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INSURANCE WITH BORROWING: FIRST-
AND SECOND-ORDER APPROXIMATIONS

A. A. BOROVKOV,∗ Sobolev Institute of Mathematics, Novosibirsk

Abstract

We consider the operation of an insurer with a large initial surplus x > 0. The insurer’s
surplus process S(t) (with S(0) = x) evolves in the range S(t) ≥ 0 as a generalized
renewal process with positive mean drift and with jumps at time epochs T1, T2, . . . . At
the time Tη(x) when the process S(t) first becomes negative, the insurer’s ruin (in the
‘classical’ sense) occurs, but the insurer can borrow money via a line of credit. After this
moment the process S(t) behaves as a solution to a certain stochastic differential equation
which, in general, depends on the indebtedness, −S(t). This behavior of S(t) lasts until
the time θ(x, y) at which the indebtedness reaches some ‘critical’ level y > 0. At this
moment the line of credit will be closed and the insurer’s absolute ruin occurs with deficit
−S(θ(x, y)). We find the asymptotics of the absolute ruin probability and the limiting
distributions of η(x), θ(x, y), and −S(θ(x, y)) as x → ∞, assuming that the claim
distribution is regularly varying. The second-order approximation to the absolute ruin
probability is also obtained. The abovementioned results are obtained by using limiting
theorems for the joint distribution of η(x) and −S(Tη(x)).
Keywords: Insurance with borrowing; absolute ruin; deficit at absolute ruin; debit interest;
regularly varying distributions; subexponential function; first passage time; excess;
compound renewal process; stochastic differential equation; second-order approximation
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1. Introduction and the main result

We will begin by describing a general Sparre–Andersen-type risk model (first without any
lines of credit). Suppose that claims of positive sizes ζn, n = 1, 2, . . . , are made against the
insurer at times

Tn :=
n∑
j=1

τj , T0 = 0,

respectively. We assume that the random vectors (τj , ζj )
d= (τ, ζ ), j = 1, 2, . . . , are inde-

pendent, where ‘
d=’ denotes equality in distribution. The insurance premiums are received

continuously at a constant rate r > 0. Thus, the insurer’s surplus at the time Tn is

S(Tn) = x −Xn, Xn :=
n∑
j=1

ξj , ξj := ζj − rτj
d= ξ := ζ − rτ.
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1142 A. A. BOROVKOV

The sequence {S(Tn)} can be called a discrete-time surplus process. We assume that E ξ is
finite and that

a := − E ξ > 0.

Let X := X∞, where Xn := maxk≤n Xk , and let x be the initial surplus. The event
A(x) := {X > x} means that the insurer’s ruin (in the ‘classical’ sense) takes place. This ruin
occurs at the time Tη(x), where

η(x) := min{k : Xk > x}
(η(x) = ∞ if Xk ≤ x for all k).

It is well known (see, e.g. [10]) that if the function

V I(t) :=
∫ ∞

t

V (u) du, where V (u) := P(ξ > u),

is subexponential then

P(A(x)) = P(X > x) ∼ 1

a
V I(x) as x → ∞, (1)

where the notation f (x) ∼ g(x) means that f (x)/g(x) → 1 as x → ∞.
If the function V is ‘strongly subexponential’ (see, e.g. [10]) then

P(η(x) ≤ n) = P(Xn > x) ∼ 1

a
[V I(x)− V I(x + an)] as x → ∞.

If, moreover, V belongs to the class R of regularly varying functions, that is,

V (t) = t−αL(t), α > 1, (2)

where L(t) is a slowly varying at infinity function, then V I(x) ∼ xV (x)/(α − 1) as x → ∞
and

P

(
η(x)

x
> u

∣∣∣∣ X > x

)
∼ (1 + au)−α+1 (3)

(see, e.g. [2]).
We can also consider an equivalent model in continuous time. Set

Zk :=
k∑
j=1

ζj , N(t) := max{k : Tk ≤ t}, Z(t) := ZN(t).

Then the insurer’s surplus process is

S(t) := x −X(t), X(t) := Z(t)− rt.

In what follows it will be more convenient for us to consider the ‘loss process’ X(t) (with
positive jumps and negative mean drift) as the main subject of study. The value X(t) is the
amount of money that the insurer has lost during the time period (0, t]. Evidently, supt≥0X(t) =
supk≥0Xk = X, and so the event of ruin, A(x) = {X > x}, is expressed equally in terms of
both processes Xk and X(t). The ruin time points for the processes {Xk} and X(t) are η(x)
and Tη(x), respectively.
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In the present paper we consider the following modification of the above model that assumes
that a line of credit will be made available to the insurer when the surplus process drops below 0.
If the event A(x) occurs then, at the time Tη(x), the insurer borrows an amount of money equal
to the deficit at a debit interest force δ > 0. Meanwhile, the insurer will repay the debt from
his premium income. The loss process Xδ(t) (Xδ(t) = X(t) for t ≤ Tη(x)) for t ≥ Tη(x) is the
solution to the stochastic differential equation

dXδ(t) = (Xδ(t)− x)+δ dt + dZ(t)− r dt, Xδ(Tη(x)) = X(Tη(x)), (4)

where z+ = max{0, z}. Relation (4) means that the debt is repayed continuously in time
proportionally to the current indebtedness (Xδ(t)− x)+.

In [5] such a model was considered, the credit being granted until the current indebtedness
Xδ(t)− x reaches the level r/δ (after this time, dXδ(t) ≥ dZ(t) and the path Xδ(t) will grow
unboundedly with probability 1, so the debt can never be repayed). The time

θ(x, y) := min{t : Xδ(t)− x > y}
of the first passage of the level y = r/δ is called, for this model, the absolute ruin time
(θ(x, y) = ∞ if Xδ(t)− x ≤ y for all t). At this time the insurer’s indebtedness is

D = D

(
x,
r

δ

)
:= Xδ

(
θ

(
x,
r

δ

))
− x ≥ r

δ
.

If the absolute ruin does not happen then the process Xδ(t) can return to the range {Xδ ≤ x}
(when this happens, the debt is repayed) and the insurer will continue to operate in the previous
manner; the credit line will again be granted if needed.

There are some other models for insurance with borrowing. They were studied in a number
of papers, mostly under the assumptions that N(t) is a Poisson process (τ is exponentially
distributed), and ζ and τ are independent. The absolute ruin probability for exponentially
distributed sizes, ζj , of claims was studied in [7] using a martingale approach. A more general
framework was considered in [8] and [9]. The case in which the insurance premiums depend
on the surplus S(t) (if S(t) > 0) was considered in, among others, [1], [4], [6], and [11].

The present paper was motivated by [5]. In [5], in particular, the following statement was
proved (see [5, Theorem 4.1]).

Theorem 1. ([5].) Let the event A(x, r/δ) := {θ(x, r/δ) < ∞} denote absolute ruin. If the
function V I is subexponential then, under some additional assumptions,

P

(
A

(
x,
r

δ

))
∼ 1

a
V I(x) as x → ∞, where a = − E ξ = r E τ − E ζ > 0. (5)

In other words, P(A(x, r/δ)) ∼ P(A(x)) (see (1)).
Note that if the trajectory of X(t) has reached the level x + r/δ then the more so the

trajectory of the processXδ(t) (defined on the same probability space) reaches this level because,
according to (4), the process Xδ(t) has the same positive jumps as the process X(t) and has
less negative drift than X(t): (Xδ(t)− x)+δ − r ≥ −r . Therefore,

A

(
x + r

δ

)
⊂ A

(
x,
r

δ

)
⊂ A(x) (6)
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and, for r/δ = constant and subexponential V I,

V I(x + r/δ)

V I(x)
→ 1 as x → ∞.

The last two relations immediately imply that

P

(
A

(
x,
r

δ

))
∼ P(A(x)) ∼ P

(
A

(
x + r

δ

))
∼ 1

a
V I(x). (7)

Thus, (5) is valid without the additional assumptions of Theorem 4.1 of [5], including the
requirements that N(t) be a Poisson process, and the components of τ and ζ be independent.
Therefore, assertion (5) is in fact evident under very wide conditions. Relations (5) and (7)
mean that the availability of a line of credit with fixed δ (or r/δ) does not essentially alter
the asymptotics of the (absolute) ruin probability. However, we can consider a more general
problem that leads to interesting nontrivial results on the asymptotic behavior of the absolute
ruin probability, and also that of the joint distribution of the time to the absolute ruin and the
deficit at that time. The generalization contains the following elements.

1. As already mentioned, the asymptotics of P(A(x, r/δ)) in (5) do not depend on δ. The
situation may change if δ is small. This assumption seems natural because the interest force
δ corresponds to a ‘small’ time unit (say an hour). However, the per cent interest per a long
time period T approximately equals eδT − 1, so if T has the order of x (the amount of debt
and the time to repay it under the conditions of Theorem 2, below, have such order) then this
per cent interest will be ‘reasonable’ if the value of δx is a ‘proper’ one (not ‘too small’ and not
‘too large’, say less than 1). So we assume that δ may tend to 0 as x → ∞, but δx remains
‘comparable’ with 1.

2. To be more precise, we assume that δ = δ(x,Xδ(t) − x) depends also on the value of
indebtedness (Xδ(t) − x)+ in such a way that in (4) instead of (Xδ(t) − x)+δ we can write
p((Xδ(t)− x)/x), where (xδ − x)/x is the ‘normalized’ current indebtedness and p(v) is a
given fixed function,

p(v) = 0 for v ≤ 0. (8)

If p(v) = γ v+, γ = constant > 0, then δ depends only on x and we have δ = γ /x in (4).
The function p(v) has the following obvious meaning. The amount of interest paid during

a small time interval (t, t + 	) is 	p(v) given that p(v) is continuous and the ‘normalized’
current indebtedness equals v.

The functionp(v) in what follows will satisfy some conditions of nondecrease and continuity
in a rather weak form (see, e.g. Theorems 2, 3, and 7, below). Thus, we will consider an arbitrary
debt repay rule p(v) under condition (8) and certain conditions below.

For the process Xp(·)(t) corresponding to an arbitrary function p(v), an analog of (4) can
be written in the following form:

dXp(·)(t) = p

(
Xp(·)(t)− x

x

)
dt − r dt + dZ(t). (9)

It follows from (9) that Xp(·)(t) as a function of p(·) is monotonously increasing: Xp(·)(·) ↑
as p(·) ↑ (the initial value of Xp(·)(0) = 0 is fixed; g1(·) ≥ g2(·) if and only if g1(t) ≥ g2(t)

for any t), so Xp(·)(·) dominates X(·) since p(·) ≥ 0.
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3. In the case of the model in (4), the expediency of continuing to credit the insurer is doubtful
when the current indebtedness Xδ(t) − x is close to the level r/δ: in this range the absolute
ruin probability is close to 1. We will assume that, for the general model (9), the line of credit
is closed at the time θ(x, y) when the current indebtedness Xp(·)(t) − x exceeds some level
y = ρx for the first time. This level can be chosen to be such that the ‘mean local drift’ of the
process Xp(·)(t) in the range Xp(·)(t) < x + y remains negative, i.e. (see (9))

r∗ := r − p(ρ) >
aζ

aτ
, (10)

where aζ = E ζ , aτ = E τ , and ρ = y/x. The inequality in (10) can be rewritten as

a∗ := aτ r
∗ − aζ > 0

(recall that a = aτ r − aζ ).
For such choice of y, the processXp(·)(t) in the rangeXp(·)(t) ≤ x+y is pathwise dominated

by the processX∗(t), which is defined similarly toX(t)with r replaced by r∗ < r . The process
X∗(t) still has a negative mean drift like the original process X(t). Also, the chance for the
insurer to avoid absolute ruin remains high. According to the notation above, denote byA(x, y)
the event of absolute ruin when the line of credit is closed at the deficit level y; this occurs at
the time θ(x, y). At this time the insurer’s current indebtedness is Xp(·)(θ(x, y))− x.

It is clear that, in this new framework, the relations

A(x + y) ⊂ A(x, y) ⊂ A(x)

(cf. (6)) and

P(A(x, y)) ∼ 1

a
V I(x) for y ≤ c

remain valid for subexponential V I.

4. Now we introduce some restrictions on the distributions of ξ = ζ − rτ and ξ∗ = ζ − r∗τ .
As above, let V (t) = P(ξ > t) and R be the class of regularly varying functions (see (2)), and
let one of the two following alternative conditions hold.

(R1) V ∈ R, α ∈ (1, 2), the expectation E ξ < 0 is finite, and the left distribution tail
P(ξ < −t) of the random variable ξ admits a regularly varying majorant W :

P(ξ < −t) ≤ W(t), W(·) ∈ R,

such that W(t) = O(1/t ln t) as t → ∞.

(R2) V ∈ R, α > 2, and E ξ2 < ∞.

The condition that either (R1) or (R2) holds will be denoted by (R).
Now we can state the first main assertion. It corresponds to the case when the critical level

y = ρx

is such that the process Xp(·)(t) − x attaining this level can still return to the negative range.
(Recall that, once the critical level is attained by the process Xp(·)(t)− x, the line of credit is
closed.)
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Theorem 2. Let a = − E ξ > 0, let condition (R) hold, and let the process Xp(·)(t) be
determined by (9) and Xp(·)(0) = 0, where the function p(u) satisfies (8) as well as the
condition

max
u≤ρ p(u) = p(ρ). (11)

Furthermore, let the level y unboundedly increase so that ρ = y/x ≤ H for some (fixed)
constant H , and let

r∗ := r − p(ρ) >
aζ

aτ
(a∗ := r∗aτ − aζ > 0). (12)

Then

P(A(x, y)) ∼ P(A(x + y)) ∼ V I(x + y)

a
. (13)

If y ∼ ρx as x → ∞ and ρ is fixed, then the absolute ruin time θ(x, y) has the limiting
conditional distribution

lim
x→∞ P

(
θ(x, y)

x
> uaτ

∣∣∣∣ A(x, y)
)

=
(

1 + au+ ρ

1 + ρ

)−α+1

. (14)

The limiting conditional distribution of the deficitD(x, y) := Xp(·)(θ(x, y))−x for y ∼ ρx

and ρ = constant is

lim
x→∞ P

(
D(x, y)

x
> u

∣∣∣∣ A(x, y)
)

=
(

1 + max(u, ρ)

1 + ρ

)−α+1

. (15)

We will see later on that Theorem 5 enables us to easily obtain the limiting joint distribution
of θ(x, y) and D(x, y) as well.

Theorem 2 shows that, for the absolute ruin probability to be significantly less than P(A(x)),
the parameter y should be chosen as large as possible (within the bounds of (12)). If y = o(x)

then introducing the line of credit does not change the asymptotics of the absolute ruin proba-
bility P(A(x, y)) in comparison with that for P(A(x)).

Our second main statement corresponds to the case when (12) does not hold and the process
Xp(·)(t)− x, once it has attained the level greater than or equal to y, grows unboundedly with
high probability, as happens to the solution of (4) for y = r/δ = rx/γ (i.e. for ρ = r/γ ).

Theorem 3. Let all the conditions of Theorem 2 except (11) and (12) be satisfied. Instead of
(11) and (12) we assume that there exists an r∗∗ such that

r − p(ρ) ≤ r∗∗, a∗∗ := r∗∗aτ − aζ < 0. (16)

Moreover, let there exist a unique solution u = ρ0 to the equation

r − p(u)− aζ

aτ
= 0, (17)

and, for each ε > 0, there exists β = β(ε) > 0 such that

min
u≤ρ0−ε

p(u) ≤ p(ρ0)− β, max
u≥ρ0+ε

p(u) ≥ p(ρ0)+ β (18)

(this implies that ρ0 < ρ). Then, for y0 = ρ0x < y,

P(A(x, y)) ∼ V I(x + y0)

a
. (19)
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The level y0 = ρ0x is such that the mean drift of the process Xp(·)(t) in the range of its
values close to y0 is close to 0.

Under the conditions of Theorem 3, we can also obtain the limiting distributions of θ(x, y)
andD(x, y), as was the case in Theorem 2 (see the remarks after the proof of Theorem 5, below).
But comparison of statements (13) and (19) shows that raising the ‘critical’ level y above y0
does not reduce the absolute ruin probability. This is why it is inexpedient to choose y > y0
and, hence, studying the limiting distributions of θ(x, y) and D(x, y) is not so interesting for
such y.

The aforesaid means that there exists a lower asymptotic bound for the absolute ruin
probability (see also the proofs of Theorems 2 and 3 in Section 3).

Corollary 1. Let all the conditions of Theorem 2 except (11) and (12) be satisfied. Furthermore,
let there exist a unique solution u = ρ0 to (17), and let (18) hold. Then, for x → ∞ and all y,

P(A(x, y)) ≥ 1

a
V I(x(1 + ρ0))(1 + o(1)).

The right-hand side of the last relation can be replaced with P(A(x, y0))(1 + o(1)), where
y0 = ρ0x.

If p(u) = γ u+ then

ρ0 = 1

γ

(
r − aζ

aτ

)
.

The proofs of Theorems 2 and 3 are presented in Section 3. A theorem on the asymptotics
of the joint distribution of η(x) and χ(x) := Xη(x) − x will be stated and proved in Section 2;
this theorem will be needed is Section 3. In Section 4 a ‘conditional’ law of large numbers is
proved for the process describing the evolution of the indebtedness in the presence of a credit
line. In Section 5 integro-local limiting theorems for the joint distribution of η(x) and χ(x)
are obtained. Based on these theorems the second-order approximation to the absolute ruin
probability P(A(x, y)) is found in Section 6.

2. The asymptotics of the joint distribution of η(x) and χ(x) = Xη(x) − x

In this section we use the notation of Section 1.

Theorem 4. Let a = − E ξ > 0, h > 0, andN > 0 be arbitrary fixed numbers. Furthermore,
let condition (R) be satisfied. Then, for all

u ≥ (x + an)h, (20)

the asymptotic representation

P(η(x) = n, χ(x) > u) ∼ V (x + an + u) (21)

as x → ∞ holds uniformly in all n ≤ Nx.

Theorem 4 implies the following result (in addition to (3)).
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Corollary 2. Let all the conditions of Theorem 4 except (20) be satisfied. Then, for n ≤ Nx,
u = zx, and each fixed N > 0 and z > 0, the relations

P(∞ > η(x) ≥ n, χ(x) > u) ∼ 1

a
V I(x + an + zx), (22)

P(X > x, χ(x) > u) ∼ 1

a
V I(x(1 + z)), (23)

P

(
χ(x)

x
> z

∣∣∣∣ X > x

)
∼ (1 + z)−α+1 (24)

hold as x → ∞. Moreover, relation (23) remains valid for u = o(x).

Note that, by (23),

P(X > x, χ(x) > u) ∼ 1

a
V I(x + u) ∼ P(X > x + u).

Proof of Theorem 4. Set ξ0
j := ξj + a, X0

n := Xn + an, V 0(t) = P(ξ0 > t) ∼ V (t) as
t → ∞, and Gn := {Xn−1 < x}.

First consider the case when condition (R2) holds. Let ε = ε(n) tend to 0 so slowly that
εn 
 √

n ln n as n → ∞. Then P(|X0
n−1| > (x + an)(1 + h)ε) → 0 and P(Gn) → 1 as

x → ∞ uniformly in n (see, e.g. Corollary 4.1.9 of [3]). Furthermore, for u = (x + an)z and
z ≥ h, we have

P(η(x) = n, χ(x) > u) = P(Xn−1 < x, X0
n−1 + ξ0

n > (x + an)(1 + z))

= E[V 0((x + an)(1 + z)−X0
n−1);Gn]

= E1 + E2 + E3 + E4,

where, for w := (x + an)(1 + z) = x + an + u,

E1 := E[V 0(w −X0
n−1);Gn, |X0

n−1| < εw] ∼ V 0(w),

E2 := E[V 0(w −X0
n−1);Gn,X0

n−1 < −εw] = V 0(w)o(1),

E3 := E

[
V 0(w −X0

n−1);Gn,X0
n−1 ∈

[
εw,

x + an

2

]]
= V 0

(
x + an

2

)
o(1) = V 0(w)o(1),

E4 := E

[
V 0(w −X0

n−1);Gn,X0
n−1 ∈

(
x + an

2
, x + an

)]

≤ V 0(z(x + an))O(nV 0(x + an))

= V 0(w)o(1),

as x → ∞ (see, e.g. Theorem 3.4.1 of [3]). Evidently, all the O(·) and o(·) terms here are
uniform in n as x → ∞. Adding up the above relations for E1–E4 we obtain

P(η(x) = n, χ(x) > u) ∼ V 0((x + an)(1 + z)) ∼ V (x + an + u).

This implies (21).
In the case when (R1) holds the above argument remains valid as well. The only thing to

be changed is the choice of the sequence ε = ε(n). This sequence is to be chosen such that
εn 
 σ(n), where σ(n) = V (−1)(1/n) and V (−1) is the generalized inverse of V (i.e. the
corresponding quantile transform). Then P(|X0

n−1| > (x + an)(1 + z)ε) → 0 as x → ∞
uniformly in n (see, e.g. Corollary 3.1.3 of [3]). This completes the proof.
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Proof of Corollary 2. If u = zx for some fixed z > 0 then, for n ≤ Nx (with some fixed
N > 0), the relations

u ≥ max

(
zx,

zan

aN

)
≥ (x + an)zh

are valid for some h > 0. These relations imply (20). Hence, (21) is valid. Thus,

P(∞ > η(x) ≥ n, χ(x) > u) ∼
�Nx
∑
k=n

V (x + ak + zx)+O(P(η(x) > Nx)). (25)

The first term on the right-hand side of (25) can be made arbitrarily close (in the sense of
the asymptotic equivalence) to (1/a)V I(x + an + zx) by choosing a suitable N . By virtue of
(3), choosing an appropriate N , we can make the second term on the right-hand side of (25)
arbitrarily small compared to V I(x). This proves (22). Relation (23) follows from (22) for
n = 1. Relation (24) follows from (1) and (23).

Since (23) is also valid for u = 0 in view of (1), relation (23) for u = o(x) easily follows
from considerations of monotonicity and the relation V I(x + o(x)) ∼ V I(x). This completes
the proof.

The assertion of Theorem 4 is obtained under the restriction u ≥ (x+an)h, h > 0. Studying
the asymptotics of the left-hand side of (21) for u = o(x+an) requires employing more refined
approaches dealing with integro-local theorems for Xn. The same can be said about relation
(23) for u 
 x.

3. Proofs of Theorems 2 and 3

In this section we return to the model formulated in Section 1.

Proof of Theorem 2. First we prove (13). For bounded y, the proof of relation (13) is
completely analogous to the proof of (7). Thus, in the sequel we will assume that y → ∞ as
x → ∞. Represent P(A(x, y)) as

P(A(x, y)) = P1 + P2 + P3, (26)

where

P1 :=
∞∑
k=1

P(η(x) = k, χ(x) > y) = P(X > x, χ(x) > y) ∼ 1

a
V I(x + y) (27)

by Corollary 2. Furthermore, consider, for ε ∈ (0, 1),

P2 :=
∫ y−εy

0
P(η(x) < ∞, χ(x) ∈ dv)P

(
sup
u≥0

Xp(·),v(u) > y − v
)
, (28)

where
Xp(·),v(u) := Xp(·)(Tη(x) + u)− v, v = X(Tη(x)), u ≥ 0.

The random variables η(x) and Tη(x) are stopping times for the processes Xk and X(t),
respectively. Hence, the process Xp(·),v(u) depends on v only (for χ(x) = v) and does not
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depend onXp(·)(t) for t ≤ Tη(x), and, moreover, is dominated in the range of values (−∞, y−v)
by the process distributed equally with the process X∗(u), so that

P
(

sup
u≥0

Xp(·),v(u) > y − v
)

≤ P
(

sup
u≥0

X∗(u) > y − v
)
.

Since y − v ≥ εy in the integration domain in (28), we see that, for X∗ := supu≥0X
∗(u),

P
(

sup
u≥0

Xp(·),v(u) > y − v
)

≤ P(X∗ > εy) → 0,

if ε = ε(y) → 0 is chosen so that εy → ∞ as y → ∞. Thus,

P2 ≤ P(X > x)o(1).

Furthermore, we have

P3 :=
∫ y

y−εy
P(η(x) < ∞, χ(x) ∈ dv)P

(
sup
u≥0

Xp(·),v > y − v
)

≤ P(X > x, χ(x) ∈ [y − εy, y]), (29)

where εy = o(x) and the right-hand side of (29) is o(V I(x)) by Corollary 2. As a result, we
obtain

P2 + P3 = o(V I(x)). (30)

Since V I(x) = O(V I(x + y)) for y ≤ Hx, combining (26), (27), and (30) proves relation (13).
The aforesaid means that the event A(x, y) can be represented as

A(x, y) = A(x) ∩ [B ∪ C],
where B = {χ(x) > y} and B ∩ C = ∅, and, for y → ∞, the relation P(A(x)C) =
o(P(A(x)B)) is valid. Therefore, for y = ρx,

P(∞ > θ(x, y) ≥ vx | A(x, y)) = P(∞ > θ(x, y) ≥ vx;A(x)B)
P(A(x)B)(1 + o(1))

+ o(1)

= P(∞ > Tη(x) ≥ vx;χ(x) > ρx | A(x))
P(χ(x) > ρx | A(x)) + o(1),

where
Tη(x)

x
= Tη(x)

η(x)

η(x)

x
,

Tη(x)

η(x)
−→ aτ almost surely

as x → ∞. Hence, by Corollary 2,

P

(
∞ >

θ(x, y)

x
≥ vaτ

∣∣∣∣ A(x, y)
)

∼ V I(x(1 + av + ρ))

V I(x(1 + ρ))
∼

(
1 + av + ρ

1 + ρ

)−α+1

.

This proves (14).
Evidently, the limiting conditional distribution of the indebtedness D(x, y) given the event

A(x, y) coincides with the limiting conditional distribution of χ(x) given that X > x and
χ(x) > y. Since, for any events A, B, and C,

P(A | BC) = P(ABC)

P(BC)
= P(ABC)

P(C)

P(C)

P(BC)
= P(AB | C)

P(B | C) ,
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we have, for y = ρx and ρ = constant,

P

(
χ(x)

x
> v

∣∣∣∣ X > x, χ(x) > y

)

= P

(
χ(x)

x
> v,

χ(x)

x
> ρ

∣∣∣∣ X > x

)/
P

(
χ(x)

x
> ρ

∣∣∣∣ X > x

)
.

By Corollary 2, this yields

lim
x→∞ P

(
D(x, y)

x
> v

∣∣∣∣ A(x, y)
)

=
(

1 + max(v, ρ)

1 + ρ

)−α+1

.

This proves (15), completing the proof.

Proof of Theorem 3. The argument below does not differ significantly from the previous
proof. Instead of (26) we now represent P(A(x, y)) as

P(A(x, y)) = P1 + P2 + P3 + P4,

where P1 := P(X > x, χ(x) ≥ y) coincides with (27). Furthermore, by analogy with (28) we
have

P2 :=
∞∑
k=1

∫ y0(1−ε)

0
P(η(x) = k, χ(x) ∈ dv)P

(
sup
u≥0

Xp(·),v(u) ≥ y − v
)

= o(V I(x)).

The probabilities P3 and P4 have the same form but with the integrals taken over the intervals
(y0(1 − ε), y0(1 + ε)) and (y0(1 + ε), y), respectively. It is clear that, by Corollary 2, the
value of P3 can be made arbitrarily small compared to V I(x) by choosing a sufficiently small
ε > 0.

Now consider P4. The process Xp(·),v(t) in the range of values (y0(1 + ε), y) is minorized
by the process X∗∗(t) of the form similar to X∗(t) but with positive mean drift. Hence,

P
(

sup
v≥0

Xp(·),v(v) ≥ y − v
)

≥ P
(

sup
v≥0

X∗∗(v) ≥ y − v
)

→ 1,

P4 ∼ P(X > x, χ(x) ∈ [y0(1 + ε), y]).
Therefore,

P1 + P4 ∼ P(X > x, χ(x) > y0(1 + ε)).

The ratio of the right-hand side of the last relation to the value (1/a)V I(x + y0) can be made
arbitrarily close to 1 by choosing an appropriate ε. This completes the proof.

4. ‘Conditional’ law of large numbers for the time to repay the debt

Consider the indebtedness process

Y (t) = Xp(·)(Tη(x) + t)− x

under the conditions of Theorem 2. We assume that the initial value (for t = 0) of the process
lies in (0, y). Using the methods and terminology of queueing theory, we will consider the
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so-called fluid limit. To do this, we scale both the time and the amount of money by dividing
these quantities by x. In other words, we consider the process

dx(t) := 1

x
Y (xt)

and study its limiting distribution as x → ∞ under the assumption that the initial (random)
value of dx(0) ∈ (0, ρ) is fixed.

Theorem 5. Let p(v) in (9) be a continuous function on [0, ρ] satisfying conditions (8), (11),
and (12). Let d(t) be the solution to the equation

d ′(t) = p(d(t))− b, d(0) = u ∈ (0, ρ), (31)

where b = r − aζ /aτ > 0. Then the function d(t) is strictly decreasing and there exists a
unique solution t0 to the equation d(t) = 0.

Furthermore, let the conditions of Theorem 2 be satisfied and let dx(0) ∈ (u−ε(x), u+ε(x)),
ε(x) → ∞ as x → ∞. Then, for each fixed T > 0, the following convergence of the process
dx(t) to the function d(t) takes place:

sup
0≤t≤T

|dx(t)− d(t)| p−→ 0 as x → ∞, (32)

where ‘
p−→’ denotes convergence in probability.

In particular, if p(v) = γ v+ then the solutions d(t) and t0 are

d(t) = γ−1[b + (γ u− b)eγ t ], (33)

t0 = γ−1 ln
b

b − γ u
. (34)

Therefore, for p(v) = γ v+ and given the eventA(x)A(x, y), the time to repay the debt behaves
asymptotically as

x

γ
ln

b

γ − pψ
,

where the random variable ψ has the distribution

P(ψ < v) = 1 − (1 + v)−α+1

1 − (1 + ρ)−α+1 , v ∈ [0, ρ]

(see (24)).

Proof. We will only sketch the proof as all the arguments involved are quite standard.
We will assume that the process Y (t), t ≥ 0, is driven by a new sequence {(τj , ζj )} (or a

new process Z(t)) which does not depend on the sequence driving the process Xp(·)(t) up to
the time Tη(x). From now on, almost-sure convergence will be considered with respect to the
distribution of this new sequence. The new process Z(t) driving Y (t) for t ≥ 0, by virtue of
the strong law of large numbers, possesses the following property: for each fixed T and ε > 0,
we have

P

(
sup

t0≤t≤T x

∣∣∣∣Z(t)− taζ

aτ

∣∣∣∣ > εx

)
→ 0
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as t0 → ∞ and x → ∞. Hence, all the increments of the process Z(·) on the time intervals
(xt, xt(1 +	)) for all large enough x lie in the interval

[
x	aζ

aτ
− 2εx,

x	aζ

aτ
+ 2εx

]

with high probability. This statement remains valid when ε = ε(x) tends to 0 (as x → ∞)
slowly enough.

We have p(v) ≤ p(ρ) for v ≤ ρ. Hence, for dx(t) ∈ (0, ρ), the increments of the process
dx(t) on (t, t +	) (which are determined by the increments of the process Xp(·)(t) in (9)) for
	 > ε lie within the bounds

	

[
p(dx(t))± ω	 − r + aζ

aτ
(1 ± ε)

]
,

where ω	 = supv≤ρ |p(v +	)− p(v)| is the modulus of continuity of the function p(·).
In view of the aforesaid and (9), the relation

sup
t≤T

∣∣∣∣dx(t +	)− dx(t)

	
− p(dx(t))+ r − aζ

aτ

∣∣∣∣ p−→ 0 (35)

holds as	 → 0,	x → ∞, and	 
 ε(x). These relations imply that the values of dx(t +	)
are determined (up to op(	)) by the value of dx(t). Hence, for t ≤ T , the values dx(t) are
determined by dx(0) up to op(1).

Because |d ′(t)| is bounded, (31) can be dealt with in a similar way. Equation (31) implies
that

sup
t≤T

∣∣∣∣d(t +	)− d(t)

	
− p(d(t))+ b

∣∣∣∣ ≤ pω	 → 0

as 	 → 0. Hence, d(t + 	) is determined by d(t) up to 	ω	 uniformly in t ≤ T . In
(35) we have r − aζ /aτ = b. Thus, we see that, given the initial values d(0) = u and
dx(0) ∈ (u − ε(x), u + ε(x)), the functions d(t) and dx(t) are constructed using identical
procedures and from ‘elements’ which evidently yield the same values (up to op(1)) along the
paths of these processes. This proves (32).

That d(t) is strictly decreasing follows from the relations

d ′(t) = p(d(t))− b < p(ρ)− b < 0.

If p(v) = γ v+ then (31) turns into the equation

d ′(t) = −b + γ d(t),

where −b + γρ < 0 (see (10)). After changing the variable

f (t) = γ d(t)− b

we obtain

f ′(t) = γf (t), f (t) = ceγ t , d(t) = b + f (t)

γ
= b + ceγ t

γ
.

Since d(0) = u < ρ, we have c = uγ − b < ργ − b < 0, which proves (33). Solving the
equation d(t) = 0 we obtain (34). This completes the proof of the theorem.
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Based on the argument above, we can now describe the limiting distribution of the time to
absolute ruin θ(x, y) and the amount of indebtedness Xp(·)(θ(x, y))− x under the conditions
of Theorem 3. As seen above, under these conditions, the event A(x, y), roughly speaking,
almost coincides with the event {χ(x) > y0}. Besides, if χ(x) > y then θ(x, y) = Tη(x). If
χ(x) ∈ (y0, y) then θ(x, y) = Tη(x) + tρx(1 + op(1)), where tρ is the solution to the equation
d(t) = ρ and d(t) is the solution to the differential equation (31) under the random initial
condition d(0) = u = χ(x)/x ∈ (ρ0, ρ) (d ′(t) > 0 if u ∈ (ρ0, ρ) under the conditions of
Theorem 3). Accordingly, the indebtedness coincides with χ(x) if χ(x) > y, and equals y if
χ(x) ∈ (y0, y). From this we can easily obtain the limiting distributions for θ(x, y) and the
indebtedness.

5. Integro-local theorems for the joint distribution of η(x) and χ(x)

Our next goal is to refine statement (13) of Theorem 2 and to find the second-order asymp-
totics (i.e. two-term asymptotic expansion) for P(A(x, y)). In order to do this, we need an
integro-local theorem for the joint distribution of η(x) and χ(x) as x → ∞, which refines
Theorem 4. For the sake of simplicity, we restrict ourselves to studying only the case when
condition (R2) holds. Denote by 	[x) the interval

	[x) := [x, x +	), 	 > 0.

We also assume that the following condition holds.

(R3) Condition (R2) is satisfied, and, for each fixed 	 > 0,

P(ξ ∈ 	[x)) = 	v(x)(1 + o(1))

as x → ∞, where v(x) := αx−α−1L(x) and L is the slowly varying at infinity function
from (2).

This condition holds whenever condition (R2) is satisfied and the function L in (2) is
differentiable with

L′(x) = o

(
L(x)

x

)
as x → ∞.

In this case v(x) ∼ V ′(x) as x → ∞.
The following integro-local theorem holds.

Theorem 6. Let E ξ = −a < 0, and let condition (R3) be satisfied. Then

P(η(x) = n, χ(x) ∈ 	[y)) = 	[v(x + y + an)(1 + o(1))+ r1], (36)

P(χ(x) ∈ 	[y), η(x) < ∞) = 	

a
[V (x + y)(1 + o(1))+ r2], (37)

as x → ∞ and y → ∞, where

|r1| ≤ nv

(
x + an

2

)
V (y)(1 + o(1)), (38)

|r2| ≤ 2

a
V I

(
x

2

)
V (y)(1 + o(1)).

The o(1) remainder terms in (36) and (38) are uniform in n.
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Relations (36) and (37) obviously imply the following corollary.

Corollary 3. If the conditions of Theorem 6 are satisfied, y → ∞, y < cx for some c < ∞,
and

nV(y) → 0, (39)

then
P(η(x) = n, χ(x) ∈ 	[y)) ∼ 	v(x + y + an).

If, instead of (39), the relation
xV(y) → 0 (40)

holds then

P(χ(x) ∈ 	[y), η(x) < ∞) ∼ 	

a
V (x + y).

Conditions (39) and (40) surely hold if n, x, and y grow at the same rate. But if, say,
nV (y) → ∞ then representation (36) becomes just a bound. This is due to crudeness of the
estimates used in the proof of the theorem.

Proof of Theorem 6. For the sake of convenience, we will consider the following expression
instead of the left-hand side of (36):

P(η(x) = n+ 1, χ(x) ∈ 	[y)) =
∫ x

−∞
P(Xn < x, Xn ∈ du)P(ξn+1 ∈ x − u+	[y))

= 	

∫ x

−∞
P(Xn < x, Xn ∈ du)v(x − u+ y)(1 + o(1)).

(41)

Set

bx,n := max(
√
x ln x,

√
n ln n), Pn(du) := P(Xn < x, X ∈ du)v(x − u+ y).

We have
P(Xn < x, Xn ∈ (−an − bx,n,−an + bx,n)) → 1

as x → ∞. Therefore, the main part in (41) equals
∫ −an+bx,n

−an−bx,n
Pn(du) ∼ 	v(x + y + an). (42)

Now we will bound the other parts of the integral in (41). Since v(x) is ‘asymptotically’
nonincreasing, the following relation holds:

∫ −an−bx,n

−∞
Pn(du) ≤ 	v(x + y + an)o(1). (43)

Now consider the integral
∫ x
−an+bx,n Pn(du) in (41). Using the notation given in the proof of

Theorem 4, we obtain∫ x

−an+bx,n
Pn(du) ≤

∫ x+an

bx,n

P(X0
n ∈ du)v(x + y + an − u)

=
∫ (x+an)/2

bx,n

Pn(du)+
∫ x+an

(x+an)/2
Pn(du). (44)
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The first integral on the right-hand side admits the following upper bound:

v

(
x + an

2
+ y

)
(1 + o(1))P(X0

n > bx,n) = v

(
x + an

2
+ y

)
o(1).

The second integral on the right-hand side of (44), by virtue of condition (R3) and the integro-
local theorem for X0

n (see Theorem 4.7.1 of [3]), can be bounded by the sum

n
∑
k∈I

v(k)v(x + y + an − k)(1 + o(1)) ≤ nv

(
x + an

2

)
V (y)(1 + o(1)),

where I denotes the set of all integers from the interval ((x + an)/2, x + an). Thus, we have
the following bound for the integral on the left-hand side of (44):

o(v(x + y + an))+ nv

(
x + an

2

)
V (y)(1 + o(1)).

Combining this with relations (42) and (43), we obtain the first assertion of the theorem.
To prove the second assertion of the theorem, we sum up the right-hand sides of (36) for n

running from 1 to ∞. Summing up the main parts yields (	/a)V (x+ y)(1 + o(1)). Summing
up the remainder terms r1 yields the sum

∞∑
n=1

nv

(
x + an

2

)
.

It is easy to see that this sum is asymptotically equivalent to (2/a)V I(x/2). Therefore, |r2| ≤
(2/a)V I(x/2)V (y)(1 + o(1)). This completes the proof of the theorem.

6. Second-order approximation for the absolute ruin probability

The accuracy of the approximation to the absolute ruin probability P(A(x, y)) is of crucial
importance for applications. The accuracy of approximation (13) in Theorem 2 is not always
satisfactory. In this section we establish the following assertion.

Theorem 7. Let the conditions of Theorem 2 and condition (R3) be satisfied. Moreover, let
the function p(v) be continuous and nondecreasing in a left half-neighborhood of the point
ρ = y/x. Then, for y = ρx and ρ ∈ (0, ρ0),

P(A(x, y)) = 1

a

[
V I(x + y)+ V (x + y)

(
EX

∗ + E ξ2

2a

)]
+ o(V (x + y)) (45)

as x → ∞.

Note that the coefficient EX
∗ + E ξ2/2a in asymptotic expansion (45) depends on ρ and is

not uniformly bounded in ρ ∈ (0, ρ0), because a∗ = aζ − r∗aτ ↓ 0 as ρ ↑ ρ0 (r∗ = r −p(ρ),
ρ0 is the solution to the equation r −p(ρ) = aζ /aτ ; see (17)). Hence,X

∗ → ∞ almost surely
and EX

∗ → ∞ as ρ ↑ ρ0.
On the other hand, for small a∗ (i.e. for ρ close to ρ0), we can use the results on transient

phenomena to find the approximate (large) value of EX
∗ ≈ var(ζ − r∗τ)/2a∗ (see, e.g. [3]).

Note also that the coefficient EX
∗ + E ξ2/2a in the second term of asymptotic expansion (45)

is always positive and, hence, the true values of P(A(x, y)) for large x always exceed their
approximation (1/a)V I(x + y) given by Theorem 2.
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6.1. Proof of Theorem 7

We will follow the same scheme of proof as for Theorem 2, but more precise estimates will
be used.

The estimate for the summand P2 in representation (26). The respective argument in the
proof of Theorem 2 implies that

P2 :=
∫ y(1−ε)

0
P(X > x, χ(x) ∈ du)P

(
sup
t≥0

Xp(·),u(t) > y − u
)

≤ P(X > x)P(X
∗
> εy)

≤ cV I (x)V I (εy), c < ∞. (46)

The estimate for the summand P3. Now consider the summand

P3 :=
∫ y

y(1−ε)
P(η(x) < ∞, χ(x) ∈ du)P

(
sup
t≥0

Xp(·),u(t) > y − u
)
. (47)

We employ the integro-local theorem, Theorem 6, which implies that, for each fixed 	 > 0
and u ∈ (y(1 − ε), y), where ε = o(1), we have

P(η(x) < ∞, χ(x) ∈ 	(u]) ∼ 	

a
V (x + u).

Using these relations and standard analysis techniques, we can approximate the integral in (47)
by

1

a
V (x + y)

∫ y

y(1−ε)
P
(

sup
t≥0

Xp(·),u(t) > y − u
)

du(1 + o(1)). (48)

This representation allows us to obtain an upper bound for P3. Since εy → ∞ and the process
Xp(·),u(t) is pathwise dominated in the range of values (−∞, y − u) by the process X∗(t)
(using a suitable construction of these processes on a common probability space), we have

P3 ≤ 1

a
V (x + y)

∫ εy

0
P(X

∗
> z) dz(1 + o(1))

= 1

a
V (x + y)EX

∗
(1 + o(1)), X

∗ = sup
t≥0

X∗(t). (49)

(Here the finiteness of EX
∗

follows from the finiteness of E ξ2.)
Now we obtain a lower bound for the integral in (48). We have

P
(

sup
t≥0

Xp(·),u(t) > y−u
)

≥ P
(

sup
t≥0

Xp(·),u(t) > y−u; inf
t∈(0,ν(y−u)) Xp(·),u(t) > −Mr

)
, (50)

where ν(y − u) is the time when the process Xp(·),u(t) first crosses the level y − u and
M := √

εy → ∞ as y → ∞.
Denote by X∗(t) the process defined in the same way as the process X(t) but with

the parameter r changed to r∗ := r − p(ρ(1 − √
ε)) > aζ /aτ . The process Xp(·),u(t), u ∈

(y(1 − ε), y), is minorated in the range of values (y −M,y) by the process X∗(t) (we assume
that these processes are constructed in a suitable way on a common probability space). The
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process X∗(t) has a negative mean drift, as does X(t). Therefore, if a trajectory of the process
X∗(t) reaches the level

m := y − u ∈ (0, εy)
not crossing the negative level −M then the process Xp(·),u(t) surely reaches the level m not
crossing the level −M . Hence, if we set

ν∗(m) := min{t : X∗(t) > m}
then the probability

P
(

sup
t≥0

X∗(t) > m, X(ν∗(m)) > −M
)
,

where
X(v) := inf

t≤v X∗(t),

does not exceed the right-hand side of (50). Thus (by (48) with y − u changed to m),

P3 ≥ 1

a
V (x + y)

∫ εy

0
P(X∗ > m, X(ν∗(m)) > −M) dm(1 + o(1)), (51)

where X∗ = supt≥0X∗(t). To estimate this integral, we need the following lemma.

Lemma 1. For m ≤ εy = o(M) (M = √
εy), the following relation holds:

P(X∗ > m, X(ν∗(m)) > −M) ∼ P(X∗ > m).

Proof. Since P(X∗ > m) ≥ c1V
I(m), c1 = constant, it suffices to show that

P(X∗ > m, X(ν∗(m)) ≤ −M) = o(V I(m)). (52)

The event on the left-hand side of (52) means that the path of X∗(t) first reaches the level −M
and then ascends to the level m. This means that the probability in (52) does not exceed

P(X∗ > M +m) ≥ c2V
I(M +m) = o(V (m)), c2 = constant,

because m = o(m+M). This proves relation (52) and, hence, Lemma 1.

Inequality (51) and Lemma 1 imply that

P3 ≥ 1

a
V (x + y)

∫ εy

0
P(X∗ > m) dm(1 + o(1)) = EX∗

a
V (x + y)(1 + o(1)). (53)

Now if we also prove that
EX∗ → EX

∗
(54)

as ε → 0 (y → ∞, εy → ∞) then by (49) and (53) we will obtain

P3 ∼ EX
∗

a
V (x + y)(1 + o(1)). (55)

The required convergence (54) follows from the following statement. Slightly changing the
already used notation, set

ξ
(r)
j := ζj − rτj , X

(r)
k :=

k∑
j=1

ξ
(r)
j , X

(r) := sup
k≥0

X
(r)
k .

It is clear that the supremum of the corresponding generalized renewal process in continuous
time coincides with X

(r)
.
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Lemma 2. Let E ξ = E(ζ − rτ ) < 0. Then the function EX
(u)

is continuous at the point
u = r .

Proof. First we will prove left continuity, i.e. that

lim
u↑r EX

(u) = EX
(r)
.

For u < r , the trajectory {X(u)k }∞k=1 dominates the trajectory {X(r)k }∞k=1. The strong law of large

numbers implies thatX
(r)
< ∞ almost surely and that the supremumX

(r)
is attained at a finite

time interval. Therefore, X
(u) ↓ X(r) as u ↑ r . Thus, by the monotone convergence theorem,

EX
(u) ↓ EX

(r)
as u ↑ r .

The right continuity of EX
(u)

is proved in exactly the same way. This completes the proof
of the lemma.

Now note that Lemma 2 can be applied to the process X∗(u) as well. Hence, relations (54)
and (55) are proved.

The estimate for the summand P1. We have

P1 := P(X > x, χ(x) > y) = P(X > x + y)− P4 − P5, (56)

where

P4 :=
∫ y(1−ε)

0
P(X > x, χ(x) ∈ du)P(X > y − u),

P5 :=
∫ y

y(1−ε)
P(X > x, χ(x) ∈ du)P(X > y − u).

Here ε > 0 tends to 0 as x → ∞ in such a way that εy → ∞. But we have already estimated
integrals of the same type as P4 and P5 (it was done under more complicated conditions).
Proceeding similarly to proving (46) we obtain

P4 ≤ cV I(x)V I(εy), (57)

and, similarly to (55),

P5 ∼ EX

a
V (x + y). (58)

Besides, Theorem 7.5.3 of [3] implies that, under condition (R2), the following representation
holds for nonlattice distributions of ξ :

P(X > x) = V I(x)

a
+ CV (x)+ o(V (x)) as x → ∞, (59)

where

C = E ξ2

2a2 + EX

a
.

Under condition (R3), the distribution of ξ is nonlattice, and, hence, we can apply relation (59)
to (56), thus obtaining (see also (57) and (58))

P1 = V I(x + y)

a
+

(
C − EX

a

)
V (x + y)(1 + o(1))+O(V I(x)V I(εy)), (60)
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where

C − EX

a
= E ξ2

2a2 .

Completing the proof of Theorem 7. It remains to estimate V I(x)V I(εy). Since

V I(x) ∼ xV (x)

α − 1
and V (x) < x−α+β

for each β > 0 and all large enough x (see, e.g. Theorem 1.1.3 of [3]), the following relation
holds for y = ρx:

V I(x)V I(εy) ∼ ρα−1V I(x)V I(εx) <
ρα−1x

α − 1
V (x)(εx)−α+β+1.

In this relation, for β < α/2 − 1 and ε ≥ x(2−α)/2α , we have

x(εx)−α+β+1 < ε−α/2x(2−α)/2 ≤ x(2−α)/4 → 0 as x → ∞,

V I(x)V I(εy) = o(V (x)) as ε → 0. (61)

Combining the above relations obtained for P1–P3 (see (46), (56), and (60)) and using (61), we
obtain (45).
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