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Abstract

This study reconstructs the fluvial dynamics of the Bras de Fer distributary in the Rhone Delta (France) during the Little Ice Age (LIA) in
response to short-term climatic forcing. A multiproxy approach combining historical cartography, sedimentology, geochemistry, magnetic
susceptibility, and hydrological archives reveals accelerated meander migration and extensive overbank accretion between the late seven-
teenth and early eighteenth centuries CE. Increased flood frequency, coinciding with positive phases of the Atlantic Multidecadal Oscillation
(AMO+), promoted rapid lateral channel shifts and the formation of crevasse splay complexes along the outside bank of the Grande Ponche
meander. The results demonstrate that, despite stable relative sea levels, deltaic morphology remained highly sensitive to decadal-scale cli-
matic variability, highlighting the dominant role of hydrological extremes in shaping fluvial-deltaic environments of Rhone delta during the

late LIA.
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Introduction

In the context of contemporary climate change, rising sea levels
and human pressures compromise the resilience of deltaic envi-
ronments. A deeper understanding of the processes underlying
delta formation is crucial for their preservation and sustainable
development.

Deltaic morphology arises from the interplay between natural
and human influences, mediated by the fluvial system’s sediment
supply, discharge, and intrinsic dynamics (Galloway, 1975; Boyd
et al,, 1992; Bhattacharya and Giosan, 2003; Bravard et al., 2008;
Zolezzi et al., 2012). Variations in detrital input and hydrologi-
cal parameters promote progradation or erosion (Passega, 1957;
Wright, 1977; Schumm, 1981, 1985; Boyd et al., 1992; Dalrymple
et al., 1992; Bhattacharya and Giosan, 2003). These processes
are modulated by climatic (Bravard, 1989; Arnaud-Fassetta and
Provansal, 1999; Goodbred, 2003; Clift and Jonell, 2021), eustatic
(Stanley and Warne, 1994; Vella et al., 2005; Fanget et al., 2014),
and tectonic variations (Colella, 1988). Human activities, such as
deforestation and hydraulic engineering, have further altered sed-
iment budgets and deltaic dynamics (Keesstra et al., 2005; Ericson
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et al,, 2006; Syvitski and Saito, 2007; Bravard et al., 2014; Anthony
etal,, 2015).

The Rhoéne Delta (Camargue, France) offers a pertinent case
study, having undergone successive avulsions and rapid morpho-
logical changes during the late medieval and early modern peri-
ods (Arnaud-Fassetta, 1998; Arnaud-Fassetta and Provansal, 1999;
Rey et al,, 2005; Vella et al., 2005). Although these evolutionary
phases are partly documented by historical sources (Pichard, 1995;
Pichard et al., 2014; authors of this study, unpublished data), signif-
icant gaps remain regarding its modern period (Arnaud-Fassetta
and Provansal, 1999; Arnaud-Fassetta, 2003), which this study
addresses.

The Little Ice Age (LIA; fourteenth to mid-nineteenth century
CE) was a period of climatic cooling, driven by reduced solar
activity (Bond et al., 2001; Owens et al., 2017), increased volcanic
activity towards the end of the LIA (Miller et al., 2012; Bronnimann
et al,, 2019), and changes in thermohaline circulation (Broecker,
2000). This resulted in more frequent and higher-magnitude flood
events across European river systems (Carozza et al., 2012; Schulte
et al., 2015; Persoiu and Persoiu, 2019). Within this context, the
Bras de Fer distributary remained active from 1587 to 1711 CE,
undergoing significant floods (Rossiaud, 1994; Arnaud-Fassetta
and Provansal, 1999) and episodes of intense lateral accretion and
progradation that contributed to one of the delta’s latest expansion
phases (authors of this study, unpublished data).
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This study aims to reconstruct the morphodynamic evolution of
the Grande Ponche meander—the most spatially extensive mean-
der of the Bras de Fer— during the LIA through an integrated geo-
morphological, sedimentological, and geochemical approach. By
examining extensive crevasse splay deposits and meander migra-
tion patterns, it seeks to highlight how short-term climatic vari-
ability affected deltaic morphology.

This study first outlines the palaecoenvironmental and hydroge-
omorphological framework of the Bras de Fer channel, together
with the geological and geomorphological context of the Rhéne
delta. It then examines the principal processes that shaped the
channel’s evolution during the LIA.

Palaeoenvironmental and hydrogeomorphological
framework of the Bras de Fer channel

Geological setting

During the Holocene, the Rhone delta underwent several phases
of progradation (UHomer, 1975; Aloisi, 1986; Arnaud-Fassetta and
Provansal, 1999; Rey et al., 2005, 2009; Vella et al., 2008) con-
trolled by fluctuations in sea level (Vella et al., 2005; Stanford et al.,
2011; Fanget et al,, 2014; Fig. 1). Sediments accumulated over a
Pleistocene gravel substrate following the deceleration of sea-level
rise in the Mediterranean between 8000 and 6000 cal yr BP (Stanley
and Warne, 1994). The Saint-Férréol and Ulmet lobes, comprising
the ancient delta, emerged between approximately 4000 and 2000
cal yr BP (Vella et al., 2005). While the eastern and southern sec-
tors of the delta plain developed during the medieval and modern
periods (post-500 CE; Arnaud-Fassetta and Provansal, 1993), the
southwestern part dates back to late antiquity and medieval times
(post-100 BCE; Rey et al., 2005, 2009).

Geomorphological setting

Understanding the geomorphological evolution of the Rhone delta
is fundamental to interpreting the sedimentary processes that
shaped it. Extensive research has explored the geomorphology and
sedimentology of the delta plain for the Holocene period (Duboul-
Razavet and Duplaix, 1956; Suanez et al., 1998; Arnaud-Fassetta,
1998; Provansal et al., 2004; Arnaud-Fassetta et al., 2005; Vella et al.,
2005, 2008; Martinez et al., 2024). Despite the availability of his-
torical and archival data (Rossiaud, 1994; Caritey, 1995; Pichard,
1995; Landuré and Pasqualini, 2004; Pichard and Roucaute, 2014;
Pichard et al., 2014), detailed information on the medieval and
modern geomorphology remains limited (Arnaud-Fassetta and
Provansal, 1999; Rey et al., 2005, 2009).

Holocene investigations have primarily targeted Roman antiq-
uity (100 BCE-500 CE; Arnaud-Fassetta, 2000, 2002; Leveau,
2014; Vella et al,, 2014, 2016) and the industrial period (post-
1800 CE; Caritey, 1995; Sabatier, 2001; Antonelli, 2002; Maillet,
2005; Sabatier and Anthony, 2015; Boudet et al., 2017), leaving the
LIA (~1300-1850 CE) comparatively understudied. Our research
addresses this gap by reconstructing the evolution of the Bras
de Fer distributary (1587-1711 CE) during the LIA, a period of
active sediment supply and lobe construction (Arnaud-Fassetta
and Provansal, 1999; Vella et al., 2005).

The delta’s meandering style is driven by discharge, sedi-
ment load, topography, and from modern times, anthropogenic
interventions (Arnaud-Fassetta and Provansal, 1999; Arnaud-
Fassetta, 2002; Vella et al., 2005, 2014, 2016; Bravard, 2010).
From the Middle Ages onwards, deforestation and changes in
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land use increased sediment supply (Bravard, 1989, 2010). In
the twentieth century CE, however, hydraulic constructions pro-
gressively reduced erosion and sediment transport, curbing delta
progradation (Maillet et al., 2006; Besset et al., 2017).

The impact of the LIA on the Rhdne delta remains poorly under-
stood, particularly regarding overbank features such as crevasse
splays. During this period, the delta exhibited a lobate or elongated
morphology, driven by stable sea-level conditions and abundant
sediment supply (Vella et al., 2005). Fluvial activity is reflected
in overbank deposits, especially crevasse splays formed by levee
breaches during floods (Russell, 1954; Coleman, 1969; Bridge,
2006; Yuill et al., 2016). Their extent depends on both allogenic
(climate, discharge, sediment load) and autogenic factors (slope,
sinuosity) (Millard et al., 2017; Rahman et al., 2022). The forma-
tion of crevasse splays often involves successive periods of flooding
(Coleman, 1969; Millard et al., 2017), promoting progradation
and possible avulsion (Smith et al., 1989; Slingerland and Smith,
1998).

In the Rhone delta, crevasse splays were previously documented
during Roman times, with fine sandy deposits up to 70 cm thick
(Arnaud-Fassetta, 2002). A contemporary example includes the
2003 CE breach of a dyke in the upstream part of the delta, lead-
ing to a crevasse splay covering approximately 429 + 21 km?
(Arnaud-Fassetta, 2013).

In the present study, extensive crevasse splays were identified
along the outside bank of the Grande Ponche meander (Fig. 2),
often exceeding 2 m in thickness. By combining granulometry,
geophysics, geochemistry, historical cartography, and remote sens-
ing, we reconstruct the LIA fluvial dynamics of the Rhone Delta at
decadal resolution.

These geomorphological characteristics provide the basis for
understanding the fluvial dynamics of the Bras de Fer channel
during the LIA. The following section examines the hydrogeomor-
phological conditions that governed its activity, in particular the
role of climatic variability and flood regimes.

Hydrogeomorphological settings of the Bras de Fer channel

During the LIA (~1300-1850 CE), the Rhone basin underwent sig-
nificant hydrogeomorphological changes. Wetter phases favoured
meander expansion and overbank flooding, while drier periods
encouraged sediment deposition within channels, forming bars
and islets (Bravard, 1989, 2010; Arnaud-Fassetta and Provansal,
1999; authors of this study, unpublished data). Historical car-
tography documents these fluctuations in delta geomorphology
(Caritey, 1995; Arnaud-Fassetta, 1998; Pichard et al., 2014; authors
of this study, unpublished data).

The Bras de Fer was active during a period of increased pre-
cipitation and flood frequency across the French Mediterranean
region (Pichard, 1995). Enhanced runoft transported larger sedi-
ment volumes, fostering morphodynamic instability, channel shifts
(Arnaud-Fassetta, 2003; Carozza et al., 2012), delta-lobe progra-
dation (Arnaud-Fassetta and Provansal, 1999; Pichard et al.,
2014), and morphological transformations (Bravard, 1989, 2010).
Similar patterns were observed in other European river sys-
tems (Bellotti et al., 2004; Persoiu and Persoiu, 2019; Ruiz-
Pérez and Carmona, 2019) and beyond (Seltzer and Rodbell,
2005).

Major flood events triggered the 1587 CE avulsion of the Grand
Passon channel, redirecting flow through the Bras de Fer dis-
tributary (Rossiaud, 1994; Arnaud-Fassetta and Provansal, 1999).
This shift was reinforced by enhanced sedimentation, resulting
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Figure 1. Holocene evolution of the three main Rhéne delta lobes, based on palaeo-shoreline dating (UHomer et al.,, 1981; Rey et al., 2005; Vella et al., 2008). This
study focuses on the eastern channel, the Bras de Fer (highlighted in blue with a thick line). Satellite imagery: ESRI (2023).

from Alpine deforestation, overgrazing, and intense flood activity
(Sclafert, 1959; Ladurie, 1967; Bravard, 1989; Arnaud-Fassetta,
1998; Pichard et al., 2014).

By the late 1600s and early 1700s CE, a high frequency of
extreme floods (Pichard, 1995) remobilised sediments, driving
delta progradation until the 1711 CE avulsion. This event inter-
rupted sediment supply to the Bras de Fer mouth, initiating
coastal erosion and sediment redistribution (Arnaud-Fassetta and
Provansal, 1999; Pichard et al., 2014; authors of this study, unpub-
lished data).

During the LIA, Mediterranean deltas such as the Rhone dis-
played a fluvial-dominated regime, contrasting with today’s wave-
dominated systems (Arnaud-Fassetta and Provansal, 1999; Bellotti
et al., 2004; Ruiz-Pérez and Carmona, 2019).

Building on this hydrogeomorphological context, the next sec-
tion focuses on the specific characteristics of the Grande Ponche
meander, the key study area selected to reconstruct the fluvial
dynamics of the Bras de Fer channel during the LIA.

Study area

This study examines the morphometric evolution of the Grande
Ponche meander and the associated overbank deposits along
its outside bank. The area was selected for its well-preserved
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palaeolandforms of lateral sedimentation (Fig. 2B), which have
remained relatively undisturbed due to limited agricultural activity
and protection within a regional natural park.

The Grande Ponche is one of four meanders along the Bras
de Fer, whose amplitude declines seaward (Fig. 2A). According
to Schumm’s (1981, 1985) classification, this reach is close to a
low-stability meandering channel due to its gentle slope, fine sed-
iment load, wide meander bars, and increased channel width at
apices.

The northernmost meander (no. 1, in red in Fig. 2A) is circu-
lar and almost symmetrical, situated in an area heavily modified
by agriculture and intersected by palaeochannels (Ulmet, Grand
Passon, and Bras de Fer).

The Grande Ponche meander (no. 2), which is symmet-
rical and elongated (Fig. 2A), shows a chute cutoff, down-
stream shifting, and well-preserved overbank deposits, including
topographically pronounced crevasse splays, which likely cap-
ture the dynamics of intense flood episodes. These deposits are
expected to contain coarser sediments due to higher shear stress
and velocities on the outside bank (Clayton and Pitlick, 2007).
Sedimentation on the inside bank, documenting the channel’s
active phase and infilling, was previously described by Arnaud-
Fassetta and Provansal (1999) (core sample locations in green in
Fig. 2B).
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Figure 2. (A) Four meanders of the Bras de Fer and associated landscape features, with the study area outlined. Sources: 1, Arnaud-Fassetta (1998); 2, Vella
et al. (2016); (B) Pléiades (CNES 2023) satellite image of the study area (A), showing continuous fossil outside overbank deposits of the Grande Ponche meander.
Boundaries of lateral deposits (dashed lines) derived from a digital terrain model (DTM). Green dots indicate drill core locations from a previous study conducted by

Arnaud-Fassetta (1998).

These first two meanders likely began forming when the Bras
de Fer became the main distributary, or possibly earlier, during the
final activity of the Grand Passon. It may have recorded multiple
phases of flood intensification and reduction.

The Tampan meander (no. 3) is less developed and slightly
asymmetrical, featuring several internal bars (Fig. 2A). Historical
cartography suggests it formed later than the Grande Ponche, likely
during a short period of large floods in the second half of the
seventeenth century CE.

A fourth, subtle meander (no. 4 in Fig. 2A), marks the onset
of sinuosity along an otherwise straighter reach, active between
the mid-seventeenth and early eighteenth centuries CE, before the
Rhone’s 1711 CE avulsion.

Methodology

Morphometric evolution of the Grande Ponche meander using
ancient maps and aerial images

Historical maps containing at least four stable landmarks (e.g.,
towers, farmsteads) were georeferenced using thin plate spline
transformations (authors of this study, unpublished data). Early
or distorted maps lacking sufficient control points were nonethe-
less utilised for descriptive purposes. Two undated maps were
provisionally dated based on cartographic features and comparison
with documented meander dynamics.

Recent spatial data supplemented interpretations, including
1942 aerial photographs (“C2942-0011_1942_NIMES-
CAMARGUE” [IGN, 1942]). These photographs were
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orthorectified into mosaics, capturing morphologies later
modified by agriculture.

Morphometric properties and estimation of meander migration

The morphological evolution of the Grande Ponche meander was
reconstructed using historical maps (Supplementary Table 1) and
1942 imagery. Standard morphometric parameters were calcu-
lated: sinuosity (S), wavelength (A), amplitude (A), radius of cur-
vature (Rc), and channel width (W) (Leopold and Wolman, 1957;
Hooke, 1984, 2013; Knighton, 1998).

The Rc/W ratio indicates meander dynamics: 4-20 suggests
growth, 2-3 denotes active migration, and <2 implies chute cut-
off or abandonment (Bagnold, 1960; Hey, 1984; Hooke, 1997).
Meander expansion rates were calculated based on changes in Rc
across dated intervals, and lateral extension was assessed from apex
migration relative to elapsed time. Bankfull discharge (Q;) and
annual peak flood discharge (Q, s55) were estimated using Dury’s
equations (1955, 1976).

Although the fossilised and partially modified state of the chan-
nel may introduce uncertainties, these estimates provide valuable
insights into its historical dynamics.

Interpretation of overbank deposits using a digital terrain
model

A 50-cm-resolution digital terrain model (DTM) was created from
a LIDAR HD (IGN 2022) point cloud and processed using R
Studio scripts to retain only terrain returns, then interpolated into


https://doi.org/10.1017/qua.2025.10031

Fluvial response to LIA forcing, Rhéne delta

a triangulated irregular network surface. The original density of
10 points/m* (compared with 1 point/m? in previous datasets
[SHOM, 2015; IGN, 2018]), allowed detection of subtle features
like crevasse splays, levees, and crevasse channels.

The DTM was used to target depositional forms for in situ
stratigraphic surveys, sedimentological analyses, and geophysical
investigations.

Sedimentary analysis

Stratigraphic data from three trenches, eight cores, and multi-
ple auger samples were used to reconstruct depositional episodes.
Among various sedimentary parameters, grain size and isother-
mal remanent magnetisation (IRM) intensity were selected as key
indicators for depositional environments.

Grain-size analysis
Samples were taken at facies changes. Carbonates and organic mat-
ter were removed using HCI (35%) and H,O, (30%) (for protocol,
see Sharifi et al. [2018] and Lepage et al. [2019]). Grain-size dis-
tributions were measured by laser diffraction (Beckman Coulter
LS 13 320, Malvern Mastersizer 3000). Both instruments detect
particles from ~0.04 to 2000 um. The Blott and Pye (2012) clas-
sification scheme was adopted, with clay (<3.91 um) grouped into
a single class due to its low abundance (<10%). Results were pre-
sented as bar charts and median grain-size distributions by facies.
Depositional hydrodynamics were further characterised using a
Passega (1957, 1964) CM diagram, which correlates coarsest per-
centile (C) with median size (M) to characterise depositional
hydrodynamics.

Detailed information on the calibration protocols and data
variability between instruments can be found in Supplementary
Material 1.

IRM intensity

U-channels were magnetised using a 0.6 T Halbach cylinder to
impart IRM, then scanned at high resolution (500 um) with a
fluxgate-based device (Demory et al., 2019). This process mobilises
most ferromagnetic particles, mainly iron oxides and hydroxides
typical of oxic sediments (Scheidt et al., 2017).

Sensitive to detrital input, IRM serves as a proxy for recon-
structing fluvial dynamics. The scanner’s centimetre-scale resolu-
tion allows precise correlation of magnetic signals with sedimen-
tary facies, refining environmental reconstructions (Demory et al.,
2019).

Elemental composition and radiography

Elemental composition and sediment radiography were obtained
using high-resolution X-ray fluorescence (XRF) scanning (ITRAX,
Cox Analytical Systems) on U-channels with a Mo tube as the X-
ray source. Scanning at 2 mm intervals (30 kV, 40 mA, 15 s count)
provided intensity profiles of terrigenous elements (Fe, Ti, Si, K,
Zr) and carbonates (Ca). Radiographic imaging (45kV, 40 mA, 400
ms exposure, 200 pm resolution) simultaneously delivered density-
contrast data, enhancing the detection of sedimentary structures
beyond visual descriptions (Croudace et al., 2006).

Geochemical proxies supported palaeoenvironmental recon-
structions. Zr/Rb ratios served as a grain-size proxy: higher values
indicate coarser, flood-transported material (Turner et al., 2015;
Talska et al., 2021), with zirconium mainly sourced from the Massif
Central in the Rhéne delta (Arnaud-Fassetta and Provansal, 1999).

Ca/Si distinguished carbonate from siliceous inputs: high Ca
values mark carbonate-rich flood deposits, whereas high Si denotes
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silicate-dominated sources (Schulte et al., 2015). Both elements are
thus exploited here as tracers of high-energy events.

Si/K acted as a proxy for the siliceous-to-clay content ratio,
with higher values indicating sandy sediments and lower ones
marking clay-rich deposits. Potassium, associated with clays, sig-
nals increased fine-grained sediment supply during floods (Schulte
etal., 2015).

Subsurface stratigraphy by electrical resistivity tomography
and trenches

Electrical resistivity tomography (ERT) is a non-invasive tech-
nique for mapping subsurface resistivity variations (Maillet et al.,
2005; Florsch and Muhlach, 2018), effective in studying alluvial
deposits (Maillet et al., 2005; Laigre et al., 2012; Salomon et al,,
2016; Bellmunt et al., 2022).

Resistivity is influenced by sediment composition, water con-
tent, texture, clay content, and porosity (Rhoades et al., 1989). In
saturated sandy zones, lower values are common, especially near
the water table (~0 m depth).

Nine ERT profiles were acquired across the Grande Ponche
overbank deposits using an ABEM Terrameter SAS4000
(Schlumberger-Wenner array, 0.5-1 m electrode spacing), reach-
ing depths of up to 8 m. Data were processed with RES2DINV
(Geotomo). Stratigraphic observations from trenches validated
and refined the geophysical interpretations.

Radiocarbon dating procedures

Radiocarbon dating was performed on bulk organic matter and
gastropod shells from trenches. Calibrations used Calib Rev 8.1.0
software (Reimer et al., 2020) and the IntCal20 curve. Results
are expressed in calibrated years BP (20 range), detailed in
Supplementary Table 3.

Results
Morphometric evolution of the Grande-Ponche meander

An analysis of 15 historical maps (Supplementary Table 1) implies
that the Grande Ponche meander developed during the Bras de
Fer’s period of activity as the main distributary, potentially becom-
ing significant before the avulsion event. The 1593 CE map, the
earliest to show the meander, indicates an established channel,
possibly initially a secondary one.

Throughout the seventeenth century CE, the meander migrated
laterally, evidenced by shifting toponyms and islet formation
along the inside bank. After 1688 CE, migration accelerated,
with prominent scroll bar development and increasing distance
between the active bank and the Grande Ponche farmhouse
(Fig. 3, Supplementary Fig. 1).

Georeferencing enabled the repositioning of the former chan-
nel on 1942 imagery (Fig. 3), allowing morphometric tracking
(Supplementary Table 2). Sinuosity (S) increased from 1.7 in 1635
CE to 2.5 before the chute cutoff; amplitude (A) expanded from 2.8
km to 5.4 km. Meanwhile, the radius of curvature (Rc) remained
stable at 1.4 km, while channel width (W) fluctuated between 0.42
and 0.80 km, narrowing before abandonment.

Between 1635 and 1688 CE, the meander rotated approxi-
mately 50° and migrated 1.4 km southwards, with a further 0.3
km migration recorded before flow cessation (Fig. 3). Around 1700
CE, a chute cutoff formed the Isle of Saint-Bertrand (Fig. 3C,
Supplementary Fig. 2). Later eighteenth-century CE maps depict
flow diverted into the Canal des Launes (thick fuchsia dashed
line in Fig. 1), relegating the Bras de Fer to a secondary channel
(Supplementary Fig. 3) until its fossilisation (Fig. 3D). By 1754 CE,
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Figure 3. Evolution of the Grande Ponche meander (1635-1734 CE) based on georeferenced historical maps over 1942 aerial photographs (IGN Remonter le temps,
1942). (A-C) Gradual shift and increasing curvature of the meander (1635-1706 CE). (D) Post-avulsion phase and onset of fossilisation. Core samples from Arnaud-Fassetta

(1998) are marked in pink.

the Bras de Fer had become reduced to ~1 m depth and 32 m width
at the northern meander (Supplementary Table 1).

The Rc/W ratio fluctuated between 1.8 and 3.3, peaking in 1678
CE, stabilising around 2.2-2.3 (1688-1690 CE), and declining to
1.8 by 1695 CE. It rose sharply after the chute cutoff and avul-
sion. Migration rates were negligible until 1695 CE, then surged
briefly before decreasing again post-cutoff. Apex extension rates
were positive in the late seventeenth to early eighteenth centuries
CE, turning negative after partial abandonment (Supplementary
Table 2).

The bankfull discharge (Q,), along with the most probable
annual flood (Q), 55) also increased during the late seventeenth and
early eighteenth centuries CE, reaching Q, ~16,147 m?/s (1699
CE) and Q, 55 ~44,995 m?/s (by 1734 CE), estimated using Dury’s
equations. The chute cutoff development led to a decline, with Q,
dropping to 11,806 m®/s in 1706 CE (Supplementary Table 2).
Given data and method uncertainties, these variations represent
indicative trends rather than significant changes.

Detection of overflow forms on the outside bank of the Grande
Ponche

The high-resolution DTM of the Grande Ponche meander’s outside
bank reveals extensive crevasse splay deposits at Amphise, Pebre,
and Pont de ’Aube (Fig. 4).
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At Amphise, crevasse splays are broad, with a main channel and
few secondary channels. At Pebre, they are narrow, coalescing, and
dendritic (Fig. 4). At the Pont de lAube (Fig. 5A), crevasse splays
are wider, less elongated, and associated with a complex distribu-
tary network. Proximal deposits along the outside bank are coarser,
while distal deposits are finer and flatter, marking the transition to
the floodplain (Fig. 5A).

The DTM (50 c¢cm resolution) further identifies microto-
pographies within the crevasse splays, such as channels, micro-
levees, and channel lobes developing within depressions (Fig.
5A). Vegetation differences further aid discrimination: the nor-
malized difference vegetation index analysis from May 2015
Pleiades imagery highlights strong contrasts in chlorophyll activ-
ity, with higher values on levees populated by Tamarix gallica and
lower in crevasse splays dominated by Salicornia (Supplementary
Fig. 4).

ERT surveys (Fig. 5B) corroborate these findings, suggesting
distinct resistivity contrasts: higher values on levees, moderate in
channels, and lower on floodplains. Each profile uses a distinct
resistivity legend to preserve interpretative accuracy, with values
considered relative.

Profiles a-d (Fig. 5B) distinguish two main units: an upper,
resistive sandy layer and a lower, conductive silty unit. High resis-
tivity corresponds to sandy, dry levees; intermediate values reflect
crevasse splays; and the lowest values mark saturated floodplain
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2022). Deposit extents outlined in black; areas anthropogenically levelled indicated by diagonal dashed lines at Amphise, Pébre, and Pont de l'Aube.

deposits. These results are consistent with sedimentological
observations from cores and trenches (Figs. 6 and 7).

Identification of depositional environments based on
sedimentological analysis

Sediment cores (Fig. 6) and trench exposures (Fig. 7) reveal three
main fluvial facies: floodplain, levee, and crevasse splay deposits,
differentiated through grain-size distributions, geochemical ratios
(Zr/Rb, Ca/Si, Si/K), and IRM intensity (Figs. 8 and 9).

Lagoon environment

Beneath fluvial sequences, a basal lagoonal unit, dated between
899-1042 CE (Amphise) and 943-1026 CE (Pont de 'Aube), com-
prises fine sands (125-500 pm) and bluish clay-silts (Fig. 10). It is
characterised by low Zr/Rb and Ca/Si ratios, weak IRM intensities,
and high Si/K, indicative of low-energy, siliceous sedimentation
(Fig. 8). Mollusc assemblages (e.g., Cerastoderma edule, Bittium
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reticulatum) and thin laminae further indicate low-energy lagoonal
conditions.

Fluvial environment

Above the lagoonal deposits, overlying fluvial sediments demon-
strate spatial and stratigraphic heterogeneity, reflecting flow
dynamics.

Floodplain deposits. Floodplain facies mainly comprise lam-
inated clay-silts with subhorizontal to gently inclined bedding
(<15°) (Figs. 6 and 7). They exhibit low Zr/Rb and Si/K ratios,
reduced IRM intensities, and slightly elevated Ca/Si ratios com-
pared with other facies (Figs. 8 and 9), attributed to diminished
silica-rich input and relative calcium enrichment of detrital ori-
gin, given the lack of ostracods. Radiographic images reveal thin
graded layers and minimal bioturbation (Figs. 8 and 9). The fine-
grained texture and high water content correspond to low resis-
tivity (<1.5 ohm-m) in ERT profiles (Fig. 5B). Fine laminations,
colour, oxidation traces, and fauna distinguish floodplain deposits
from lagoonal facies (Fig. 7).
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Figure 5. (A) A 50-cm high-resolution digital terrain model (DTM) showing the topography of overbank deposits on the outside bank at the Pont de l'Aube, with
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deposits reveal three fluvial units consistently identified across proximal and distal

areas: basal floodplain deposits overlain by levee or crevasse splay sediments,

each subdivided into a bedded, heterogeneous facies (phase 1) and a massive, homogeneous facies (phase 2).

Overbank deposits: levee and crevasse splay. Overbank deposits
vary with channel proximity. Proximal levee deposits (core AM_1
[Fig. 9]; trenches 1.A and 1.B [Fig. 7]) display inverse grading, cur-
rent ripples, and oblique bedding enriched in coarse silt (15.6-31.5
um) (Figs. 5A, 7, and 10), with elevated Zr/Rb and Ca/Si ratios
(Fig. 9), reflecting high-energy floods and detrital carbonate input.
Si/K ratios increase in sandy intervals and decline in finer layers,
indicating hydrodynamic variations (Fig. 9). Distal crevasse splay
deposits (cores AM_2 and AM_3) are finer grained and laminated,
and show a downstream decline in elemental intensities derived
from XRF measurements, consistent with progressive sedimentary
fining away from the channel (Figs. 5A, 7, and 9). The absence of
ostracods throughout confirms an azoic depositional environment,
with carbonate inputs considered detrital.

Both levee and crevasse splay deposits can be subdivided into
two depositional phases:

1. Phase 1 consists of coarser, heterogeneous beds with frequent
inverse grading and a broad grain-size range (fine silt to fine sand)
(Figs. 5A, 7, and 10). This phase is marked by higher Zr/Rb and
Ca/Si ratios (Fig. 9).

Phase 2 comprises finer, more homogeneous silt-dominated beds
(Figs. 7 and 10), with markedly lower Zr/Rb and Ca/Si ratios (Fig.
9). IRM intensities increase slightly relative to phase 1 (Fig. 9),
due to the relative enrichment in fine magnetic minerals as coarse
quartz and carbonate particles diminish.
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Although ERT profiles (Fig. 5B) do not resolve both phases
precisely, they distinguish higher-resistivity levees, intermediate
crevasse splays, and low-resistivity floodplain units.

Sub-environments of crevasse splay deposits

Crevasse splays are complex internal structures, including shallow
distributary channels and small channel-levee systems (Figs. 5A
and 7). Several stacked channel fills alternate coarse sand and silt
sequences, overlain by flood-silt drapes and separated by subtle
erosional contacts (Fig. 7).

ERT profiles occasionally detect near-surface crevasse channels
as localised resistivity minima, although deeper lags are rarely dis-
cernible due to thinness and lithological similarity to surrounding
deposits (Fig. 5B).

The crevasse channels are dominated by fine sands (125-250
um), with smaller peaks in medium and coarse silts (Figs. 7 and
10). Channel-levee units contain the coarsest material, with more
than 40% fine sand in phase 1, while phase 2 becomes more silt
dominated (Fig. 10).

Climbing ripples and other current structures, typical of
crevasse splay environments (Gulliford et al., 2017), were observed
in trenches, with gentle dips towards the northeast-southeast
(Fig. 7).

Sedimentary structures and geochemical signals collectively
denote repeated episodes of large overbank flooding, followed by
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waning flow phases across the outside bank of the Grande Ponche
meander.

Characterisation of depositional processes on the outer bank of
the Grande Ponche meander: geochemical and magnetic
signatures and transport dynamics

The k-means clustering results, projected onto the principal com-
ponent analysis (PCA) plane, reveal four distinct groupings that
correspond to specific sedimentary facies (Fig. 11). The k-means
classification divides samples into clusters based on similarity
(Hartigan and Wong, 1979), while PCA reduces data dimensions
to point out key variations (Jolliffe and Cadima, 2016). By apply-
ing PCA to the k-means results, we reduce high-dimensional
geochemical data to two dimensions, enabling clear visualiza-
tion of the clusters. Lagoonal-marine sands are well isolated
in cluster 2, showing clear geochemical distinction from flu-
vial facies. Floodplain deposits dominate cluster 4, while clus-
ters 1 and 3 contain a mix of levee and crevasse splay sam-
ples, reflecting their compositional overlap. Most misclassifications
occur among fluvial facies, where certain laminae share similar
characteristics.

The Passega CM diagram (Fig. 12) further highlights two main
depositional modes at the Grande Ponche outer bank. Floodplain
and phase 2 of crevasse splay and levee deposits plot in the T and
lower RS fields, indicating low-energy suspension settling. Phase
1 crevasse splay samples extend into the upper RS and QR fields,
indicating higher-energy flood events. All facies occur within the
RS field, while samples near the QR boundary mark crevasse
channel and phase 1 crevasse splay deposition.
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Interpretation

An analysis of historical cartography, sedimentary sequences, geo-
physical surveys, and geochemical proxies demonstrates that the
Grande Ponche meander underwent rapid lateral migration and
important overbank deposition between 1660 and 1710 CE. Three
key observations underpin this interpretation:

1. Hydromorphological instability triggered by climatic variability.
Historical maps highlight an acceleration of meander migration
(Fig. 3, Supplementary Table 2), up to 26 m/yr between 1684 and
1700 CE (Fig. 13), coinciding with peaks in flood frequency (Fig.
14). The decline of the R¢/W ratio (Fig. 14) below the stabil-
ity threshold (Bagnold, 1960; Hey, 1984; Hooke, 1997), together
with the documented outside bank accretion (Fig. 4), reflects
instability and a transition towards the chute cutoff.

Application of Dury’s formula (Fig. 14) provides bankfull dis-
charge estimates above 10,000 m*/s for the Grande Ponche mean-
der, consistent with the Rhéne’s largest historical floods (12,500
m®/s in 1856; 11,500 m>/s in 2003; Levraut and Roy, 2007) and
far exceeding the Rhéne’s present-day mean annual discharge
(~1680 m®/s; Hydro.eaufrance, n.d.). Deforestation and land-use
changes (Bravard, 1989, 2010) likely enhanced sediment flux.

This frequent flood period aligns with positive phases of
the Atlantic Multidecadal Oscillation (AMO+) (Gray et al,
2004; Mann et al., 2009; Knudsen et al., 2014), characterised
by increased precipitation extremes and altered wind patterns
(Curtis, 2008; O’Reilly et al., 2017). The synchronicity between
AMO+ phases and heightened Rhone fluvial activity (Fig. 14)
supports the influence of decadal climatic oscillations, potentially
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Figure 8. Core AU_1 from the base of trench 1.A (location shown in Figure 5A), with log showing photograph, radiography, volumetric granulometry, elemental ratios
(Zr/Rb, Ca/Si, Si/K), and isothermal remanent magnetisation (IRM) intensity. The figure illustrates the distinction between fluvial (floodplain) and lagoon deposits.
NGF, Nivellement Général de la France (French national vertical datum). (French national vertical datum)

amplified by the Maunder Minimum and enhanced volcanism
(Miller et al., 2012; Bronnimann et al., 2019) around 1700-1710
CE.

. Extensive crevasse splay deposits indicative of multiple bank
breaching.
Crevasse splay deposits detected along the outside bank reflect
repeated natural levee breaches during large floods (Fig. 4). As
detailed in “Identification of Depositional Environments Based
on Sedimentological Analysis,” the overbank deposits exhibit a
dual-phase organisation: phase 1, comprising coarse, heteroge-
neous beds deposited under high-energy conditions during flood
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surges; and phase 2, consisting of finer, more homogeneous silts
laid down during declining flow energy. Elevated Zr/Rb and Ca/Si
ratios in phase 1 confirm intense detrital input during peak flood-
ing. Their decline in phase 2, along with a slight increase in IRM
values, points to finer sedimentation and a relative enrichment in
magnetic minerals as coarse inputs diminish.

These facies may represent either distinct floods or the front-
and back-loading phases of singular flood events, as suggested by
Filgueira-Rivera et al. (2007). Fine-grained phase 2 deposits may
also reflect channel abandonment processes or distal overbank
sedimentation (Gulliford et al., 2017).
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Figure 9. Sediment cores AM_1, AM_2, and AM_3 from overbank deposits at Amphise,

with logs showing photographs, radiography, volumetric granulometry, isothermal

remanent magnetisation (IRM) magnetic field, and elemental ratios (Zr/Rb, Ca/Si, Si/K). Cores record fluvial environments, with basal floodplain deposits overlain by

levee (AM_1) and crevasse splay deposits (AM_2, AM_3). The overbank deposits are

subdivided into two depositional phases, distinguishable vertically and laterally

relative to the Bras de Fer channel. Additional cores are presented available in Supplementary Material 6. NGF, Nivellement Général de la France (French national

vertical datum). (French national vertical datum)

The geometry of the crevasse splays (lobe-shaped, <250
m wide, and <200 m long) and their sedimentary organisa-
tion correspond to distributive, non-channelised flow typical of
low-gradient floodplains (Coleman, 1969; Gulliford et al., 2017;
Millard et al., 2017). The modest extent and silty composition of
Grande Ponche crevasse splays reflect the fine sediment input and
low-gradient floodplain.

Rapid lateral channel migration, high discharges, and bar
instability likely increased overbank flooding and crevasse splay
formation (Coleman, 1969). The deposits at Grande Ponche
are interpreted as products of these processes. While individual
crevasse splays elsewhere may account for 60-70% of overbank
stratigraphy (Burns et al., 2017) and form complexes up to 221
km? (Rahman et al., 2022), those at Grande Ponche form a stacked
succession over ~5 km? along a migrating meander.

. Magnetic and elemental proxies indicating abrupt pulses of detri-
tal sediment input.
Magnetic (IRM) and elemental (Zr/Rb, Ca/Si, Si/K) prox-
ies record discrete pulses of detrital influx linked to flood
events. Low IRM values align with coarse-grained overbank
deposits, while sustained high IRM intensities correspond to
finer-grained, floodplain sedimentation (Fig. 9). Strong mag-
netic signals occur where coarse diamagnetic quartz is scarce
and ferromagnetic minerals, transported within clay fractions,
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predominate. Conversely, low IRM values and low Si/K ratios
indicate dilution by quartz-rich material.

Elevated Zr/Rb and Ca/Si ratios during phase 1 reflect coarse
sediments from the Massif Central and Rhone Basin limestone
catchments (Arnaud-Fassetta and Provansal, 1999; Stanley and
Jorstad, 2002). Their decline in phase 2, alongside rising IRM
intensities, marks a transition to finer sedimentation under lower-
energy conditions. Zr/Rb ratios peak in AM_1 and AM_2,
near the levee breach, reflecting a coarse Zr-bearing sediment
input, while AM_3, more distal, records finer-grained material
(Fig. 9).

Sedimentary characteristics, such as the absence of bioturba-
tion, the presence of graded bedding, and the geochemical signals
(elevated Zr/Rb and Ca/Si in phase 1; high IRM in phase 2),
indicate rapid deposition.

The k-means clustering based on elemental ratios and mag-
netic signatures (Fig. 11) confirms four distinctive facies (flood-
plain, lagoon, levee, and crevasse splay). Lagoonal facies form
a well-defined and distinct cluster, whereas fluvial facies show
more overlap. Confusion is frequent between levee and crevasse
splay facies (clusters 1 and 3). These overbank deposits are
polyphased and share similar compositions. They can include
fine silty-clayey laminae deposited during waning flood stages,
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leading to geochemical signatures that partly resemble those of
floodplain deposits. Topographic context helps differentiate distal
crevasse splays from the higher-elevation levees. Moreover, low
IRM values typically align with coarse-grained overbank layers and
channel-proximal settings, while consistently elevated IRM inten-
sities characterise fine-grained, magnetically enriched floodplain
sediments.
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Principal component 1
Positive correlation to Si/K and Zr/Rb ratios, moderate contribution from Ca/Si

Our findings demonstrate that short-term climatic variability
exerted a control on the fluvial dynamics of the Rhéne delta dur-
ing the late LIA, driving rapid meander migration and overbank
accretion. The following discussion situates the Grande Ponche
case within a broader geomorphological and palaeoclimatic frame-
work, considering the implications for deltaic systems under
hydroclimatic forcing.
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Figure 13. “Vue figurée de la division des acretements du Rhone entre la comté d’Arles et le tenement de Gouine” (Source: AC Arles - 1Fi282, Arles municipal
archives: https://arles.fr/decouvrir/les-archives-communales/consultation-des-archives-communales/). (A) Localised map around La Vignolle showing two former Rhone
shorelines (1684 and 1700 CE), with an estimated inside bank gain of 215 “compas” (~418 m). (B) Image of the area likely corresponding to the tract indicated on
the Vignolle map, identified through landscape similarities and distances between former shorelines mapped in 1688 and 1706 (points B and H in A).

Discussion
Climatic forcing and rapid fluvial adjustment

The late LIA evolution of the Grande Ponche meander demon-
strates that 1650-1710 CE climatic variability, likely associated
with an AMO+- phase, triggered extreme floods and rapid geomor-
phic adjustments in the Rhone delta. Historical cartography and
stratigraphy reveal significant meander migration and widespread
crevasse-splay deposition over more than 5 km?, reflecting a high
sensitivity of deltaic rivers to decadal-scale hydroclimatic forcing.

While a study from the Mississippi suggests stronger flood
events during AMO- phases (Munoz et al., 2018), our results high-
light a contrasting regional response, where AMO+- appears to
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coincide with intensified flooding. This emphasises the importance
of local climatic-hydrologic coupling in determining fluvial
dynamics.

A strengthened summer North Atlantic Oscillation may have
further contributed to increased runoft in the Rhone catchment
(Schulte et al., 2015).

Sedimentary records of intense flood pulses

The underlying lagoonal sediments, identified at —0.1 m NGF
(Nivellement Général de la France, French national vertical datum)
at Amphise and between —0.25 and -0.65 m NGF at Pont
de T'Aube, are consistent with observations at Saint-Bertrand
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Figure 14. Hydromorphological evolution and flood frequency (Pichard, 1995) of the Grande Ponche meander (1630-1739 CE) in relation to Atlantic Multidecadal
Oscillation (AMO) phases (Gray et al., 2004). Flood frequency peaks during AMO+ phases, suggesting a climatic influence. Morphometric parameters (Rc/W declining;
amplitude, sinuosity, and wavelength increasing) indicate meander instability and progression towards abandonment. Estimated bankfull discharges (~16,000 m3/s)

exceed modern Rhéne flood values, reflecting extreme hydrological conditions.

(Arnaud-Fassetta, 1998) and indicate that the present fluvial
landscape evolved through the infilling of former coastal environ-
ments during delta progradation. The presence of Cerastoderma
edule and Bittium reticulatum further attests to low-energy
lagoonal conditions, as similarly recorded near the Ulmet
palaeochannel (Vella et al., 2016).

Units on the outside bank (Fig. 15) partially align with chan-
nel fill inside bank sequences described by Arnaud-Fassetta (1998).
Early deposits (Unit 1) likely record distal events before major
accretion (1695-1711 CE). Subsequent phases match Channel
Units I-III, suggesting late-stage floods enhanced overbank
buildup. Post-1711 avulsion reactivated parts of the channel (Units
IV-V) but had limited impact on distal deposits.

The CM diagram (Fig. 12) allows comparison with sediment
transport dynamics across the Rhone delta. Unlike the spatial
sorting typical of fluvial systems (Passega, 1977), no clear grain-
size gradient is observed at the Grande Ponche outer bank.
This likely reflects local depositional controls—short transport
distances, repeated sediment reworking—and possible sampling
limitations.
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Similar patterns have been reported elsewhere in the delta,
where overbank and channel deposits often plot within the same
CM fields, particularly the RS domain, despite granulometric dif-
ferences (Arnaud-Fassetta, 2002; Vella et al., 2014). This over-
lap suggests a broad range of flow competence and supports the
interpretation of hydrodynamic continuity between channel and
overbank processes.

The Grande Ponche sediments are broadly comparable to flood-
plain deposits dated between 2350 and 1550 BP at Saint-Ferréol,
Ulmet, and Peccais (Arnaud-Fassetta, 2002). At Ulmet, levees are
finer, while channel fills range from similar to coarser than over-
bank deposits at Bras de Fer (Arnaud-Fassetta and Provansal, 1993;
Vella et al., 2014).

Post-1711 CE crevasse splay and levee deposits in the
Grand and Petit Rhone are generally finer (Arnaud-Fassetta
and Provansal, 1993), whereas the 2003 flood deposits are
as coarse—or coarser (Arnaud-Fassetta, 2013)—than those at
Grande Ponche (Fig. 12), indicating high-energy deposition likely
linked to artificial levee breaches and concentrated overbank
flows.
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Figure 15. Conceptual diagram of stratigraphy and sediment textures of overbank and channel deposits in the Grande Ponche meander. Overbank units partially
correspond to sedimentary core data from palaeochannels documented by Arnaud-Fassetta (1998); The floodplain (overbank unit 1) likely represents distal deposits
from older channel systems predating the 1695 CE meander expansion. Cores BF2 and BFIl reveal three phases of channel activity: (1) coarse sands from high-energy
bars; (2) finer deposits from reduced flow; and (3) moderately coarse, thick sands. These phases correspond to two overbank units: Unit 2 (proximal sandy levee
and distal sandy silt crevasse splay) and Unit 3 (proximal sandy silt levee and distal silty crevasse splay).

All Grande Ponche samples were pretreated to remove organic
matter and carbonates, ensuring accurate characterisation of the
detrital fraction. Earlier studies may not have followed the same
protocol, potentially inflating apparent grain sizes. Methodological
differences may thus partly explain intersite variability.

The Grande Ponche crevasse splays, despite numerous similar-
ities, exhibit distinct characteristics compared with other exam-
ples. Their small size and simple architecture contrast with the
complex, amalgamated crevasse splays described by Burns et al.
(2017) in Cretaceous systems and by Gulliford et al. (2017) in
fine-grained floodplain successions, likely reflecting differences in
channel scale, sediment supply, and floodplain accommodation.

Unlike large crevasse splays in broad floodplains (Coleman,
1969; Aslan et al., 2005), the Grande Ponche deposits reflect a con-
fined environment limiting sediment dispersal. The dominance of
silt and the scarcity of fine sand, in contrast to coarser examples
(O’Brien and Wells, 1986; Millard et al., 2017), highlight the role of
local hydrosedimentary conditions.

The persistence and recurrence of crevasse splays at Grande
Ponche, unusual in European river systems, point to a strong
interplay between LIA climatic forcing and Rhone-specific fluvial
dynamics.

Implications for deltaic environments

Holocene sea-level changes in the western Mediterranean were
complex, shaped by climatic, isostatic, and tectonic factors (Di
Donato et al., 1999; Calafat et al., 2022; Marriner et al., 2023).
During the LIA, relative sea-level rise slowed considerably (Vacchi
et al., 2018, 2021), allowing riverine sediment inputs to dominate
delta dynamics.

These trends were modulated by the AMO and Atlantic
Meridional Overturning Circulation, influencing North Atlantic
heat transport and Mediterranean levels (Marriner et al., 2023).
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Stabilised sea levels during the LIA varied spatially due to
atmospheric pressure, sterodynamic effects, and glacial ice loss
(Calafat et al., 2022). Prevailing wet conditions contrasted with
earlier dry phases (Fletcher and Zielhofer, 2013). Glacio-hydro-
isostatic adjustments, enhanced by distance from former ice sheets,
also modulated sea levels, particularly in tectonically stable areas
like the southern Peloponnese (Lambeck, 1995).

Although marine influence during the LIA was limited, it
remains crucial for interpreting delta evolution. The Bras de Fer
prograded by ~1.5 km between 1635 and 1678 CE (authors of this
study, unpublished data), despite the modest sea-level rise (0.45 +
0.7 to 0.6 + 0.6 mm/yr; Vacchi et al,, 2021). Simultaneously, the
Grande Ponche meander underwent significant vertical aggrada-
tion, reflecting enhanced fluvial input and overbank sedimenta-
tion.

Recent Mediterranean sea-level rise has accelerated, reach-
ing 3.6 + 0.4 mm/yr (2000-2018), driven by warming and ice
melt (Calafat et al., 2022). Projections estimate a rise to ~4.2
mm/yr by 2040-2050 (Galassi and Spada, 2014), and potentially
~6-10 mm/yr by 2100 under high-emission scenarios (Lionello
and Scarascia, 2018). These rates exceed those of the LIA, increas-
ing risks of shoreline retreat and salinisation. Sustained sediment
delivery remains essential for delta resilience (Fu et al., 2020; Curtis
etal., 2021), partially mitigating sea-level rise impacts.

The Grande Ponche case illustrates fluvial sensitivity to short-
term climatic forcing, although extrapolation to other deltas must
be cautious. Observed dynamics—meander migration, overbank
accretion, crevasse splay formation—reflect local sediment supply,
floodplain morphology, and hydroclimate. These processes are not
directly applicable to wave- or tide-dominated systems. Broader
generalisation requires comparative studies across diverse deltas.
This study thus enhances understanding of climate-fluvial interac-
tions in deltaic plains and highlights the need for further research
on variability and thresholds across settings.
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Conclusion

This study reconstructs the rapid evolution of the Grande Ponche
meander during the LIA, illustrating how short-term climatic
oscillations influence fluvial dynamics in deltaic settings. Using a
multiproxy approach combining historical cartography, topogra-
phy, sedimentology, geochemistry, and geophysics, we show that
episodes of more frequent flooding, associated with positive AMO
phases, triggered rapid meander migration and extensive overbank

deposition between 1650 and 1710 CE.

Our findings reveal that climatic oscillations promoted hydro-
morphological instability, leading to significant sediment redistri-
bution through crevasse splay deposition. Sedimentary, geochemi-
cal, and magnetic proxies document abrupt pulses of detrital input
by large floods, recording the sensitivity of the Rhone delta to
decadal-scale hydroclimatic forcing despite relatively stable sea

levels.

The Grande Ponche case study underscores the capacity of
deltaic environments to respond to short-term climatic fluctua-
tions. It also illustrates the value of multiproxy approaches for
reconstructing past fluvial processes at fine (decadal) temporal and
spatial resolution. These findings contribute to a broader under-
standing of climate-fluvial interactions and offer key insights for
predicting the future resilience of deltaic systems in the context of

accelerated sea-level rise and anthropogenic pressures.

Supplementary material. The supplementary material for this article can

be found at https://doi.org/10.1017/qua.2025.10031
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