a convex cone. The vector function f : R* > R”H'l will
be called K-invex, with respect to n , if

() flz) - flu) - F(unlz, u) € K

for all x and u . If u is fixed, and (4) holds whenever llz-ull is
sufficiently small, then f will be called K-invex, with respect to n ,
in a neighbourhood at wu . It is noted that, if f is K-invex in a
neighbourhood at u , and if v € K* (the dual cone of K , thus

v(X) < R+ = [0, «) ), then va is invex in a neighbourhood at u , with

respect to the same n .

In this paper, conditions are obtained necessary, or sufficient, for
f to be K-invex with respect to some n . This involves an investigation
of appropriate functions n for (4). To motivate the generalization to

cones, consider problem (2) generelized to
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(5) Minimize fb(x) subject to =-g(x) €5 ,

where g(x) = [fi(x), fé(x), cees fﬁ(x))T ,and ScC R" is a convex cone.

The Kuhn-Tucker conditions necessary (assuming a constraint qualification)
for a minimum of (5) at &« = u are that a Lagrange multiplier 6 € S*

exists, for which

(6) Fiw) + 6%grw) =0 3 6Tg(w) =0 .

Set A= (1, 6) , and X = R, x S* . (If S = RT then KX = RT+1 .) Then

(6) may be rewritten as
(1) ) =05 ) = folw) 5 A err

The following converse Kuhn-Tucker theorem then holds.

THEOREM 1. Let u be feasible for problem (5); let the Kuhn-Tucker
conditions (T) hold at u , with Ag=1; let f be K-invex, with

respect to some n , in a neighbourhood at wu . Then u 1is a local

minimam of (5).

Proof. Let x be any feasible point for (5), with [lz-ul
sufficiently small. Then

fb(x) - fb(u) > XTf(x) - ATf(u) since Gfé(x) <0 and ATf(u) = fb(u)

ATf'(u)n(x, u) by the invex hypothesis
0 by the Kuhn-Tucker conditions.

A"

So u is a local minimum for (5). (]

The result generalizes [7], Theorem 2, which applies to polyhedral

cones S only.

If the problem (5) is not convex, then the hypotheses (and proof) of
Theorem 1 lead to & local (but not necessarily global) minimum. A loecal
minimum also follows if f is U-invex, where U 1is a convex cone
containing K , and A € U* . Here the vector function f is less
restricted than in Theorem 1, and the Lagrange multiplier A is more

restricted.

The problem (2) is equivalent to the transformed problem,

https://doi.org/10.1017/50004972700004895 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004895

360 B.D. Craven

(8) Minimize ¢O ° fo(x) subject to ¢i o f;(x) =0 (£=1,2, ..., m ,

in the sense that both problems (2) and (8) have the same feasible set and
the same minimum (local or global), provided that ¢O : R+R is strictly

increasing and, for 2 =1, 2, ..., m, ¢.{R)CR, and ¢.(R ) R .
AT + FAN +

(The . for 4 =1, 2, ..., m , may be monotone, but need not be so.)

7, >
Let F denote the vector whose components are

¢O o fb, ¢l o fi, cens ¢m o fh . The converse Kuhn-Tucker property will
hold for the original problem (2) if it holds for the transformed problem

+
(8), thus if F is RT l—invex, with respect to some n . Although (8) is
not generally a convex problem, a local minimum for (8) at u follows, as
in Theorem 1; and this implies a local (and hence global) minimum at u«

for the convex problem (2).

2. Conditions necessary or sufficient for an invex function

Assume now that the vector functions f and n are twice
continuously differentiable. For fixed u , the Taylor expansion of

n(x, u) in terms of v = x - u gives, up to quadratic terms

(9) n(x, u) = + Av + %vTQ.v + O(Hvuz] (v =x-u),

"o

where A 1is an »n X n matrix of first partial derivatives, and vTQ.v is

a coordinate-free notation (see [3]) for the vector whose kth component

is
n ank(x,u)
(10) ) le viQk,ijvj , where Qk,ij = —?EEEEE—-
1,Jd= T=u
Of course, n, = n{u, u) , A, and ¢, depend on u . If q is a row

0

vector with n components, let ¢@ 6 denote the matrix Qk vhose elements

o

are z: quk,ij . Thus q(vTQ.v) = qQ.)v ,» an ordinary quadratic form.

Similarly, f has an expansion

(11) flz) - flu) = Bo + WMo + o(I0l?) ,
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where B = f'(u) 1is a matrix of first derivatives afk(x)/axi|x=u , and

3%f, (=)
(12) M id = T8x.ox,
)
T=u
. . ~a . . T
Let S be a convex cone in | . The quadratic expression v M v

will be called S-positive semidefinite if vTM.v €S for every v €R' .
The expression vzh.v will be called S-positive definite if
UTM.U € int S for every nonzero v € R® . Here int S denotes the
interior of S , supposed nonempty. Now UTka can be expressed, by

n
rotation of axes, in the form ié; pkiaki , where the pki
(¢ =1, 2, ..., n) are the eigenvalues of Qk , and the Qs s depending
on v , are nonnegative. For each k , denote by pk the vector whose
components are pkl’ pk2’ ey pkn . If, for some ordering of the eigen-
values of each Qk , every vector Pr lies in S (respectively in
int S ), then it follows that UTQ.v is S-positive semidefinite

(respectively S-positive definite). This sufficient condition for

S-positive semidefiniteness would be also necessary if the Qk are

simultaneously diagonalizable, but that is not usually the case. It is
convenient to say that @, is S-positive (semi-) definite when va.v
is.

If S 1is a polyhedral cone, then the dual cone S* has a finite set,
G , of generators (considered as row vectors). Since a vector a € S if
and only if gs 2 0 for each q € G , it follows that & is S-positive
(semi-) definite if and only if, for each q € G , q@ is positive {semi-)

definite in the usual sense.

let r=m+1. If B is an r X n matrix, define vT(BQ_)v for

v ¢ R' as the vector whose kth component is
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™~

n
(13) g: vick,ijvj where Ck,ij = Btht,ij .

i,5=1 t=1
Let I denote the 7z X »n identity matrix.
Observe that the K-invex property (L) is unaffected by subtracting
from N any term in the nullspace of f'(u) =B .
THEOREM 2. et f : R' >R’ be twice continuously differentiable:

let KR be a closed convex come, satisfying K n (-K) = {0} . If f
is K-invex in a neighbourhood at wu , with respect to a twice continuously
differentiable funetion n , for which nlu, u) = 0, then, after
subtraction of a term in the nullspace of B, N has the form

(14) nlutv, u) =v + %UTQ.U + o(llvlle) s

where M, - B, is K-positive semidefinite. Conversely, if n has the
form (14), and if M, - BQ, is K-positive definite, then [ is K-invex

in a neighbourhood at u , with respect to this n .

Proof. Let f be KX-invex with respect to N in a neighbourhood at

u . Substituting the expansion (9) into the expansion (11), and setting
no = 0 , the inequality
(15) Bo+loTM veo ([012) | - Bav+ioT@ veo(I0I2)] € k

5 visV" M vio v - UtV @ V40

must hold, whenever [[v|| is sufficiently small. Considering the terms

linear in v , Bv - BAv + o(llv]]) € K for each v € R . Hence, for each
q € K* , and each v , q(B(I-A)v+o(HvH)) > 0 , hence gB(I-A)v =20 .

Hence B(I-A)v € K n (-K) = {0} . Therefore B(I-A) = 0 . But the
definition (4) of X-invex allows any term in the nullspace of B to be
added to n . Hence f is also K-invex with respect to N , now modified
by replacing A by I . The quadratic terms then require that, for each

v,

(16) ol (M -BQ W + o(ul%) €k .
Hence, for each g € X* and each a > 0 , replacing v by av ,

ql¥ (M -Be )] + 0(6®)/e® = 0 .
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Hence q[bT(M.-BQ.)u] 2 0 for each ¢ € K* , hence

(17) vT(M.-BQ.)v € K for each v € R" .

Thus M, - BQ,6 is K-positive semidefinite.

Conversely, assume that M, - B, is K-positive definite. A
reversal of the above argument shows that (15), with A = I , is satisfied
up to quadratic terms, with KX replaced by int K . Here the quadratic
terms dominate any higher order terms, so that (15) itself holds, whenever
[l is sufficiently small. Thus (L) follows, and f is K-invex, in a
neighbourhood at u , with n given by (1b4). 0

If a nonzero term n, = (0, 0) 1is included in (9), then the K-invex
property for f requires that -Bno € K , on setting v = 0 . Suppose

that, for the constrained minimization problem (5), the Kuhn-Tucker
conditions (6) hold at the point u . Then ATB = 0 , for some nonzero

A € K* . Suppose that A € int K* (for problem (2), this means that each
Lagrange multiplier Ai >0 ]. From this, if O # -Bno € K , there follows
{see [1], page 31) XTBhO < 0 , contradicting XTB =0 . So the assumption
that Bno = 0 1is a relevant one, when the X-invex property is to be
applied to Kuhn-Tucker conditions and Theorem 1. In Theorem 2, Ng = 0

was assumed, since a vector in the nullspace of B may be subtracted from

n .

In Theorem 2, the sufficient conditions for f to be K-invex involve
first and second derivatives of f . Combining this with the sufficient
Kuhn-Tucker theorem (Theorem 1), it has been shown that the Kuhn-Tucker
conditions are sufficient for a local minimum of a nonconvex problem, if

the first and second derivatives of f at the Kuhn-Tucker point u are
suitably restricted. The Lagrangian fb(x) + XTé(x) for the problem (5)
has ATM as its matrix of second derivatives. The second order
sufficiency conditions, given by Fiacco and McCormick [4], page 30, require

that (in the present notation) each component of vT[ATM')v > 0 for each

nonzero v 1in a certain cone. This is related to, but not the same as,
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the hypothesis (from Theorem 2) that M - BQ, is

for some choice of &,

However, the construction of a suitable

B.D. Craven

K-positive definite,

Q,

given f , is a nontrivial matter, since the eigenvalues of each

Mk - (BQ')k matrix are involved.

Consider the problem,

Minimize
)er®

(18)

a=(z 2,

This problem has a local minimum at

The matrices Mk are then

3.

fo®)

Examples
_ 13 2 X
= ixl - x2 subject to
.12 2 <
file) = g2l +2, -1=0.

(0, 1) , with Lagrange multiplier 1 .

o o]" 10 0 -2
M0=_0-2 wnd Ml=02;B=_02
When do symmetric matrices QO and Ql exist for which
[0 o] 1 0
b - OQO - (-2)Ql and . s - OQO - 2Ql
are both positive semidefinite, or both positive definite? Setting
o B] 20 2B 1-20 -28
Ql = , the two matrices are and
8 Y] 28 -2+2y -2B  2-2v
Using the Routh-Hurwicz criterion, 0 =0 =1, Y=1,

a(-1+y) - 82 2 0 , and (1-a)(2-2y) - B2

semidefinite matrices

N

0

v

0 , are required. Positive

0] 0

N -

and

0 0 0

are obtained, with a = % , B=0, Y=1, but positive definite

matrices are not possible.

Thus the necessary conditions of Theorem 2, but

not the sufficient condition, holds in this instance.
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1
For the same problem (18), the point (-1, 22) is a saddle point,
with Lagrange multiplier 1 . Here

The matrices to consider are

-1 O 1 0

1 1
* @y -~ 22¢; and -+ 2%,

0 =2 0 2

and these cannot both be positive definite (or semidefinite), whatever the
1

choice of the matrix QO - 25Q1 . So the sufficient condition of Theorem 2

does not hold here.
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