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Abstract
This paper discusses the use of modelling techniques for the purpose of risk management within life insur-
ers. The key theme of the paper is that life insurance is long-term business and carries with it long-term
risks, yet much of modern actuarial risk management is focussed on short-term modelling approaches.
These typically include the use of copula simulation models within a 1-year Value-at-Risk (VaR) frame-
work. The paper discusses the limitations inherent within the techniques currently used in the UK and
discusses how the focus of the next generation of actuarial models may be on long-term stochastic pro-
jections. The scope of the paper includes a discussion of how existing techniques, together with new
approaches, may be used to develop such models and the benefits this can bring. The paper concludes
with a practical example of how a long-term stochastic risk model may be implemented.
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Details
Section 1 provides an introduction with a brief history of modern actuarial models.

Section 2 describes the approaches and techniques currently widely used in the UK and how
these fit in with the Solvency II regulatory framework.

Section 3 discusses in detail the limitations of the use of a 1-year Value-at-Risk framework.
Section 4 discusses how plan projections, which are carried out in a traditional deterministic

manner may differ from the average (mean) or median stochastically produced results.
Section 5 considers the use of copula simulation models and how these are not necessarily

suitable for long-term projections.
Section 6 introduces the use of a long-term stochastic projection model and describes the

benefits this may bring.
Section 7 discusses in detail how the components of a long-term stochastic projection model

may be constructed.
Section 8 introduces a demonstration example, and the results of which are set out in section 8.
Section 10 summarises the key conclusions of the paper.
This paper is written with a focus on UK life insurance firms under the Solvency II regime. A

number of the techniques discussed within are likely to be applicable in a wider context.
This paper is intended for the UK or European Life actuaries who are interested in:

• Risk management.
• Modelling techniques.
• Business planning.
• ORSA.
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It is expected that the reader will have a working knowledge of the key aspects of Solvency II.

Disclaimer
The views expressed in this paper are those of the author only. The information and expressions of
opinion contained in this paper are not intended to be a comprehensive study, nor to provide
actuarial advice or advice of any nature and should not be treated as a substitute for specific advice
concerning individual situations.

1. Introduction
1.1. Purpose

1.1.1. This section gives a brief history of modern actuarial models. It then gives an outline of
the regulatory requirements under Solvency II and the typical approaches used by the
UK firms.

1.2. History of Modern Actuarial Models

1.2.1. Actuarial work primarily concerns the management of risk. The oldest form of models
may be considered to date back to ancient times whereby societies were formed to meet
the cost of funeral expenses1. These societies could be described as using a basic form of
the model.

1.2.2. An important development in actuarial work was the use of the life table (Graunt, 1662),
which was later used by Edmund Halley to determine the appropriate price for an annu-
ity. The Equitable Life was formed in 1762 and became the first company to use such
techniques to set premium rates in a robust mathematical fashion.

1.3. Generation One – Commutation Function Valuation

1.3.1. By the middle of the 19th century2, an established technique for modelling actuarial
liabilities was the net premium valuation. The technique made use of commutation func-
tions to give an approach that was for its time both practical and scientific.

1.3.2. Although itself a very old idea, the net premium approach with commutation functions
remained as an established technique for many years and only started to become obso-
lete through the widespread use of computer technology within firms. For this reason,
the use of commutation functions is may be considered to be the first generation of
modern actuarial models.

1.4. Generation Two – Discounted Cashflow Models

1.4.1. Since the 1980s, the use of modern computational power has started to become wide-
spread throughout the insurance industry. This has had a transformative effect on the
work of actuaries, making manual calculation work obsolete and allowing for a more
sophisticated generation of model.

1.4.2. The second generation of actuarial model is may be considered to be the discounted
cashflow model. Such a model is based on the projection of all future cashflows for a
contract in order that these can be discounted to the start date such that it can be valued.
This form of the model is quite intuitive in concept, yet would have been prohibitively

1Such societies existed in ancient Greece and Rome.
2The actual date or inventor of the technique is not clear.
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onerous when carried out through manual calculation. By contrast, spreadsheets or sim-
ple coding can comprehensively overcome such problems.

1.4.3. The key benefits of the discounted cashflow models were that they permitted more
sophisticated modelling features to be allowed for. They also provided actuaries with
a greater insight into the underlying nature of the liabilities they worked with.

1.4.4. Unlike commutation function-based models, discounted cashflow models are very much
in use today as they remain the best valuation approach for many products. Rather than
replacing the discounted cashflow models, further generations of models have instead
been used alongside them or within them.

1.5. Generation Three – Stochastic Simulation Risk-Neutral Model

1.5.1. In 2000, the original life insurance company – the Equitable Life, ran into severe prob-
lems and was forced to close to new business. There were a number of contributory rea-
sons for its demise, but perhaps, the most significant was in the approach to the
valuation of Guaranteed Annuity Options (GAOs).

1.5.2. In keeping with industry practice, the Equitable used a deterministic approach to the
valuation of these guarantees. This approach meant that, while interest rates remained
above the rates implicit within the guarantees, no value would be attributed to them and
so no reserve was held3.

1.5.3. The Equitable Life case was a key factor in a step change in the UK regulatory reporting
regime in 2004. This saw the introduction of “Realistic Balance Sheet” reporting under
which options and guarantees were required to be valued using market-consistent tech-
niques. The requirement to use such techniques came with the widespread use of the
next generation of the actuarial model – the stochastic simulation risk-neutral model.

1.5.4. The market-consistent valuation of options and guarantees in practice normally requires
the use of simulation models. The models use a large number of (e.g. 2,000) risk-neutral
simulations in order to produce a liability valuation consistent with observed market
prices. The move from a single projection to instead of thousands of projections repre-
sented a significant increase in the requirements of valuation systems. As a result, such
models typically took a substantial time to run when first introduced.

1.6. Generation Four – Risk-Based Capital Modelling with the Correlation Matrix

1.6.1. Also in 2004, equally as important as the introduction of realistic balance sheets with
market-consistent valuation of guarantees was the introduction of the Individual
Capital Adequacy Standards (ICAS) framework. The ICAS framework brought with
it the introduction of risk-based capital modelling techniques.

1.6.2. Under the ICAS framework, firms were required to calculate a capital requirement based
on a 1-year Value-at-Risk (VaR) approach at the 99.5th percentile. In order to achieve
this, for the first time, firms needed to be able to carry out stress valuations of their assets
and liabilities and to aggregate the results in order to produce the required capital.

1.6.3. The approach used as a standard was that individual stress runs would be carried out for
each risk at 1-in-200 level, and these would then be aggregated using a correlation matrix
calculation (also known as a variance–covariance formula). Such calculations have a

3In fact, due to an artificial financial reinsurance arrangement, the Equitable didn’t even hold reserves in respect of guar-
antees that were in the money.
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number of limitations4. As a result, firms would typically apply an approximation tech-
nique (e.g. the “medium bang” or “Single Equivalent Scenario”) approach to miti-
gate these.

1.6.4. These correlation matrix calculation models represented a new generation of models.
Rather than replacing existing models, they were implemented effectively above them
such that the correlation matrix calculation models used stress valuations of the under-
lying discounted cashflow and risk-neutral simulation models.

1.7. Generation Five – Copula Simulation Models

1.7.1. The most recent step change in actuarial modelling occurred through the introduction of
copula simulation modelling techniques around 2008. The use of such techniques
allowed actuarial risk modelling to move beyond the limitation of the correlation matrix
approach to more comprehensive risk-based capital calculations.

1.7.2. The approach typically used is to generate real-world simulations of an insurer’s risks over
a 1-year time frame, estimate the losses within the simulations and use these to generate
key results (such as the capital at 1-in-200 level). The models normally run very high num-
bers of simulations (e.g. 1 million) and as such require sophisticated computation power to
complete. Even with such power, the full valuation of assets and liabilities for such a large
number of simulations is prohibitively onerous, particularly where those liabilities may
themselves normally be calculated using risk-neutral simulations. For this reason with
the introduction of copula simulation models came the use of proxy models.

1.7.3. Proxymodels are a simplified approximation to the use of full asset and liabilitymodels. They
may take anumberof forms (e.g. replicating formula, Least SquaresMonteCarlo (LSMC))but
essentially the purpose of the proxy model is to provide a fast estimate of how assets and lia-
bilitiesmay respond to different risk events. Given the calibration of a suitable proxy function,
a firm may perform high numbers of valuations in a reasonable time frame.

2. Current Regulatory Framework and Market Practice
2.1. Purpose

2.1.1. This section contains a discussion of the modelling requirements under the Solvency II
regime and how these are reflected in the UK market practice.

2.2. Solvency II Requirements

2.2.1. Under the current Solvency II regime, the main modelling requirements may be con-
sidered separately under Pillar 1 and Pillar 2.

2.2.2. SII Pillar 1 concerns the amount of regulatory capital required to be held. This may be
calculated using either a firm’s own Internal Model5 or through the Solvency II Standard
Formula. In either case, the capital is calculated using a 1-year VaR measure at a

4The calculation is correct without approximation under the assumptions that:

• The joint distribution of risks is elliptical.

• Individual losses are a linear function of the risk movements.

• Joint risk losses are equal to the sum of individual risk losses.

5Subject to regulatory approval.
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confidence level of 99.5% (1-in-200). Where the Standard Formula is used, the capital
must be calculated using a correlation matrix calculation prescribed within the
regulations.

2.2.3. Within the SII balance sheet, firms must also allow for a Risk Margin (included as a
reduction in firms’ Own Funds). The purpose of the Risk Margin is to make an allow-
ance for the value of non-hedgeable risks. It is calculated using a cost of capital approach
based on the projected capital of a firm’s non-hedgeable risks.

2.2.4. A key part of SII Pillar 2 is the concept of the Own Risk and Solvency Assessment
(ORSA). The ORSA is intended to form a firm’s own view of the risks it faces. A firm’s
ORSA may typically contain business plan projections that could contain sensitivity
analysis to show how plans may be affected by adverse future conditions.

2.2.5. More recently, there has been a focus in the UK on the concept of 1-in-X risk buffers
used in setting a Risk Appetite. The buffer represents an amount of capital held by a firm
in excess of its regulatory capital requirements. Whereas, SII Pillar 1 is focussed on the
amount of capital required for policyholder protection, a risk buffer is instead intended
to ensure that a firm’s regulatory capital surplus is sufficiently robust and that the firm
can therefore continue with its business plans.

2.3. Market Practice

2.3.1. In the design of their actuarial models, firms have two main considerations. These are:
• to ensure they comply with SII and other regulations;
• to be able to manage their business and future plans as effectively as possible.

In practice, these considerations have a significant overlap. For example, the effective manage-
ment of the future of a firm’s business (and regulatory solvency) would be expected to be an
important focus with its ORSA.

2.3.2. With these considerations in mind, common modelling practice is for firms to use dis-
counted cashflow and risk-neutral stochastic simulation models for liability valuation.
Asset valuation may be carried out using market values as a base, together with the
use of asset models to give stress valuations (e.g. in order to value a corporate bond fol-
lowing a spread stress). For the capital calculations under Pillar 1 (and frequently also
within Pillar 2 in a different form), firms use an aggregation technique. Larger firms
commonly use an Internal Model based on a copula simulation approach. Smaller firms
more frequently use a correlation matrix calculation (mainly using the SII Standard
Formula but possibly with their own Internal Model).

2.3.3. In addition to valuation and capital calculations, firms also need to be able to carry out
longer term projections in order to support business planning. The purpose of these
plans is to ensure that appropriate targets and strategies may be developed and that
future problems, such as a threat to solvency, may be anticipated and mitigated.
Projections would normally include balance sheet items such as a firm’s SCR and
Risk Margin in order that the future solvency position may be better understood.

2.3.4. For long-term planning purposes, firms typically use a deterministic projection
approach taking into account real-world assumptions. The assumptions may include
different scenarios designed to reflect an optimistic, best estimate or pessimistic view.
Projections are not necessarily straightforward as the projection of future amounts, such
as market-consistent guarantee costs or a firm’s SCR, may be challenging. For this rea-
son, approximations such as the use of risk drivers to project individual metrics are
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commonly used. The risks associated with such projections are normally measured
through the use of sensitivity analysis.

3. Limitations of the 1-Year VaR Approach
3.1. Purpose

3.1.1. This section contains a discussion of the limitations of the 1-year VaR approach widely
used throughout the Solvency II regime.

3.2. History of VaR

3.2.1. Central to Solvency II is use of the 1-year VaR. The VaR is informally defined as the
minimum expected loss on a portfolio for a given probability of outcome p. The
VaR can then be used as the minimum amount of capital required to be held against
such losses.

3.2.2. The use of VaR originated within investment banking in the 1990s and became a key part
of the Basel II agreement first published in 2004. VaR became established as the preferred
measure of market risk within the Basel II framework. Within banking, VaR is often used
in a relatively short time frame (e.g. daily or 10-day VaR measures are widely used).

3.2.3. In 2004, VaR was introduced in the UK insurance industry within the new ICAS regime.
Key differences compared to its use in banking were that it was used for a longer time
frame (1 year) and that it was applied to insurance as well as market risks. The devel-
opment of the Solvency II framework more recently has continued with the use of the
1-year VaR measure as the basis of the regulatory capital requirements.

3.2.4. VaR has the benefits of simplicity and ease of calculation compared to other metrics6;
however, there are drawbacks to its use. More importantly, VaR is not a coherent mea-
sure of risk. The concept of coherent risk measures was developed (Artzner et al. (1999))
as a set of properties a risk measure should reasonably satisfy. A coherent measure of risk
is, therefore, defined as a function that fulfils properties of monotonicity, subadditivity,
homogeneity and transitional invariance.

3.2.5. VaR specifically does not satisfy the property of subadditivity. The property requires that
the risk measure for the sum of two risks should not be greater than the sum of the risk’s
individual risk measures. This is the principle of diversification – that combining risks
should be beneficial (at least not make things worse). That the property does not hold
true for VaR can give undesirable results. For example, where regulatory capital require-
ments are based on VaR, it could be possible to carry out a form of regulatory arbitrage
by splitting a firm into smaller firms in order to reduce capital requirements (despite the
real loss of diversification).

3.2.6. A further criticism of VaR is that it focuses all attention on risks at the VaR probability
level to the exclusion of those inside or outside it. This may be unsatisfactory as, for
example, a failure event that leaves policyholders 5% short of the amounts they are
due is not nearly as bad as an event that leaves them with nothing.

3.3. Use of VaR Under Solvency II

3.3.1. The design of the SII balance sheet based on the 1-year VaR is that a firm should have
sufficient capital such that following a 1-in-200-year event, its business should still have

6For example, VaR may be considered easier to work with compared to other measures such as Tail Value at Risk (TVaR).
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a positive transfer value so that it could be taken on by another firm without injection of
further funds. The capital requirements are, therefore, based on VaR under a 1-year time
frame with a probability of 0.5%.

3.3.2. In practical terms for insurers, VaR is typically implemented through instantaneous
stresses to net assets. The levels of stresses are set to correspond to a 1-year time frame.
An aggregation technique is used to derive the overall VaR from individual stresses.

3.4. Time Frame

3.4.1. A clear limitation with the use and application of the 1-year VaR framework under
Solvency II is that life insurance risks often materialise over the long term, and are there-
fore not well suited to the use of 1-year stress events. This is particularly relevant to a
firm’s long-term business planning. The examples in the following sections are used to
demonstrate this point.

3.5. Equity Risk Example

3.5.1. An insight as to the long-term behaviour of financial markets can be gained from look-
ing at the language used. Equity traders frequently use the terms “Bull” or “Bear”market
referring to the tendency of the markets to go on long-term runs.

The following graph shows long-term values for the FTSE 100 from 1995 to 2020.

3.5.2. The graph shows how long-term runs characterise the market. Given the nature of such
markets, a 1-year VaR focus may ensure a firm is well capitalised to survive a single bad
year in the markets, but it may not be an adequate protection against a longer bear run.

3.5.3. Perhaps, the most severe equity market event originated at the end of the 1920s and
preceded the Great Depression. The Dow Jones Industrial Average famously “crashed”
in October 1929 with losses of around 12% on consecutive days (known as black
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Monday and black Tuesday). However, this was only a part of much larger fall from a
high of 381 on 3 September 1929 to just 41 on 8 July 1932 (a fall of nearly 90% over
nearly 3 years).

3.5.4. This event helps to demonstrate the problems that could occur through the use of a 1-
year time frame. A 1-in-200 equity calibration under a Solvency II Internal Model is
normally considered to be a 40–50% fall over a 1-year time frame. Clearly, this may
not be sufficient for a larger event that takes place over a longer time frame.

3.6. Interest Rate Risk Example

3.6.1. The following graph shows the history of the 10-year UK gilt rate from 1985 to 2017.

The graph shows a clear long-term downwards trend. Such a trend would not normally be
captured within the 1-year VaR models used under Solvency II.

3.6.2. The above graph for interest rates (together with that for equity) illustrates the long-term
nature of market events. By monitoring a firm’s exposure only to short-term or instan-
taneous stresses, the significant exposures to longer term risks may be missed.

3.6.3. Asanexample,manyUKfirmswrotebusinesswithguaranteedannuity rates in themid-1980s
where the above graph shows interest rates were high (around 10% for the 10-year gilt rate).
Had the 1-yearVaRmeasure at 99.5%confidence beenused at the time, thismayhave implied
an interest rate 1-in-200 stress of 3–4%wouldhave been considered reasonable.An amount of
capital held may then have been sufficient to meet some of the shorter termmovements that
occurred, but would not have been able to meet the longer term trend of falling rates.

3.6.4. The example shows the importance of long-term risk considerations within business
planning. Other forms of long-term market risk that could generate concerns could
be a long bear run in the equity markets or a “stagflation” event such as occurred in
Japan from around 1992 for many subsequent years.
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3.7. Longevity Trend Risk Example

3.7.1. Longevity is amongst the most important long-term risks for a life insurer and amongst
the least well represented by a 1-year VaR approach. Under the 1-year VaR framework,
there are often considered to be three main aspects to the risk.
• Longevity volatility risk (variation in the number of deaths over 1 year).
• Longevity level risk (variation in the level of expected future longevity).
• Longevity trend risk (variation in the trend of longevity improvements).

Of these, longevity trend is typically the most significant.

3.7.2. Changes to the longevity trend under a 1-year VaR approach are normally modelled by
consideration of how the basis used may be affected by data risk and event risk. Data risk
is the risk that an additional year of live data may change the resulting fit of longevity
models and therefore the assumed trend rate. Event risk is the risk that an event such as a
cure for cancer could occur and would be reflected in a step change in the basis used.

3.7.3. The difficulty with the use of the 1-year VaR approach is the rate of improvement used in
annuity models is unlikely to change significantly based on only 1 year.

3.7.4. With regards to the data risk, should a year of data indicate particularly low mortality, it
is unlikely that actuaries would immediately fully include the new data in mortality mod-
els and mechanistically set the basis to reflect new calibrations. Instead, actuaries would
wish to be confident that this was a genuine change in trend rather than a single outlier
year. Therefore, it is unlikely that a single year of data would materially change the basis.
The COVID-19 pandemic shows an example of this. The UK mortality experience in
2020 was very significantly different to previous years (of a similar level to the 1-in-
200 Standard Formula mortality catastrophe stress), yet longevity trend assumptions
have not immediately changed to reflect this experience.

3.7.5. With regards to event risk, under normal conditions (rather than the exceptional times of
the COVID-19 pandemic discussed below), it appears highly unlikely that any single event
could cause a significant step change improvement in longevity over a 1-year timescale. A
key example often used for event risk is a cure for cancer. In the past, there may have been
a belief that a single drug could be found that would provide this. However, it is now more
widely understood that cancer is an umbrella term for a large number of individual con-
ditions. For some of these, a cure could be developed (or may have already been devel-
oped). However, it is considered highly unlikely that a single drug could cure all cancers.

3.7.6. Another key consideration for the cure of cancers or other diseases is that there may be a
considerable time for them to be implemented. Within the COVID-19 pandemic, the
development and approval of vaccines have taken place at unprecedented speed.
However, for other conditions, there may be a considerably longer time for the benefits
of any cure to be realised. For example, if a new drug were to be identified that reduced
the long-term likelihood of heart attacks, it may require trials lasting years before the
benefits can be fully realised.

3.7.7. In the exceptional circumstances of the COVID-19 pandemic, it may be possible that a
single event could cause a step change. This could be, for example, the development of an
effective vaccine or perhaps a mutation of the virus into a less severe form. This would
only lead to a step change in the firm’s liability valuation if the mortality basis used had
been developed based on the assumption that mortality rates into the future continued
the high levels seen in 2020. This assumption would seem unlikely in practice as the
likelihood of a vaccine has been discussed since the beginning of the pandemic and
to exclude this from the mortality basis for an annuity product could be considered
to be unrealistic and not prudent.
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3.7.8. In summary, longevity trend is a risk that can be expected to materialise very slowly over
the long term. It is, therefore, not something that can be easily modelled through a 1-year
VaR approach.

3.8. Other Risks

3.8.1. In addition to market risks and longevity risk, there are many other examples of risks
that is not well suited to a 1-year VaR approach. Some key examples are as follows.

3.8.2. Persistency risks may include risks such as to changes in long-term lapse rates or GAO
take up. These risks normally become apparent through gradual increases over many
years rather than an immediate stress event.

3.8.3. Operational risks may take many years to fully crystallise. For example, under a mis-
selling scenario. There may be many years between the initial identification of the event
occurring and the cost of settling all claims.

3.8.4. Climate change risk is a clear example of a long-term risk. Its effects would be expected
to be small over a 1-year VaR framework, but over the long term could give risk to sig-
nificant problems for a firm if not appropriately considered.

3.9. Implications of Company Failure Under a Long-Term Event

3.9.1. Should a firm be unable to meet the costs associated with a long-term event, there are
two main effects to consider:
• The effects on policyholders.
• The effects on the firm’s shareholders or members.

3.9.2. In theory, the 1-year VaR framework for SII is intended to ensure policyholders are pro-
tected. SII requires that firms are able to ensure they are able to cover their capital
requirements at all times. Therefore, in the event of failure, it should have been possible
to monitor the Solvency II surplus position (perhaps as markets fell), and as the solvency
position approached zero to sell the business to another firm with a stronger capital base.

3.9.3. In practice, there could be practical challenges with the transfer of a firm’s business
under difficult conditions. It may take time to find a suitable buyer (particularly if other
firms are affected by the adverse market conditions). Where a buyer is found, they may
not be prepared to take on the business for the value of the Own Funds.7

3.9.4. The design of the Solvency II framework is such that it is assumed that a firm’s business
could be transferred for the value of the Own Funds. The Own Funds allows for the Risk
Margin. The Risk Margin is calculated in respect of non-hedgeable risk only. Therefore,
it is implicitly assumed that should a firm fail and its business be transferred, all risks
that are hedgeable (normally all the market risks) could be de-risked. Therefore, should a
firm fail, policyholders’ basic liabilities would be protected but they could then be in a
fund in run-off taking no material market risk. This may not be expected to give a good
long-term outcome for any with-profits policyholders.

3.9.5. The effects on a firm’s members or shareholders of failure to meet the costs of a long-
term event would likely be severe. Under a breach of its capital requirements, it would
likely be subject to regulatory intervention and would be expected to close to new busi-
ness. Even an event that does not cause a breach of SCR could have very significant
consequences. For example, if a firm’s solvency position began to approach zero then

7The Own Funds are made up of the assets and liabilities adjusted by the Risk Margin. The Risk Margin is an approximate
allowance for the cost a firm may require to take on the costs of non-hedgeable risk.
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it would be likely to consider drastic actions such a closure to new business or sale of
individual business units.

3.9.6. For the examples on market and longevity risks, there is a risk that the use of a 1-year
VaR framework gives rise to a misleading assessment of the nature of the risk.

4. Mean, Median or Risk Free?
4.1. What Does a Plan Projection Represent?

4.1.1. An interesting question when considering traditional (deterministic) plan projections is,
what does the projection represent?

It could reasonably be considered to be any of the following:

• An average (mean) projection.
• A median projection.
• A risk-free projection (i.e. there is no stochastic variation).

4.1.2. It may initially be viewed as being something determined by the nature of the input
parameters. For example, if inputs such as equity returns are viewed as being an average
return, the resulting projection is also an average. However, this doesn’t necessarily hold
true – setting all the input assumptions to represent their average value does not typically
give rise to a projection that is the average of all different outcomes.

4.1.3. Where demographic assumptions are specified on a “best estimate” basis, what does this
mean in practice? The Solvency II BEL gives a definition of this which is considered in sec-
tion 4.2 below. However, for plan projections, firms are free to choose whatever methodol-
ogy is most appropriate. Although this may not actually be specifically defined, assumptions
are perhaps chosen such that the true experience may be equally likely to be better or worse
(the median assumption). As for using averages based on the mean, using median assump-
tions as the inputs does not typically give rise to a median overall projection.

4.1.4. In effect, if we made the simplifying assumption that risk distributions were all symmet-
ric, the average (mean) and median assumptions would be equal to the risk-free assump-
tions. This would result in an overall risk-free projection of key outputs such as Own
Funds and CCR. Of course, it is not realistic to consider all risks as being symmetrically
distributed, particularly for market or operational risks.

4.1.5. Therefore, in summary, traditional deterministic plan projections don’t provide the
mean or median outcomes. It is perhaps best to consider these as a broad representation
of what may occur but to understand the limitations of a projection without stochastic
risk modelling. Scenario testing may be used to help understand the risks. Where such
plan results are presented and communicated, it should be clear that the results do not
represent an “average” outcome and that there is not an equal chance of actual results
outperforming or underperforming the plan.

4.2. Solvency II BEL

4.2.1. The BEL is defined in the Solvency II directive as follows:

The best estimate shall correspond to the probability-weighted average of future cash-
flows, taking account of the time value of money (expected present value of future
cashflows), using the relevant risk-free interest rate term structure.
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4.2.2. Therefore, the BEL is defined to be the average (mean) present value of future cashflows,
or equivalently, the present value of average cashflows. The question is. therefore, how
should the assumptions used in the BEL be determined? There are specific requirements
for the market risks (to be modelled on a market-consistent basis). The key question, is
therefore, how non-market risk assumptions should be specified.

4.2.3. In order to align with the above definition, in theory this would indicate that BEL be
calculated through the use of a long-term stochastic projection model. This could be
used to produce projected cashflows allowing for stochastic variation in the underlying
risks. The results could be discounted using the risk-free curve and the average taken to
be the BEL.

4.2.4. This isn’t the practice commonly used by firms. Instead, demographic assumptions are
normally set by firms using approaches that broadly correspond to a median assumption
for each risk. Firms use this approach for practical purposes. It is relatively simple to
produce individual risk assumption estimates on the basis that these are equally likely
to be over or underestimates of the actual experience (corresponding to the median).
Tests are often carried out in order to validate the use of such assumptions.
However, these may be challenging to carry out accurately without long-term stochastic
projections. The following examples are used to illustrate this point.

4.2.5. Lapse risk

The use of individual median assumptions and an approximation will tend to work bet-
ter for symmetric risk distributions. A difficulty is that many key risks are not symmet-
ric. An example is lapse risk. A feature of lapse risk is the possibility of a mass lapse
event. Such an event could consist of a very large increase in lapses under an extreme
event. The risk is very non-symmetrical as there is no possibility of a similar-sized mass
fall in lapses. For example, under a mass lapse event, lapses could rise from 5% to 40%
but there is no possibility they could fall below zero.

4.2.6. Similar arguments apply to mortality risk in that event such as a pandemic or natural
disaster could cause a catastrophic mortality event, but that an equivalent opposite event
may not be possible. (e.g. a pandemic could conceivably cause a 0.5% addition to all qx
but nothing could cause a 0.5% decrease to all qx) as the rates have a lower bound of 0%.

4.2.7. In the lapse and mortality examples, the non-symmetric nature of the risks means the
calculated BEL is likely to be understated compared to the SII definition.

4.2.8. Bias through non-linearity

Where assumptions are specified for mortality or lapse risks, it is highly likely that the
assumptions are more sensitive to a decrease than an increase. As an example, consider a
basic annuity policy of £1,000 per annum in arrears for 50 years as a maximum, with
spot rates of 2% for all durations. The following results may be derived:

qx (all ages) Value (£k) Change compared to base (£k)

Base (3%) 17.8 –

2% 21.2 3.4

4% 15.2 −2.6
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4.2.9. The results are clearly more sensitive to a 1% decrease in mortality than they are to a 1%
increase in mortality (note that similar conclusions apply if the stress is applied by mul-
tiplying by (1� x) for stress x rather than these additive stresses).

4.2.10. The reason for these results is that mortality and lapse assumptions act in a compound
manner over the course of a projection. For example, the probability of an annuitant in
the above example surviving for 10 years is the product of surviving each of those 10
years (given they have reached that point). The following graph shows the non-linear
nature of the exposure within this example.

4.2.11. The above effect is likely to introduce a systematic bias such that the BEL is understated
according to the specified distribution. This is because the probability-weighted average
value is below the value based on a median assumption.

4.2.12. Bias through risk interactions

Consider a product with a GAO, for which the key demographic risks are longevity and
the take-up rate of the GAO. This is an example in which the combined effects of the
risks are likely to exceed their individual sum (another form of non-linearity). Such risk
interactions are again likely to mean that the BEL could be understated through the use
of median individual assumptions. However, this does depend on the nature of the
interactions.

4.2.13. What makes the above effect more significant is the effects of dependencies. In the
above example, there would be expected to be a correlation between the two risks such
that the probability of their joint occurrence is greater than it would be for indepen-
dent risks.

4.2.14. The effects of risk interactions again may mean that the BEL is likely to be understated
through the use of median individual assumptions. However, in this case, this does
depend on the nature of the relationship between risks including the dependency
between them.
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4.2.15. Summary

In conclusion, the Solvency II BEL may not be particularly well approximated by the
approaches currently used to set the demographic assumptions within the industry.
What is more, the suitability of the approximation cannot be reliably estimated with
the existing models.

4.2.16. This is not to suggest that setting demographic assumptions to reflect an approximate
median for each risk is poor actuarial practice. There are many benefits to such an
approach. Perhaps most importantly, it is intuitive and can be practically applied.
The difficulty is that such an approach isn’t consistent with the definition of the
BEL under Solvency II.

4.2.17. It would be possible for a number of firms to develop long-term stochastic model as
described in this paper in order to compute the BEL. However, this is unlikely to be a
practical approach for all firms in the industry given the required frequency of report-
ing and the modelling sophistication required. Note that the SII SCR and RM are also
calculated through stress valuations of the BEL. Therefore, these would be needed to be
calculated using stressed calculations of the stochastically calculated BEL.

4.2.18. The analysis in this section demonstrates the challenges associated with the definition
of the BEL under Solvency II. The key challenge is perhaps that it is impractical to
calculate it as per the definition or to even reliably assess the accuracy of approxima-
tions used without the use of long-term stochastic models.

4.2.19. Within Solvency II, the sum of the BEL and Risk Margin (the technical provisions) are
intended to represent a transfer value of the liabilities. These can be broadly considered,
respectively, to be the average costs, together with the additional cost required to com-
pensate for the associated risk that costs are different to the average. Perhaps, a more
practical definition would be to define the technical provisions to be the sum of:
• Risk-free costs;
• Value of options and guarantees;
• Value of non-market risks;

where the value of non-market risks represents the value of variation of the non-market
risks from the risk-free level. An alternative approach could be to instead define the tech-
nical provisions through the use of utility functions applied to the distribution of possible
outcomes. These could be used to allow for the risk-averse preference of investors.
However, this would still require the use of long-term stochastic risk modelling.

5. Limitations of Copula Simulation Models
5.1. Purpose

5.1.1. This section contains a discussion of the limitations within copula simulation models
commonly used within the UK Internal Model firms.

5.2. Background

5.2.1. Typical current practice amongst most UK Internal Model firms is to use copula simu-
lation models for Pillar 1 capital calculations under Solvency II. Essentially, the approach
used is that a large number of 1year real-world risk simulations are generated, before
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proxy functions are used to estimate the losses within the simulations. The capital
requirements can then be derived by taking the 0.5th percentile of the simulated losses.

5.2.2. Such copula simulation models are examples of single-period models. They are based on
a single time step (of 1-year length).

5.2.3. Risk simulation within the models is carried out using defined algorithms taking into
account the copula and individual risk distributions used. The copula and individual
risk distributions together define the joint distribution of risks. This joint distribution
is a probability distribution that describes risk movements over the single period of 1
year. That is, it describes only the distribution of differences in the risk values at the
end of the year compared to the values at the start of the year.

5.3. Application to Other Time Steps or Periods

5.3.1. There are many reasons that actuaries may wish to apply their risk models to steps or
periods other than 1 year. Most obviously, this could be in long-term business planning.
However, there are also other applications. For example, firms may wish to design a
product smoothing process that looks at returns over 3 months. A further long-term
example is that firms may wish to consider what returns a policyholder may have at
the end of their savings policy.

5.3.2. A key difficulty with the use of copula simulation models is that they lack the flexibility
to use a different time step for reasons discussed in the examples below.

5.4. Individual Risk Distributions

5.4.1. Suppose a firm needs to be able to generate simulations representing risk movements
over a 3-month period. Actuaries may consider how the 1-year joint risk distribution
used could be adjusted for this purpose. The first consideration may be individual risk
distributions. Where a very simple risk model is used, this may be done through scaling.
For example, under a basic lognormal equity model, scaling the variance may be used.
However, in practice, firms typically use much more sophisticated forms of model allow-
ing for features such as dynamic volatility and mean reversion. The use of simple scaling
does not work effectively for these features.

5.4.2. If the firm instead needs to look at long-term projections (beyond 1 year), the way dif-
ferent years interact needs to be considered so that simulations can be generated to rep-
resent risk movements in all future years. The only practical way this can be achieved is
to assume the years are independent and identically distributed (i.i.d.). This approach
may be used to generate simulations, but they would normally be of no useful benefit.
The following examples help to illustrate why this is the case.

5.4.3. Interest rate risk

Say that a firm uses a risk distribution such that 1-year changes in interest rates are
distributed normally with zero mean and standard deviation of 1%. If the starting rates
are 3% this gives the following 1-year projection.
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5.4.4. The results look reasonable. This would be expected as a firm would normally have car-
ried out a significant amount of analysis (including backtesting) to ensure the 1-year
distribution is suitable.

If however, we use the same distribution for 20 years, under the assumption that the
distributions in each year are i.i.d., this gives the following:
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5.4.5. It can now be seen that after 20 years, rates as below−5% are seen within the simulations.
While negative rates are now an accepted possibility, it may seem unrealistic that rates as
low as this should be incorporated. The graph shows the effects of using a model with
i.i.d. risk distributions for different years. The key problem here is the lack of any mean
reversion that is inherent within a model based on i.i.d. distributions.

5.4.6. GAO take-up risk

This example discusses GAO take-up risk, but could equally be applied to similar risks
such as lapse risk. Say in this case a firm has annuity options for which the current take-
up assumption used in the reserving basis is 30%. The form of risk would normally take a
multiplicative stress. For example, the rate in 1 year would be 1� X% times the current
rate.

5.4.7. If a 1-in-200 stress was considered to be 50%, based on a zero mean normal distribution
the risk would be distributed N(0, 19.4%2) (the standard deviation of 19.4% is 50%
divided by the inverse standard normal distribution function for 199/200). By assuming
i.i.d. risk distributions, the following long-term graph of rates can be seen:

5.4.8. In this case, the obvious problem is that the take-up rates start to go above 100%. A
simple approach to address this would be to cap them at 100%, but the problem is that
the results would then not be realistic. For risks such as GAO take-up or lapse, the rates
are bounded by 0% and 100% and are often unlikely to closely approach either of these.
For example, there are likely to be some policyholders who will take cash over an annuity
option if they have a short-term need for funds.

5.4.9. Another problem with extending this nature of risks over multiple time periods is that
the calibrations are often driven by judgement taking into account various event risks.
For example, a GAO take-up calibration may take into account the possibility that reg-
ulators require firms include a clear message on policyholder statements that they have a
valuable option they should consider using. This kind of event may be considered as a
one-off in that once it has occurred the event risk is no longer present. For this reason,
assuming the risk distributions are i.i.d. over different years may not be appropriate.
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5.4.10. Operational risk

Similar to the event risk example on GAOs above, operational and counterparty default
risks are often event based. Operational risk is typically modelled through scenario
analysis. Such a scenario could include, for example, a mis-selling incident on a specific
product resulting in the need to compensate policyholders. Such an incident is likely to
occur only once on a particular product (although it could possibly occur on other
products). Another point to consider is that the amount of operational risk is unlikely
to remain fixed over time. For example, it would in reality be expected to vary with the
complexity and volume of business in the future.

5.4.11. Risk Aggregation

The joint risk distribution used in a copula simulation model is made up of the indi-
vidual risk distributions, together with a copula. The copula is the means of combining
the individual risk distributions in order to get a joint risk distribution. The copula
most commonly used in current industry practice is the Gaussian copula. This is para-
meterised through a correlation matrix.

5.4.12. In addition to the problems described above for individual risk distributions, the cor-
relations (or more generally the copula) provide a key difficulty when looking at time
steps other than 1 year.

5.4.13. Where a shorter than 1-year time step is required, the difficulty is that correlations can
vary substantially depending on the time step used. For example, considering the cor-
relation between the UK FTSE100 and the US S&P500 from 1995 to 2019, the correla-
tion using annual steps is 91% yet the monthly correlation is only 80%. This result is not
unusual and perhaps reflects that short-term market fluctuations may be largely uncor-
related between the different markets, but longer term trend factors may be much more
closely related.

5.4.14. Where multiple time steps are required to construct a long-term projection, the diffi-
culty this time is that using the same correlations in each step is not likely to be realistic.
One problem is that correlations tend to vary depending on market conditions such
that the correlation of market risks may be much higher in a bear market than a bull
market. Another problem is the relationship between risks varies over time. For exam-
ple, lapse rates may be highly negatively correlated with equity returns in the early years
of a unit-linked savings product (if, e.g. there is a guaranteed surrender amount). In the
later years, the unit fund may be well in excess of the guarantees and the correlation
could be less significant.

5.5. Risk Losses

5.5.1. The key components of a copula simulation model are the joint risk distribution and the
loss model (represented by a proxy function). If a copula simulation model is used on a
short time frame, the proxy model is likely to be suitable for use. If longer term projec-
tions are required, the proxy function is not expected to be realistic.

5.5.2. A key challenge is in respect of the volume and maturity of business. This is likely to
mean that, for example, a 20% equity or lapse stress costs a materially different amount
in 10 years compared to that at time zero. A scaling approach for business volumes could
mitigate these problems but this does not account for how risk exposures change
through a policy lifetime. For example, a longevity stress has a much lower cost to
an 80-year-old annuitant than a 70 year old.
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5.6. Summary

5.6.1. The above examples demonstrate that the 1-year copula simulation models commonly
used in industry cannot be effectively used outside of the 1-year time frame. The reason
for this is in the inherent design of the models. This is that they:
• Use a single-step approach.
• Are purely statistical models.

5.6.2. The use of a single-step approach is discussed in detail above. This gives the models a
fundamental weakness that means they can never be entirely suitable for other time peri-
ods even with the use of different approximations or extensions.

5.6.3. The second point above is that the copula simulation models are purely statistical risk
models. The only risk information used within the models is the probability distribution
of each risk together with the copula. They do not use the information on economic
theory or the underlying drivers of different risk events or how these may affect other
risks, instead, they are simply statistical models.

5.6.4. As an example on the limitations of purely statistical model, we consider two forms of
interest rate risk model.

5.6.5. Model 1 – Purely statistical model

Annual change in Interest rates ˜ Normal(a, b2) for mean a and standard deviation b

5.6.6. Model 2 – Stochastic differential equation model (the Cox–Ingersoll–Ross (1985) or
CIR model)

drt � a b � rt� �dt � αrt0:5dWt

where rt is the short rate of interest at time t
a, b, α are parameters
Wt is a Wiener process

5.6.7. Unlike the purely statistical model, the CIR model incorporates modelling assumptions
on the true behaviour of interest rates. For example, it incorporates a mean reversion
term, a(b − rt)dt and that the amount of random variation of rates is proportional to
the square root of the current rate.

5.6.8. It is only by using a representative mathematical model of interest rates that results over
a long time frame may be derived. The same is true for other risks. If we wish to under-
stand the long (or very short)-term behaviour of the risks, we need to use a time series
model incorporating the realistic features of each risk.

5.6.9. The above example uses a single risk only. Another key consideration is how risks are
combined to form a joint distribution. Copula simulation models of course achieve this
through the use of a copula. Similar to the discussion on interest rates above, a copula
simulation model represents a purely statistical approach to the formation of the joint
risk distribution.

5.6.10. The copula, (for which the key input is normally a correlation matrix) simply models
how likely it is that different risk events will occur at the same time. Therefore, a copula
simulation model does not take into account howmovements in one risk may give risk to
events in another. Instead, it simply models the likelihood that events occur together.
This is an approach that may be appropriate under the single-step approach used within
copula simulation models. However, over a longer time frame, it is important that a hier-
archical form of the model is used. This is discussed in detail within the next section.
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6. A Long-Term Stochastic Modelling Framework
6.1. Purpose

6.1.1. This section sets out how the structure of a long-term stochastic modelling framework
could be developed.

6.2. Introduction

6.2.1. In order to be able to achieve the aims of monitoring and managing risk over the long
term, a model should have the following design points:
• It should encompass all material risks to an insurer that can be directly modelled (this
may exclude some exceptions such as regulatory risks).

• For these material risks, the model should be capable of assigning the probability of
any single or combined risk event over any specified time period. This is the Risk
model.

• For these risk events, the effect on key business metrics should be modelled. This is the
Loss model.

6.3. Modelled Risks

6.3.1. The modelled risks would normally include risks such as:
• Market risks.
• Demographic risks.
• Expense risks.
• Counterparty risks.
• Operational risks.
• New business risks.

The risks would need to be fully defined with an appropriate level of granularity. It may
also be possible to model liquidity risks depending on the design of the model.

6.3.2. The following examples of risks would not normally be included from a model:
• Strategic risks.
• Risk of regulatory change.
• Group risks.

These risks cannot be practically modelled through the use of probability distributions.
However, they may be separately considered through the use of scenario analysis.

6.4. Risk Model

6.4.1. As stated above, the risk model should be capable of assigning the probability of any
single or combined risk event over any specified time period. This is not dissimilar
to the copula models described in section 5 above whereby the probability is determined
through the use of a copula and individual risk distributions. However, the key difference
here is that the copula models are single-period models. They may therefore be used to
describe probabilities over these single periods (normally 1 year), but are unable to be
used for the more challenging requirement of describing probabilities over any
time frame.

6.4.2. As an example, a copula model could be used to estimate the probability of equities fall-
ing 20% and spreads increasing 100bps over a 1-year time frame (assuming the copula
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model is based on 1-year steps). What such a model could not do is answer questions
such as:
• What is the probability of a 20% equity fall over a month?
• What is the probability of a 100bps spread increase over 5 years?
• If equities fall 20% over the next year, how long would a full recovery take on average?
• What is the highest we expect to see spreads over the next 5 years (to 99% confidence)

6.4.3. In order to address questions such as these, it is necessary to use a time series model. This
may take a discrete or continuous form. Discrete time series models include simple
Moving Average (MA) models through to more complex forms such as Generalised
Auto Regressive with Conditional Heteroskedastity (GARCH). Continuous time series
is defined through the use of stochastic differential equations to describe variable
changes. An example is the Vasicek (1977) model of interest rates:

drt � a b � rt� �dt � αdWt

where rt is the instantaneous rate of interest at time t, a, b, α are constants and Wt is a
Weiner process.

6.4.4. The discrete and continuous time series may both be used to achieve the aim of long-
term projections. Where a discrete approach is used, this of course means the modelling
may only be applied to those discrete steps (e.g. projections may use monthly steps).
While it is normally possible to specify a process through either a discrete or continuous
approach, a continuous approach is typically preferred for the greater flexibility this
brings.

6.4.5. As an example, a simple equity model could take the following form (e.g. the Geometric
Brownian Motion that underlies the Black–Scholes model):

dSt � µStdt � αStdWt

where St is the equity value, μ and α are constants and Wt is a Weiner process.
This model has the solution that the equity value St is lognormally distributed with

expected value and variance given by

E St� � � S0eµt

Var�St� � S0
2 e2µt�eα2t � 1�

These results can be used to provide the answers to questions such as those above
(section 6.4.2).

6.4.6. For a more complex form of model, simulation modelling is required to derive the
required results. For example, under this model, we could have generated a high number
of stochastic simulation paths and used these to find the proportion that gave a 30% fall
over the month.

6.4.7. The above examples have been based on single risks only. It is important that the model
is also able to be used for joint risk events. This can be achieved through the use of mul-
tivariate time series incorporating multiple risks. An example of this is the multivariate
version of the above Geometric Brownian motion model.

dSit � µSitdt � αSitdW
i
t

where Sit represents the value of equity index I at time t.
Using this model it is possible to answer questions about both combined and indi-

vidual risk events. This is an example under which all risks take the same form
(Geometric Brownian Motion). In reality, it is likely to be more suitable to apply a num-
ber of different forms of the risk model.
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6.5. Loss Model

6.5.1. Within firms’ existing copula simulation models (single-period models), the loss model
consists of a proxy function used to estimate losses in Net Asset Value (NAV) as a func-
tion of movements in each of the risks.

Change in NAV= f(risk1, risk2, risk3, risk n) for n risks.

This function is applied to an array representing the risk movements for each simulation.

6.5.2. Under a multiperiod model, there are two key differences in the requirement.
• The model needs to use a time series of risk inputs per simulation rather than just a
risk movement.

• The model needs to be capable of producing time series output data.
6.5.3. The time series data output needs to include at least NAV losses per simulation at each

time step. A more sophisticated model may also be able to estimate balance sheet items
such as the SCR and Risk Margin and use these to construct an estimated solvency
position.

6.5.4. In practice, these requirements are beyond the scope of traditional proxy models and it
is, therefore, only through discounted cashflow models that results may be derived.

6.6. Output Key Business Metrics

6.6.1. The key metrics that may be required from a long-term stochastic model could include
the following:
• Surplus generation (changes in NAV).
• Solvency II balance sheet (assets, liabilities, SCR, Risk Margin, TMTP, MCR, surplus).
• Economic Capital balance sheet.
• Liquidity.
• Policyholder returns.
• Value of new business.

6.6.2. These metrics should be broken down where necessary into contributing elements. For
example, by product or fund. Surplus generation should be broken down into different
elements such as variances by risk and product.

7. Practical Implementation of a Long-Term Stochastic Model
7.1. Purpose

7.1.1. This section discusses the practical steps required in the construction of a long-term
stochastic model.

7.2. Model Overview

7.2.1. The model design should be considered as a series of individual modules. The modules
should be constructed as independent elements but with a consistent approach to design
and implementation.

7.3. Data Store

7.3.1. A key element of the design is the flow and storage of data. The main principle is that all
data items should be stored consistently as simulated time series. This is expected to
generate a high volume of data. Where necessary, it may be practical to only store
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(for the long term) simulation data for key results rather than all series used in the
calculation.

7.4. Market Risk Module

7.4.1. The purpose of the market risk module is to produce simulation results that consist of a
set of time series representing economic indices. These would typically include the fol-
lowing asset cashflow series:
• Equity dividends.
• Bond coupons and redemption values.
• Property rental income.
• Equity Release Mortgage income.
• Derivative payments.
• Cash income.

They would also include the following value series:

• Equity values;
• Bond values and ratings;
• Property values;
• Equity Release Mortgage values;
• Derivative values;
• Cash value;

and the following series of economic indices:

• Swap and gilt-based yield curves.
• Corporate bond spreads.
• Current and expected inflation.
• Current and expected implied equity and interest rate volatility.
• Currency exchange rates.

7.4.2. The above items are typically available through real-world Economic Scenario Generator
(ESG) models widely used through the industry. The ESGs incorporate detailed time
series models of each of the key elements above, together with an allowance for the
dependencies between different indices.

7.4.3. For this reason, the most practical approach to the market risk modules of a long-term
stochastic model is simply to use existing ESG capability. Where this is not practical, it
would be possible to construct a relatively simple ESG using more basic elements such as
a lognormal equity model. However, such an approach is unlikely to come close to the
level of sophistication within commercially available real-world ESGs.

7.4.4. The ESG model used will need to be calibrated appropriately using established techni-
ques. However, the market risk module would not necessarily require the use of any non-
market time series as inputs. This implicitly uses the assumption that economic move-
ments are not caused by movements in non-market risks. This is not necessarily true in
practice. For example, a longevity event could cause firms increased costs in the support
of defined benefit pension schemes with the result that bond and equity markets fall.
However, economic volatility resulting from such sources is expected to be a relatively
small element.
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7.5. Mortality/longevity Risk Module

7.5.1. In the same way that simulated time series data for market risks may be sourced from
existing systems, simulated time series data for mortality risks may be sourced from
commercially available software or from open source software such as R. The software
may be used to apply a number of existing stochastic mortality models (e.g. the Lee–
Carter (1992) and Cairns–Blake–Dowd (2006) models).

7.5.2. These models may be used to generate simulated time series of the qx probabilities of
death by age and sex or other key indices.

7.5.3. Mortality would not normally be expected to be materially affected by other insurance
risks. In the long term, trends in mortality are affected to an extent by economic pros-
perity. For example, higher GDP may lead to higher government and personal health-
care spending. Such effects are not typically allowed for in common stochastic mortality
models. For this reason, it may be practical not to include an allowance for the relation-
ship between market risks and mortality. An alternative would be to use a causal mor-
tality model, within which contributory factors to mortality, including economics/
healthcare spending could be included.

7.6. Lapse Risk Module

7.6.1. Unlike market risks and mortality risks, lapse risk simulation models are not widely used
within the UK. For this reason, where lapses are a material risk, it may be more appro-
priate to develop a stochastic lapse model. There are many ways such a model may be
constructed. The following approach shows an illustrative example based on a savings
policy (other policies such as on protection business may be affected differently).

7.6.2. The first step in the construction of a lapse model may be to consider the drivers that
could cause a policyholder to wish to lapse. The following factors are likely to be relevant:
• Long-term plans.
• Unplanned cash needs.
• Loss of confidence in the company.
• Investment switching (e.g. to get a cheaper product elsewhere).

In turn, there may be reasons that would reduce policyholder’s desire to lapse. There
could include:

• Surrender penalties.
• Guarantees (e.g. if the policy gave a valuable guaranteed surrender benefit at 5 years,
the policyholder is unlikely to surrender shortly before this).

7.6.3. Consider the propensity to lapse as a score with zero being the point where no
lapses occur.

If we can consider how each of these contributes to an overall score, we can then
estimate a function that converts this score to a lapse probability.

7.6.4. This could be done at an individual policy level. However, in order that results can be
used for simulation modelling, it is more appropriate that model points are used to
group policies into key categories such as start year and time remaining. Grouping could
also consider factors such as age or fund size. However, the grouping should not result in
a very small amount of data in different groups. Here are some example parameters that
could be used:
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7.6.5. Long-term plans
Long-term plans for lapse rates represent lapses that are expected to occur irrespective of
other factors. They could include, for example, funds set aside for a deposit on a new
home or a round the world trip. As these plans don’t depend on other factors, they don’t
need to be considered as a function of other indices. They may however depend on the
time from outset of the policy. For example, for a long-term savings product, it is
unlikely that there will be many lapses in the first year that was due to policyholders’
long-term plans. The following graph shows how the lapse factor could be considered
to vary over time.

7.6.6. Unplanned cash needs
Unplanned cash needs may by their nature be unrelated to the time inforce. Examples

of cash needs could be
• An unexpected bill (e.g. housing repair, tax, medical treatment).
• Unplanned spending (new car, new conservatory).
• Loss of income (e.g. due to redundancy).

These items are effectively a further breakdown of the key lapse drivers set out above.
With regards to the first two items here, there are always likely to be an element of these
within groups of policies and they are not considered to be dependent on other factors or
time.

Example parameters for these could be
Unexpected bills lapse factor= 1 (constant).
Unplanned spending lapse factor= 2 (constant)8.

7.6.7. With regards to loss of income, rather than being unrelated to other factors, this could
instead be expected to be correlated with economic factors. A key economic variable
here could be national rates of unemployment. Loss of income-related lapses could then
be expressed as a function of national unemployment. However, to do so would need a

8A more detailed approach here could set the unplanned spending lapse factor could vary with factors such as the age of the
policyholder, policy size or economic conditions.
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risk model that may estimate this. An alternative would be to use movements in equity
markets as a proxy for economic prosperity and therefore employment.

As an example, we could use a function of the followingform:
Lapse factor due to loss of income= 0.5� If (equities have fallen 20% over 6 months,

1, 0)
This allows for increased lapses under challenging economic conditions.

7.6.8. Loss of confidence in company
The level of trust in a company is likely to be a significant factor affecting lapse risk.

Perhaps the most significant concern here is that a single event (possibly an operational
risk event) could result in widespread reputational damage and give rise to a mass lapse.
There are two main possible ways in which confidence-based lapses could be modelled:
• Model an index of company/brand value and use this to derive a lapse loss function,
• Assume the main driver of reputational damage would be operational/conduct risk
and therefore use this to derive a lapse loss function.

7.6.9. Using the first of these two approaches, a firm’s existing operational risk model could
be used to understand how different operational risk scenarios not only have a financial
cost, but also give a cost to reputation. For example, reputation could be modelled using
again a scale between 0 (worst) and 10 (best), reputation could be assumed to be
reduced under specific operational risk scenarios and to benefit as time passes since
events have occurred. Given a reputational index, a reputational lapse factor could
be expressed as a function of reputation.

7.6.10. Under the second approach, reputation-based lapses could be derived from a function
of operational risk losses.

7.6.11. Of these two approaches, the first is likely to be stronger as it could explicitly allow for
modelled operational risk scenarios to give rise to reputational damage and a possible
mass lapse event. An example function could be

reputational lapses � 0where reputation index > 5

� 5 � reputation index where 1 < reputation index < � 5

� 10where reputational index < � 1

The design of the function is such that a mass lapse event may occur should an opera-
tional event cause severe reputational damage.

7.6.12. Investment switching
Lapses due to a switch in investment could take many forms. They could include

policyholders wishing to:

• Switch to a similar product offered by a competitor (e.g. to take advantage of lower
charges).

• Switch to a different kind of investment (e.g. direct equity investments).
• Switch away from equity, bond exposure to just hold cash.

The first two types here are likely to occur regularly to some extent. However, they
may be affected by the time from the start of the policy and possibly the time remaining.
Such switches may be unlikely near the start or end of a policy. Therefore, a function
such as shown in the graph below could be used (assuming a product that matures after
7 years).
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With regards to switches out of risky investments into cash, these depend on the
nature of the product offered. However, it may be considered that increased numbers
of such lapses occur in volatile markets (or following market falls). Therefore, a func-
tion that expresses the lapse factors in terms of an equity volatility index or recent
equity falls may be appropriate.

7.6.13. Surrender penalties and guarantees
Surrender penalties and guarantees vary significantly over different products. Where

surrenders affect commission, this would also have a significant effect.
A function that takes these factors into account would need to be carefully designed

for specific product features. Examples that could be allowed for are that:
• Where a surrender penalty applies for an initial period – lapse factor is reduced by 3
within that period.

• Where a policy has a guarantee that is more than 10% “in the money” – lapse factor is
reduced by 3.

7.6.14. Random variation
Having allowed for the key features affecting lapse rates, it is important to recognise

that actual experienced lapse rates will also be affected by other factors beyond the
scope of the model. For this reason, the lapse factor should also include a stochastic
element. For example, the lapse factor could be assumed to include a term of
Normal(0,s2). This allowance for uncertainty is to recognise that, even where factors
such as market conditions and operational risk events are fixed, actual lapses observed
are still subject to uncertainty.

7.6.15. Mapping from the lapse factor to actual lapses
After deriving an approach to calculate a lapse factor for each model point, the final

stage is to design a function to convert the lapse factor into an actual lapse rate. The
lapse rate could be expressed as a probability over a specified time frame or instead as
an instantaneous “force of lapse”.

To map from the lapse factors onto lapse rates, lapse factors can be calculated for
model points using actual company data. The results can be used to produce a scat-
terplot of data to which a function may be fitted as illustrated below:

BRITISH ACTUARIAL JOURNAL 27

https://doi.org/10.1017/S1357321721000052 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321721000052


7.6.16. Fitting the parameters
The above example is intended to show at a high level how a causal lapse model

could be developed. In practice, the process used to fit parameters could be a blend
of judgement (e.g. to allow for reputational effects), together with statistical analysis.
The intention of the modelling would be to be able to predict the lapse rates as accu-
rately as possible from the lapse factors. This should be on an “Out Of Sample” (OOS)
basis in that testing of the function should use points that were not included in the
fitting process.

The development of such a lapse model could form an annual cycle whereby, the
performance of the existing model is assessed, if the results are not considered to be
strong enough then investigations could take place in order to understand what factors
have not been sufficiently modelled so that improvements can be made.

7.6.17. Lapse model summary
At the end of the above process, the result is a causal lapse model in which lapses are

analysed and modelled through consideration of the factors that cause their occurrence.
This may be a stronger approach than traditional techniques whereby lapse rates are
simply fitted to data by duration. The table in the next page discusses the differences in
the approaches.

7.7. GAO Take-up Module

As with lapse risk, causal models of GAO take-up risk are not widely available from commercial
providers. Therefore, it may be appropriate that causal models are instead developed internally. As
with lapse risk, it is important to consider the underlying causes that a policyholder may choose to
take up an annuity option. There are two ways such an annuity option may be considered:

• A policy that provides an option to take a guaranteed annuity.
• An annuity policy that provides an option to instead take a cash sum.
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The approaches are of course equivalent. The most suitable to use is likely to be aligned with the
wording used in the policy. For the purposes of this paper, the first of the two methods is used.

7.7.1. Types of GAO policyholders
Consider three groups of policyholders:

• Those who have a need for an annuity – they will take the GAO if it is “in the money”
at maturity.

• Those who have no wish for an annuity and so will always take cash (some products
include an annuity option element that many policyholders have no interest in).

• Those who are happy to take the cash option, but could consider taking the annuity if
the guarantee makes it particularly attractive.

The presence of the first two groups here means that GAO take-up rates will always
be greater than zero and will never reach 100%. Here, the GAO take-up rate for a group
of policyholders is measured as the policyholders taking the annuity divided by the num-
ber of GAOs in the money.

If the proportions of policyholders in each of these groups can be estimated, this may
be used to develop a GAO model. The most accurate way of estimating the proportions
could be to ask the policyholders through a limited survey. This could be either policy-
holder recently matured or instead policyholders currently inforce. If this is not practical
then the proportions could be estimated by subject matter experts familiar with the
details of the product. Proportions could potentially be split by the cohort of business.

7.7.2. Drivers of GAO take up
For the policyholders in the first two groups, they will simply take the annuity (if in

the money) or the cash. For the third group, as with lapse risk, we can consider the pro-
pensity to take up a GAO as a score with zero representing the point at which no poli-
cyholder would take up the option.

The key drivers of GAO take up may be:

Traditional Approach Causal Approach Comments

Best esti-
mate

Lapse rates are estimated
by duration. These may
represent a median
expected outcome.

Best estimate lapse rates are
derived as the probability-
weighted average rates derived
from simulations in the causal
model.

Causal model requires more work
to calibrate but may give
greater insights. It may respond
better to new information such
as how lapses increase under
stressed market conditions.

Risk distri-
bution

Probability distribution
fitted to historical
changes in lapse rates.

Simulations from the causal lapse
model directly determine the
risk distribution.

Distribution fitting is compromised
by data limitations (not enough
years). Causal model may
potentially give much greater
accuracy.

Relationship
with other
risks

Normally approximated
using correlations
incorporated within a
Gaussian or T copula.

Simulations from the risk model
directly determine the relation-
ship between risks.

The causal model directly consid-
ers the relationship between
risks rather than simply using
estimated correlations (which
are themselves very approxi-
mate).

Flexibility Can be used only for
the 1-year period nor-
mally applied within
Solvency II.

Can be used for any time period
(longer or shorter term). Can be
used for what-if analysis, for
example, what would happen
to lapse rates under market
falls.

As the causal model directly con-
siders what factors give rise to
lapses it may be far more flexi-
ble and adaptable to different
purposes.
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• The value of the option (annuity relative to market rates).
• Company reputation.
• Visibility of the option.

Of these, the value of the option is likely to be most important.
7.7.3. Value of option

Where the annuity is guaranteed as a fixed rate, the value of the option is determined by market
annuity rates. These are largely driven by market interest rates and mortality assumptions. An
example function based on the value of the option would be to say that

GAO factor � constant × GAOannuity �market annuity
� �

=market annuity�

This factor can readily be estimated for different model points using simulated interest rates
and annuitant mortality.

7.7.4. Company reputation

In a similar way to lapse risk, if a company’s reputation has suffered, it is possible that this could
reduce annuity take up as policyholders may no longer trust a company and may wish therefore to
have no further contact with them. A function could be derived with a similar form to that used for
lapse risk.

7.7.5. Visibility of the option

For some products, the presence of a valuable GAO may not have always been clear to policy-
holders. Typically, visibility of such options has improved over time as firms improve the level of
communication. The visibility of the option is not something suitable for stochastic modelling.
However, it could be included in the GAO factor as a function of the year. For example, if it
is known that the communications were changed in 2010 to make an option much clearer, a func-
tion could be derived to take this into account.

Option visibility on its own is unlikely to have an effect on take up (e.g. if the GAO value is only
1% higher than market rates, take-up rates (amongst this policyholder group 3) are unlikely to be
material even if visibility is crystal clear. Similarly, option value on its own may make very little
difference if visibility is so poor that very few policyholders are even aware of the option. For this
reason, the GAO factor may be better expressed as the product of the GAO value factor and visi-
bility factor rather than the sum.

7.7.6. GAO model summary

Having derived a model of GAO factors, it remains to parameterise this and use it to derive a
function that maps from the GAO factors to actual take-up rates. This may be done using a similar
approach as for lapse risk. Also as for lapse rates, it is also important to include an allowance for
randomness.

Having carried out these required steps, we will have constructed a causal GAO risk model. As
for lapse risk, this may be a much stronger and more flexible tool than a model constructed by
traditional techniques. A key example here is how GAO take up risk interacts with interest rate
and mortality risks. Existing aggregation models simply use a correlation to estimate how much
GAO take up, interest rates and longevity vary together. A causal model by contrast uses the actual
value of GAOs rather than just changing interest and mortality rates. It also directly models how
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the interest rates and mortality rates drive take-up rates, rather the simply using correlations to
estimate the likelihood of them occurring together.

7.8. Other Risks

7.8.1. Overview

This section discusses how a causal risk model may be developed for a number of other key
insurance risks. The section is intended to provide a high-level summary for each risk rather than
a detailed model.

7.8.2. Other protection risks

Other types of protection policy may include
• Critical illness.
• Income protection.
• Private medical care.
• Long-term care insurance.

These types of products share similar risks to that of mortality risk. However, an additional
complexity is that multiple state modelling may be required to model transitions between different
states (e.g. healthy, in deferral, in payment, retirement, death on an income protection policy.). As
for mortality risk, there are a number of existing stochastic models to cover such risks. However,
they may be less readily available than those for mortality and may therefore require development
work to successfully implement.

Protection policies such as those above would be expected to not be materially dependant on
other market or insurance risks with the exception of mortality. Where a firm has significant mor-
tality and the above protection risks, it may be appropriate to construct a single stochastic model
incorporating mortality with sickness/morbidity.

7.8.3. Expense risks

An insurer’s expenses may be considered in a number of ways. Expenses result from areas such
as policy administration, new business activity and investments. There may be a number of fixed
costs (at least over the short term), together with other costs that vary with business volumes and
assets under management. All expenses are likely to grow with inflation. This may include an
element of macroeconomic inflation, but also other elements such as any excess of wage inflation
in excess of macroeconomic inflation.

The key risks to expenses may be:

• Business volumes being insufficient such that fixed costs per policy increase.
• Expense inflation is higher than expected.
• Unexpected one-off cost (e.g. the introduction of Solvency II caused large project costs for
firms).

Firms would typically use a detailed (deterministic) expense model in order to consolidate
expenses from the different areas and use these to produce an expense allocation by product/pol-
icy, together with a long-term forecast of the firm’s expenses per year taking into account busi-
ness plans.

BRITISH ACTUARIAL JOURNAL 31

https://doi.org/10.1017/S1357321721000052 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321721000052


Such a model could be converted into a stochastic model by first expressing the different ele-
ments as a function of the key factors that affect them. For example, a model could be developed to
give the total expenses in each future year as a function of:

• Business volumes inforce (by product).
• New business sales.
• Macroeconomic inflation.
• additional inflation (e.g. wage inflation above macroeconomic inflation).
• Assets under management.
• “one off” project costs.

Of these items, most would be available from other sources. For example, business volumes are
a function of lapse risk, mortality risk and new business sales. Macroeconomic inflation would be
available from market risk models.

Bespoke modelling may be required for additional inflation (there are existing models of wage
inflation) and “one off” project costs. A simple stochastic model of these project costs could be
developed through investigations of the extent of past company spending on these.

7.8.4. Counterparty risk module

This risk relates to the possibility of default of key counterparties such as those involved in
reinsurance or hedging. It could also be considered to affect the future terms offered. For example,
a firm using significant reinsurance is exposed to the risk that the reinsurance terms worsen at a
future renegotiation.

Regarding the default of counterparties, the first step should be to consider the factors that
could cause this to occur. These could include:

• Market factors – counterparties may have high market exposure and therefore be exposed to
such risks.

• Mortality experience – very high experience (e.g. as may be seen in the COVID-19 pan-
demic) may weaken reinsurers balance sheets to the extent there may be a risk of default.

• General insurance experience – many reinsurers cover general insurance as well as life and
therefore will have such exposure.

• Defaults – where reinsurers pass some of the risks to others then one default may trigger
another. Similarly, the default of a major investment bank could cause defaults amongst others.

Using these or other factors, a model could be developed to give the probability of default of
each major counterparty for a firm. Such a model could take into account the rating of each coun-
terparty and the extent of recoveries expected under a default.

7.8.5. Operational risk module

The UK Internal model firms typically use scenario-based operational risk models. These nor-
mally contain a number of representative operational risk scenarios for which the frequency and
severity are modelled. The events are combined together using copula simulation modelling in
order to derive an overall operational risk distribution.

Such models may be developed for use in a causal risk approach. The key questions to con-
sider are:

• To what extent are each of the scenarios dependent on other modelled factors?
• How long could the scenarios take effect over?
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• If the scenario has occurred, could it occur again?

As an example of these, consider a scenario under which admin errors cause incorrect lapse
payments and costs associated with this. The likelihood of such a scenario could conceivably be
related to high lapse experience (making claims processing overstretched). The severity of such a
scenario may be related to the value of the lapse payments being made at that time or the number
of lapses (depending on the nature of the error).

The time period of an operational risk event is something not normally considered within the
firm’s existing operational risk models as these simply use the normal 1-year time step within the
Solvency II framework. As part of a long-term stochastic model, this becomes a more important
consideration as there are many forms of operational risk that include costs spread over many
years. This could include, for example, compensation for mis-sold policies.

The final consideration here is whether each operational scenario could happen more than
once and whether an occurrence affects the future likelihood. As an example, an operational risk
event representing losses due to cybercrime may be able to occur more than once. However, there
may be a reduced likelihood after the first instance on the expectation that a firm takes steps to
reduce the risk in the future.

Using these considerations, an operational risk model could be constructed based on causal
dependencies between risks rather than the statistical relationships assumed with copula simula-
tion models.

7.9. Allowance for New Business Volumes

New business volumes may not be considered to be a risk in the same way as things like market
risk or mortality risk. Any risk of excessive new business volumes giving rise to a cashflow strain is
mitigated by the flexibility firms have to restrict volumes or increase prices to control them.

Low new business volumes certainly have the possibility of causing difficulties to a firm’s busi-
ness plans, and new business volumes may be related to:

• Economic factors.
• Product cost.
• Market competition.
• Company reputation.
• Advertising spend.
• Regulatory and legal changes.

Some of these factors can be included within a risk model. However, others are not well suited
for stochastic modelling. For this reason, it may be preferable that new business volumes are mod-
elled deterministically rather than including a stochastic element. Alternatively, a simple stochas-
tic model could be designed taking into account some of the main elements above.

7.10. Risk Aggregation

Within risk models used under Solvency II Internal Models, risk aggregation is normally carried
out through the use of copula modelling. These models use a copula to combine risk movements
based on an assumed statistical relationship between risk movements over a single time period.
Key inputs to the parameterisation of the copula include the assumed correlation between risk
movements.

It is well known that correlation does not imply causation. The copula models make no infer-
ences on the underlying cause or drivers of risk events. They instead simply model the statistical
likelihood of events occurring together according to the assumed correlations.
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By contrast, the long-term stochastic model described in this paper is a model based on under-
standing the true causation of risk events. Risk simulations may be generated using a number of
independent random processes, together with the relationships developed within the model. These
relationships mean that the correlation between different risk events still exists and may be esti-
mated using simulation results. However, correlations are not an input to the modelling process.

7.11. Loss Model

7.11.1. Overview

The above sections describe how the risk model element of a long-term stochastic model may
be developed. The sections below describe an approach to the construction of a loss model. The
purpose of the loss model is to take the results of the risk model and use these to find the effect on
key business metrics. These may include profits from assets and liabilities but also items such as
elements of the Solvency II balance sheet.

Within the copula models commonly used within firm’s Solvency II Internal Models, the loss
model is normally used only to find the effects of risk movements on assets and liabilities (in order
that these may be used to determine the SCR) rather than wider aspects such as elements of the
Solvency II balance sheet.

These copula models are single-period models (normally based on a 1-year time frame). For
this reason, they only need to generate a single output point (the gain/loss over the 1-year period),
with the inputs being based on risk movements from the same single period. The loss model is
therefore a function that takes as its input a vector of risk movements (over the 1-year period) and
produces a single number representing the loss or gain over that period.

Within a long-term stochastic model, a key difference is that rather than inputs and outputs
being based on a single period, the input variables are instead time series which are in turn used to
produce output time series. For example, a simple model (based on just equity risk) could take as
an input a time series of equity returns and use these to produce a time series of profits on a
particular product.

The following sections describe how an appropriate loss model may be constructed.

7.11.2. Liability cashflows

A loss model for the liability cashflows needs to be able to take time series inputs in respect of
risks such as mortality, lapse or market risks and be able to use these to produce an output time
series of liability cashflows. This is essentially a discounted cashflow model. It may be quite simple
(e.g. in the case of an immediate annuity), or more complex (such as a savings product with invest-
ment guarantees).

Modelling of demographic risks such as lapse or mortality may be carried out at different levels
depending on the purpose of the model and the computation power available. For example, if
using a stochastic lapse risk model gave an assumed lapse rate of 5% for a particular time step
and simulation, this could be applied as either a 5% lapse rate for all policies, or instead, each
policy could be assumed to lapse with probability 5%. The latter approach here allows for lapse
volatility risk. Such a risk could be important for a product with a small number of very large
policies.

7.11.3. Asset model (cashflows and valuation)

To go with the liability cashflow model, a similar model is needed for assets. This needs to be
able to produce both the value of the assets as well as asset cashflows (such as bond coupons or
equity dividends). Of course, such asset models are readily available. The models are able to allow
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for cashflows from the assets, as well as valuation of the assets using data such as interest rates,
spreads and volatilities.

Where the asset and liability cashflow model results for a product are combined, this gives the
overall profit/loss time series for the product.

7.11.4. Best Estimate Liability (BEL) reserves

The stochastic projection of BEL reserves is similar to that of liability cashflow projection.
However, the key difference is that in addition to the cashflows at each step, the models need
to be able to produce the BEL in accordance with the Solvency II regulations. There are a number
of points to be considered within the calculation methodology.

7.11.4.1. Demographic assumptions

The demographic assumptions used will of course be a key part of the BEL calculation. The risk
models described above are intended to be capable of stochastically modelling values such as the
lapse and mortality rates. However, the BEL assumptions should not simply be set to align with
the stochastically modelled demographic risks.

BEL assumptions reflect information known at the date of the assumption (including future
projections such as assumed mortality improvements). If the BEL assumptions were to be aligned
with the stochastically projected demographic risks, this would result in a model in which no
demographic experience variances could occur. Such a model would of course not be realistic.

To make the BEL assumptions more realistic, they should be set taking into account a firm’s
assumption setting policy. For example, if a firm sets mortality rates as a percentage of a standard
table based on the past 3 years of data, this method could be directly used to set the BEL demo-
graphic assumptions within each time step and simulation. Of course, this is likely a simplification
from actual practice in that there would be an element of judgement included even where a
mechanical rule is in place.

7.11.4.2. Discount rates

The basic discount rates used to value liabilities under Solvency II are the EIOPA swap-based
rates. The simulation of swap rates and therefore the EIOPA curve would be included in a sto-
chastic risk model. However, different discount rates are required for pension schemes and for
business subject to the Volatility Adjustment (VA) or the Matching Adjustment (MA).

Firms’ defined benefit pension schemes under Solvency II are required to be valued using the
IAS19 discounting basis. Within this basis, the discount rates are assumed to be based on the yield
of high-quality bonds (normally taken to mean AA rated). In order to allow for this within a BEL
loss model, it is necessary to have a stochastic model of the IAS19 discount rates. These could, for
example, be taken to be the swap rates plus the spread on AA rated bonds.9

In order to be able to value business subject to the VA, it is necessary to have a model that may
be used to estimate the VA from market data. The VA is effectively calculated to be 65% of the
spread on a representative portfolio of government and corporate bonds. The calculation may be
used to construct a model of the VA depending on current market data. This may be a simple
model applied at a high level or alternatively a more detailed model accurately aligned with the
detailed methodology used by EIOPA for the published VA.

Unlike the VA, the MA is specific to a firm’s own assets and in addition, is subject to qualifying
conditions to test its suitability. Carrying out a full MA calculation within a simulation model is

9The IAS19 regulations also include further considerations such as with regards the depth and liquidity of the market for
high-quality bonds.
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likely to be unrealistic due to the complexity of the calculation. For this reason, it may be more
pragmatic to use a model that allows for changes in the MA as a simple function of spread
changes.

7.11.4.3. Options and guarantees

The valuation of options and guarantees under Solvency II is on a market-consistent basis. This
is normally carried out through the use of risk-neutral simulation modelling calibrated such that
the options and guarantees are consistent with market option prices. To use such risk-neutral
simulations within a stochastic risk simulation model results in a “nested stochastic” problem
within which the computational power required is likely to be very high. It is also not clear
how risk-neutral simulations could be produced to represent future time periods or within dif-
ferent simulations. This is because risk-neutral models are calibrated to current observed market
prices. Such prices of course are not observable for future periods derived through stochastic
projections.

For this reason, it may be appropriate to use an approximate approach to the valuation of
options and guarantees. Such an approach should give a reasonable approximation based on pro-
jected market data (such as interest rates, equity values, implied volatilities), but be available with-
out the use of simulations. Techniques such as the use of Closed-Form Solutions (CFS) or
replicating portfolios may be used for this purpose.

7.11.5. SCR model

The SCR model needs to be able to estimate the value of the SCR either on a Standard Formula
or Internal Model basis as appropriate.

7.11.6. Standard Formula SCR

The Standard Formula SCR is calculated using an aggregation formula on the results of a series
of individual risk stresses. The approach used to estimate the SCR may be simply to use the asset
valuation and BEL models described above in order to calculate each of the stress valuations
required for the Standard Formula. For example, the Standard Formula mortality stress may sim-
ply be calculated by applying the appropriate stress to the qx before using the BEL model to derive
the stressed BEL and hence the 1-in-200 capital requirement.

An additional consideration is that within the Standard Formula, the equity stress depends on
past equity values (for the symmetric adjustment mechanism) and the interest rate stresses depend
on the level of the curve. In order to allow for these, it is necessary to construct a simple model
following the EIOPA methodology that may be used to calculate how these change under stress.

7.11.7. Internal Model SCR

Internal Model firms typically use a stochastic copula simulation model to derive the SCR
(where firms use an aggregation formula approach then a similar method as has been described
above for the Standard Formula may be used).

Where a copula simulation model is used, it is unlikely to be practical to expect that this could
be applied over multiple time steps and simulations (such models may typically use around 1m
simulations for an SCR calculation). For this reason, an approximation approach may be more
appropriate. Such an approach could be, for example, use an aggregation formula approach based
on 1-in-200 stresses. An aggregation formula approach is an approximation to the copula simu-
lation model results. Such an approach could use an adjustment factor calibrated as the ratio of the
time zero copula model result to the time zero aggregation formula result.
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As an alternative, if sufficient computational processing power should be available, copula sim-
ulation modelling could be used at each time step and over each simulation. This could be done at
a much lower number of simulations than the main SCR calculation (very high simulation vol-
umes are often used to support capital allocation rather than being required for the SCR
calculation).

To use such an approach, it is necessary to derive the proxy functions used within the SCR
calculation for each time step and simulation. Recalibration of proxy functions is neither practical
nor necessary. However, it is possible to adjust the existing time zero proxy functions. For exam-
ple, by considering how individual stresses (at 1-in-200 level or another level) vary over time and
by simulation, changes to proxy functions may be approximated. Where key areas of non-linearity
exist, specific additional stresses could be applied in order to model this.

7.11.8. Risk Margin model

The calculation of the Risk Margin is based on a cost of capital approach taking into account
the discounted value of future SCRs in respect of non-hedgeable risk. For this reason, it may be
calculated at different time steps and over different simulations using a similar approach. The
additional considerations are that:

• The Risk Margin model needs to allow for changes in the swap rates used to discount future
SCRs.

• The Risk Margin calculation excludes the use of the MA and VA.

7.11.9. Transitional measures model

Solvency II transitional measures may be applied in the form of Transitional Measures on
Technical Provisions (TMTP) or Transitional Measures on Risk-Free Interest Rates (TMRFIR).

TMTP are calculated using a comparison of Solvency I and Solvency II results to derive a tran-
sitional amount due to be run-off linearly over 16 years from 2016. The TMTP are recalculated
every 2 years or more frequently should the risk profile of the firm be considered to have changed.
TMTP are subject to the Financial Resources Requirements (FRR) test within which the TMTP are
restricted, where the sum of technical provisions, non-technical liabilities and capital require-
ments are lower under Solvency II than under Solvency I.

Modelling of the TMTP over different time steps and different simulations are challenging as it
requires the calculation of results on both the Solvency I and Solvency II bases. Therefore, con-
sideration should be given to the materiality of TMTP to the firm, the extent it could change under
a recalculation and the likelihood of an FRR restriction. Where modelling of TMTP changes is
considered appropriate, this could take a simple form (such as simply allowing for how changes in
Risk Margin affect TMTP), or it could take a more sophisticated form allowing for other key areas
of methodology difference between Solvency I and Solvency II.

The TMRFIR allows for an adjustment calculated as a portion of the difference between the rate
that applies under the current regime and the Solvency II discount rate and reduces linearly over
the 16-year period. This may be modelled using an allowance for the differences in interest rates
used in discounting.

7.11.10. Liquidity modelling

Although capital modelling normally takes on a much greater significance within firms, it is
also important for firms to ensure they have sufficient liquidity to make payments as necessary.
Liquidity modelling is not well suited to the single-period models, 1-year models commonly used
within the industry. It is, however, something that can be accurately incorporated within a long-
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term stochastic projection model. This is because such models allow for all cashflows associated
with a firm’s assets and liabilities (including the stochastic variation in these) rather than simply
the current value of those assets and liabilities.

In order to allow for liquidity considerations within a stochastic long-term model, it is neces-
sary first to include a robust measure of a firm’s liquidity. This measure may then be included in
the model taking into account the effects of asset and liability cashflows throughout the projec-
tions. The model could incorporate management actions designed to improve liquidity should it
fall below target levels.

8. Example Model
8.1. Purpose

This section shows the use of a model to demonstrate the techniques discussed in this paper. The
model is intended for illustration purposes. It does not reflect the extent of complexity within
firms’ actual business and uses relatively simple risk models with approximations for a number
of areas.

8.2. Model Overview

8.2.1. Firm

The example is based on a proprietary firm that administers a simple annuity product only. The
liabilities are backed by gilts with free assets invested in cash and equities. The firm calculates its
capital requirements using the Solvency II Standard Formula. The firm is closed to new business10.

The firm does not make use of transitional measures, the MA or VA.

8.2.2. Annuities

The business consists of 100,000 annuities paying £10k p.a. paid annually in arrears. The
annuitants are assumed to be females aged 60.

8.2.3. Expenses

The expenses of managing the business are initially assumed to be £300 per policy per annum,
together with fixed costs of £5m p.a. Both elements of the expenses are assumed to increase with
inflation.

8.2.4. Assets

The firm holds fixed interest assets (gilts and swaps) assumed to match the cashflows of the
liabilities. Assets of £1bn Equity and £1bn cash are assumed to be held in excess of the value of the
liabilities.

8.2.5. Hedging Strategy

The firm hedges the interest rate exposure of the liabilities at all times. Where changes occur
(such as if expenses were to increase), the hedge would be rebalanced with additional assets taken

10In practice, it would be normally be expected that a firm paying dividends to shareholders would not be closed to new
business.
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from cash and equity where necessary. Rebalancing is assumed to be free of transaction costs with
suitable assets for hedging assumed to always be available.

8.2.6. Equity strategy

The firm varies the extent of equity investment depending on the strength of its capital posi-
tion. This is measured by the Capital Coverage Ratio (CCR) calculated as the ratio of surplus to the
SCR. The following table shows the allocation used:

8.2.7. Dividends

The value of the firm is measured primarily by its Own Funds. The firm, therefore, pays annual
dividends based on a proportion of its Own Funds according to the following table:

No further dividends are assumed should the value of the Own Funds ever fall below zero.

8.2.8. Firm objectives

The firm’s key objectives are to:

• Increase the expected present value of the dividends.
• Reduce the variability (measured by the standard deviation) of the present value of those
dividends.

• Avoid regulatory insolvency (CCR% falls below 100%).

The dividends are valued using a discount rate of 5% (reflecting the firm’s cost of raising capital).

8.3. Risk Model

8.3.1. Overview

The firm is exposed to market risks, expense risks and mortality. In keeping with the approach
described in this paper, these risks are implemented through stochastic models capable of simu-
lating outputs over long-term periods consisting of multiple steps. The model is based on the use
of a single interest rate curve rather than allowing for differences between gilt rates and the
Solvency II discount curve.

CCR% Equity Cash

>170% 50% 50%

<170% 20% 80%

CCR% Dividend % of Own Funds

>200% 2%

160–200% 1%

<160% 0%
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The parameters used in each element of the model are set out in Appendix A.

8.3.2. Interest rates

Interest rate risk is modelled using a single-factor Vasicek model simulated using monthly time
steps.

Δr � α b � r� �Δt � σε
������
Δt

p

where r is the rate of interest
α is the “pullback”
b is the equilibrium
σ is the volatility
t is the time.

8.3.3. Equity

Equity risk is assumed to follow a lognormal model.

Ln S� � � Normal µ; σ2
� �

where S is the equity price over a 1-year period;
μ is the mean of the log return;
σ is the standard deviation of the log return.

Note that this model is less sophisticated than the models typically found within ESGs. It is
important to consider this as a model for illustration purposes. In practice, it would be preferable
to use a firm’s existing real-world ESG.

8.3.4. Inflation

Inflation is not included with the scope of stochastically modelled risks. It is, however, assumed
to vary over time according to the rates set out in Appendix A.

8.3.5. Mortality

The base table used for mortality rates is the CMI S3 series based on amounts (normal health).
Stochastic mortality is assumed through the use of a zero mean random walk applied to the force
of mortality at all ages.

µx t � 1� � � µx t� � � Xt

where Xt�1 − Xt˜ Normal (o, σ2).
As for the other risk models, this is a simple stochastic model for illustrative purposes. In prac-

tice, it would be preferable to use one of the many more sophisticated stochastic mortality models
available.

8.3.6. Expense

Expenses are assumed to increase with inflation as per the table set out in Appendix A. The
level of expense is assumed to be affected by a multiplicative factor M. This factor is defined as a
random walk with zero mean.

Mt�1 � Mt � Xt

where Xt�1 − Xt˜ Normal (o, σ2).
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8.3.7. Aggregation

The above risks are all assumed to be independent. This is of course a simplification within the
model as in practice, there would be a non-independent relationship between the risks (particu-
larly equity and interest rate risks).

8.4. Modelling Approach

8.4.1. Overview

The model is intended to capture the key features of the exposure while making use of approx-
imations in a number of areas.

8.4.2. Projection period

The projection period is 40 years. At the end of this time, very little liability exposure remains.

8.4.3. Time steps

The model is based on the use of annual time steps.

8.4.4. Simulations

Each projection is based on 1,000 stochastic simulations of the risk model. It is noted that a
small element of simulation error remains with the results, which could be mitigated with the use
of a greater number of simulations. The projections have been based on 1,000 simulations for
practical purposes.

8.4.5. Base liability cashflows

The model has been constructed to be capable of allowing for the liability cashflows each year,
which is required for annuity and expense payments. However, a key modelling assumption is that
fixed interest assets are continually rebalanced to match the liabilities. Therefore, each liability
cashflow is matched by a corresponding asset cashflow. The fixed interest asset cashflows are
therefore not required to be explicitly modelled. Where cashflows differ from those expected
(e.g. due to increased expenses), this results in an increased reserve (together with SCR and
RM) rather than a direct cashflow impact. The increased reserve results in additional costs as cash
or equity assets are sold to fund the hedge rebalancing.

8.4.6. Reserves (Best Estimate Liability or BEL)

The BEL at each time step is calculated through a discounted cashflow approach. The BEL is
calculated as the discounted value of all future cashflows. The discounting is carried out using the
term structure of interest rates specific to each time step and simulation.

The BEL calculations need to use an assumed mortality specific to each time step and simula-
tion. Mortality rates are assumed to reflect the base table, multiplied by a factor calculated to
reflect actual versus expected experience over the previous 3 years. This is intended to be similar
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to the experience setting process used at firms, which may be based on consideration of actual
versus expected experience over previous years.

The calculations also need to use an assumed rate of expenses. The rates of expenses for each
time step and simulation are set equal to the (simulated) expenses in the previous year. Expenses
are then assumed to increase with the rates of inflation set out in Appendix A.

8.4.7. Assets

The assets comprise gilts, equity and cash. Given the assumption of fixed interest being used to
hedge the liabilities, the gilts will always have a value equal to the BEL. The remaining assets are
the equity and cash. Equity is assumed to grow in value according to the lognormal model
described in section 8.3.3. above (modelled as a total return rather than allowing for dividends).
Cash is assumed to have zero return.

Cash and equity assets are reduced by dividends paid out. They are also affected by the cost of
rebalancing hedges, where expenses and mortality experience differ from reserving assumptions.

Cash and equity assets are rebalanced in each time step taking into account the rule set out in
section 8.2.6. above.

8.4.8. SCR

The SCR is assumed to be calculated according to the Solvency II Standard Formula. The
appropriate risk modules to consider are those for longevity, expense and equity (interest rate
exposure is zero due to the assumed hedging).

Longevity risk is calculated allowing for the 20% reduction in qx assumed within the Standard
Formula stress. A full discounted value calculation of the reserve under this stress is carried out.
The SF longevity stress is then set to be the difference between this value and the BEL.

The SF expense stress includes an increase both to the level and inflation of expenses. A sim-
plification used within this model is that only the (10%) level increase is applied. This is calculated
using a full discounted cashflow approach.

The SF equity stress includes a symmetric adjustment mechanism within which the level of
stress varies depending on past movements in equity markets. A simplification used within
the model is that this is not included and the SF stress is modelled instead as a 40% fall. The equity
SCR can then be directly calculated based on the value of equity at each time step and simulation.

Given the calculated SCRs in respect of longevity, expense and equity, the SF aggregation for-
mula is used to calculate the overall SCR. No allowance is made for the operational risk element of
the SII SF.

8.4.9. Risk Margin

The Solvency II Risk Margin is calculated as 6% of the discounted value of projected SCR in
respect of non-hedgeable risk (taken to be the life risks in the model). This is modelled using a
run-off factor approach. Within this approach, the SCR in respect of life risks only is assumed to
run-off in line with the BEL. The future SCRs are then discounted using the yield curve specific to
each simulation and time step allowing for the 6% cost of capital.

8.4.10. Key results

Having derived the above elements of the SII balance sheet, the Own Funds can be calculated
simply as the assets, less BEL and RM. The CCR% can be calculated based on the surplus as a
percent of SCR.
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In addition to viewing the Own Funds and CCR%, key results include the expected present
value of dividends, the probability of breach of 100% CCR (beginning of regulatory intervention)
and the probability of Own Funds breaching zero (no transfer value of the business).

8.4.11. Liquidity

Liquidity is a key risk for insurers to consider and this form of the model is well suited to
modelling the amount of liquidity at each time step. However, liquidity considerations are not
included within the scope of this demonstration model.

9. Example Model Results
9.1. Key

9.2. Base Results

9.2.1. Own Funds

The following chart shows the projected Own Funds.
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The chart shows that at 99% confidence (the lowest line on the chart), the Own Funds are not
expected to become negative. The results show the median level of Own Funds is stable across the
projection with the potential for significant increases in the later years.

9.2.2. CCR%

The following chart shows the projected CCR%:

The results show an expected spread of possible outcomes over the initial few years, but beyond
5 years, the projection results show a similar spread of results (amount of risk). This represents the
possibility of different outcomes affecting results over the early years, but with correcting actions
(such as restrictions on equity investment, dividends) stopping results from spreading further over
time. The results also reflect the extent of mean reversion in the Vasicek model used for interest
rates. This prevents the results from spreading further out over the term of the projection.

The results show that while the median projection gives a healthy level of CCR, there are a
significant proportion of scenarios that result in CCR coverage below 100%.

9.2.3. Breach of SCR by year

The graph in the next page shows the likelihood of breach of SCR in each projection year.

The results show a high risk of a breach in SCR at the later stages of the projection. However, by
this stage, much of the insurance risk has run-off with just equity risk remaining. It would perhaps
be unrealistic for this to occur without a change in company strategy.

In the earlier stages of the projection, it can be seen that the level of risk of surplus breach peaks
around year 5 before reducing in the following years. This reflects the likelihood that, if the early
years can be survived, sufficient levels of free assets will have been accumulated to withstand fur-
ther shocks.
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9.2.4. Cumulative probability of SCR breach

An alternative way to consider the risk of SCR breach is to consider the cumulative probabilities
as shown in the graph below:
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The results displayed in the graph may be used to answer questions regarding the long-term
probability of company failure (defined here by breach of surplus). Such questions are not possible
to answer with the single-period copula models commonly used within the UK.

9.2.5. Results by risk

The following graphs show the variation in CCR and Own Funds due to individual risks. The
results can be used to see the contribution of each risk to the overall risk to the firm and to see how
each risk varies over time.
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9.2.6. The results provide insights such as the following:
• Before the fund gets very small (around year 30), individual risk events are unlikely
to result in a breach of SCR (100% CRR). Should such a breach occur, it is likely to
result from multiple risks. This is particularly something to note for risks such as
mortality and interest rates for which the effect of a combined event can be much
worse than the sum of the individual events (due to non-linearity).

• Interest rate risk has only a small effect on Own Funds, but it can have a much
bigger effect on CCR% as it materially affects the value of the SCR. The risk is high
in the early years but reduces throughout the projection.

• Equity risk can give significant variation in Own Funds and CCR. However, the
amount of downside risk is restricted (due to the EBR and dividend actions).

• Expense risk is not highly material. The risk is not symmetric with a greater poten-
tial downside than upside.

9.3. Strategy Testing

9.3.1. Overview

A key benefit of long-term stochastic risk modelling is that, in addition to looking in detail at
existing plan projection, it is also possible to test the effects of different strategies in detail. As an
example, three different alternative strategies are set out below.

9.3.2. Option 1 – Outsourcing

The firm is considering outsourcing its administration costs. A deal has been negotiated such
that another firm takes over all of the expenses, in return for a payment of the BEL of those
expenses plus £60m.

9.3.3. Option 2 – Increased level of dividends

Within this strategy, the level of dividends is increased by 50%.

9.3.4. Option 3 – Reinsurance

In this strategy, a reinsurer agrees to take 90% of the annuity liabilities in return for the BEL of
the amount reinsured plus £500m.

9.3.5. Own Funds and CCR

The following graphs show how the Own Funds and CCR projections are affected by the
strategies.

Dividend % of Own Funds

CCR% Base Option 2 Strategy

>200% 2% 3%

160–200% 1% 1.5%

<160% 0% 0%
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9.3.6. Present value of Dividends
The following charts show how the different strategies affect the present value of dividends.
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9.3.7. Surplus Breach

The following graph shows how the probability of a surplus breach by year is affected by the
strategy.
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9.3.8. Dividend distribution

The estimated probability density functions for the present value of dividends for the strategies
discussed are set out below:

9.3.9. The graph shows that:
• The reinsurance strategy gives a significant reduction in downside risk, at the cost
of also reducing the potential for high dividends.

• The outsourcing strategy has only a small effect on the results
• The extra dividends strategy gives a much greater probability of high dividends,
but at the cost of significantly higher downside risk.

9.3.10. Analysis

The above graphs provide some examples of the kind of analysis that is possible using long-
term stochastic models. Noting that the aims of the firm were to increase the average present value
of dividends, reduce the standard deviation and avoid insolvency, some of the key insights from
these results are as follows:

• The outsourcing scenario is beneficial but of low materiality. It gives a small increase in the
average dividends and a reduction in their standard deviation. It reduces the risk of a CCR
breach in the early years.11

• The extra dividends scenario gives an additional expected value of dividends but at the cost of
extra standard deviation. It has a small detrimental effect on the risk of a CCR breach.

• The reinsurance scenario gives the benefits of both higher expected dividends and a reduc-
tion in their standard deviation. It also almost entirely removes the risk of a surplus breach.

11It is noted that the model does not allow for any additional operational risks that may arise in this scenario. Such model
limitations need to be considered as part of any decision making process.
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9.3.11. Of the different strategies, it appears that the reinsurance strategy is the strongest.
However, there are of course other considerations. These include discussion of the lim-
itations of the model and the risks that aren’t included (particularly counterparty risk in
this case). The firm may also consider applying more than one of these strategies.

9.3.12. Strategy optimisation

In this example, the firm’s objectives were set out in high-level terms. If it can be
expressed in precise terms, it may be possible to identify an optimal strategy. In the
demonstration example, the company clearly needs to find a strategy that gives the
expectation of high derivatives. However, this must be balanced against the risks to
these dividends. One way this can be formalised is through the use of a utility function
(Schoemaker, 1980).

9.3.13. A utility function may be used to map from a particular outcome (in this case, the PV of
dividends), to a utility value. The utility value represents the firm’s preference for this
outcome. The utility function should have a concave shape to reflect the expectation
that the firm would be risk averse. As an example, the following function could be used:

U x� � � 1 � e�0:002x an exponential utility function
� �

:

9.3.14. Given the distribution of the present value of dividends under a given strategy, it is
possible to calculate the expected utility of that strategy. The strategy may, therefore,
be optimised by varying the input parameters in order to maximise the expected utility.

9.3.15. By applying the utility function within the model, the expected utility of each strategy
can be calculated as
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E U x� �� 	 �
Z ∞

�∞
f x� �u x� �dx

where f(x) is the probability density function of the PV of dividends
U(x) is the utility function U(x)= 1−e-0.002x.

9.3.16. The expected utility under each of the strategies may, therefore, be estimated from the
simulation results to give the following:

9.3.17. Therefore, of these different strategies, the reinsurance strategy gives the greatest
expected utility and may be considered as the strongest strategy (other factors should
of course also be considered). Note that in this example, the utility is a function of the
present value of dividends only. It would be possible to have a function that also took
into account other factors such as the possibility of breaching the SCR.

Strategy Expected Utility

Base 0.524

Outsourcing 0.536

Reinsurance 0.603

Extra Dividends 0.587
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For example,

U x� � is the utility functionU x� � � I x� �: 1 � e�0:002x
� �

where I(x) is an indicator function such that
I(x)= 1 if there has been no breach of SCR after 30 projection years

= 0 otherwise.
The function assigns a significant utility penalty should there be a breach of SCR.

9.3.18. Where the firm looks to optimise the strategy, this should be done by considering all the
different variables available. Actions such as outsourcing the administration costs are
effectively arrangements with a binary value (they either go ahead or they do not). For
others, there is a continuous range of different values that could be used. For example,
strategic actions on the EBR and dividend payments could take a continuous range of
values.

9.3.19. The optimal strategy for a firm therefore can be derived as the strategy that maximises
the expected utility over all possible values of the input strategic variables. The above
example demonstrates how this may be achieved with binary variables that represent
whether a particular strategy item is being used or not. More generally, strategy opti-
misation may also be used for continuous variables such as the level of EBR to be used.

10. Conclusions
10.1. Summary

10.1.1. Within this paper, it has been demonstrated how a long-term stochastic model can be
constructed by combining a number of existing components with some additional ele-
ments under a single framework. Such models are already in use within the industry but
commonly limited to the stochastic modelling of market risks only. The paper shows
the benefits that a long-termmodel can bring. It shows the advantages such a model has
over the traditional deterministic models used for business planning purposes or the
single-period copula simulation models used within the Solvency II framework.

10.1.2. A key factor that affects the model design is the availability of suitable computational
power to support it. Historically, this has certainly been the case with, for example,
discounted cashflow valuation models coming into widespread use as computers were
introduced into insurers. Today, the most recent available processing power again gives
a step change in capability compared to what was available a decade ago. This gives
further opportunity to develop new modelling techniques whether those are long-term
stochastic models as discussed in this paper, or another form of model (perhaps full
nested stochastic models without the need for proxy modelling).

10.1.3. The opportunity to develop the next generation of models gives great opportunity
within firms to understand the nature of their risks and exposures in an increasingly
sophisticated way and to use this increasingly in ORSA and business planning models.

10.1.4. A remaining question is how the regulatory framework of the future could look as
increasingly sophisticated modelling capabilities arise. The significant regulatory
change in the UK in 2004 with the introduction of realistic balance sheets was possible
because the computation power had become available to facilitate stochastic models. As
the next generation of actuarial models is developed, could this provide a drive to a new
form of regulatory capital requirements?
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10.1.5. The existing Solvency II Pillar 1 framework is very focussed on a current valuation of
business using market-consistent techniques, with capital held against changes in that
value. Some of the criticisms of this approach are that:
• Market-consistent valuation doesn’t work well where markets don’t exist (e.g. prop-
erty implied volatilities).

• Markets don’t act rationally. They are prone to bubbles and crashes.
• It gives rise to procyclicality. For example, if equity markets crash and volatilities
spike, this makes firms’ regulatory solvency much worse therefore prompting them
to sell equities12.

• While the concept of a Risk Margin is fully justified, it is highly questionable whether
any form of Risk Margin reflects the transfer value of non-hedgeable risks with any
accuracy.

10.1.6. It may be preferable for a future solvency regime to instead be based on the use of long-
term stochastic models. Such a regime could have at its core the requirement that a firm
can meet its liabilities to policyholders with a specified (high) probability. This would
give firms a greater incentive to focus on long-term value rather than a short-term reg-
ulatory position. It would also appropriately allow for the long-term nature of insur-
ance risks. For example, it would be able to take into account the risk of, for example, 10
years of economic stagnation or the risk of long-term changes in mortality. Such risks
are much more relevant within life insurance than the short-term changes incorporated
in the 1-year framework key to Solvency II.

10.1.7. Finally, it would avoid a key problem area within market-consistent techniques – valu-
ation within stressed conditions. In a stressed market situation, it is likely that:
• Implied volatilities spike.
• Equity and bond markets could crash.

These effects may only last for a very short period. However, their effects can be sig-
nificant enough that an insurer could be in breach of its SII capital requirement in that
period (such effects for the industry can be procyclical). Solvency II contains measures
designed to mitigate these effects. For example, the VA (intended to counter “artificial
volatility”) and the equity symmetric adjustment mechanism. Such measures in effect
take the Solvency II framework away from its underlying principle of using market-
consistent valuation.

10.1.8. Through the use of long-term stochastic modelling instead of market-consistent valu-
ation, such problems would not exist. Insurers would not need to be concerned about
the short-term valuation of assets and liabilities under stress conditions. Instead, they
could more appropriately consider the long-term requirement to meet policyholder lia-
bilities with a high level of confidence. To put it another way, in a market stress situa-
tion, firms could focus on their responsibility to pay policyholders rather than focus on
a hypothetical stressed transfer valuation of the business.

10.1.9. As a final point, while the contents of this paper focus on a number of advanced model-
ling techniques, it is important not to place sole reliance on models. Key business deci-
sion making should carried out through the support of models to provide insights to
complex problems. For this purpose, it is imperative that the limitations of the model
are understood and where possible, sensitivity testing or other such analysis is used to
give further information.

12The Solvency II Standard Formula includes the symmetric adjustment mechanism on equity risk to mitigate this risk.
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Appendix A. Risk Model Parameters
Interest Rates and Inflation Initial Forward Rates

The following table shows the initial interest rate and inflation forward curves used. Inflation is
modelled deterministically and so no changes are assumed to occur in the rates below.

Interest Rate Vasicek Model

Changes to interest rates are modelled through the use of a Vasicek one-factor model with the
following parameters:

Duration (years) Interest Rates Inflation

1 5.0% 2.0%

2 5.0% 1.9%

3 4.9% 1.9%

4 4.9% 1.8%

5 4.8% 1.7%

6 4.7% 1.6%

7 4.6% 1.5%

8 4.5% 1.4%

9 4.4% 1.2%

10 4.2% 1.1%

11 4.1% 0.9%

12 3.9% 0.8%

13 3.8% 0.6%

14 3.6% 0.5%

15 3.5% 0.4%

16 5.0% 2.0%

17 5.0% 1.9%

18 4.9% 1.9%
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Equity

Equity returns S are assumed to follow a lognormal model.

Ln S� � � Normal µ; σ2
� �

Expenses

The expenses (both per policy and overheads) are assumed to vary according to a lognormal dis-
tribution. This can be expressed as

Et�1 � EtSt

where Et is a factor applied to the base expense assumptions

E0 � 1

ln S� � � Normal µ; σ2
� �

Parameter Description Value

μ Mean change 0%

σ Standard deviation of changes 5%

Parameter Description Value

r0 Initial Rate of interest 5%

α Pullback 7%

β Equilibrium 5%

σ Volatility 1%

Parameter Description Value

μ Mean log return 2%

σ Standard deviation of log return 20%
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Mortality

Mortality risk is modelled through the use of a series of factors μ t, which is applied as a multiplier
to the base table at all ages.

µt � µt � Xt

where μ 0= 1

Xt�1 � Xt � Normal µ; σ2
� �

Parameter Description Value

μ Mean change 0%

σ Standard deviation of changes 0.8%

Cite this article: Curry B. (2021). Long-term stochastic risk models: the sixth generation of modern actuarial models? British
Actuarial Journal. https://doi.org/10.1017/S1357321721000052
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