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Abstract
In optical and infrared long-baseline interferometry, data often display significant correlated errors because of uncertain multiplicative
factors such as the instrumental transfer function or the pixel-to-visibilitymatrix. In the context ofmodel fitting, this situation often leads to a
significant bias in the model parameters. In the most severe cases, this can can result in a fit lying outside of the range of measurement values.
This is known in nuclear physics as Peelle’s Pertinent Puzzle. I show how this arises in the context of interferometry and determine that the
relative bias is of the order of the square root of the correlated component of the relative uncertainty times the number of measurements.
It impacts preferentially large datasets, such as those obtained in medium to high spectral resolution. I then give a conceptually simple and
computationally cheap way to avoid the issue: model the data without covariances, estimate the covariance matrix by error propagation
using the modelled data instead of the actual data, and perform the model fitting using the covariance matrix. I also show that a more
imprecise but also unbiased result can be obtained from ignoring correlations in the model fitting.
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1. Introduction

Optical and infrared long-baseline interferometry consists in mea-
suring the fringe contrast and phase of interference fringes in the
recombined light collected at several telescopes.a These observ-
ables hold information on the celestial object’s spatial properties,
often obtained through model fitting.

In spite of strong evidence of correlations in the data, due to
redundancy (Monnier 2007, in the case of closure phases), cali-
bration (Perrin 2003), or atmospheric biases acting on all spectral
channels in the same way (Lawson 2000), only a few authors
(Perrin et al. 2004; Absil et al. 2006; Berger et al. 2006; Lachaume
et al. 2019; Kammerer et al. 2020) have accounted for these cor-
relations while most assumed statistically independent errors. In
particular, the only interferometric instrument I know of with
a data processing software taking into account one source of
correlations—calibration—is FLUORb (at IOTA,c then CHARA,d
Perrin et al. 2004). None of the five first and second-generation
ones at the VLTIe does (Millour et al. 2008; Hummel & Percheron
2006; Le Bouquin et al. 2011; ESO GRAVITY Pipeline Team 2020;
ESO MATISSE Pipeline Team 2020). The same lack of support
for correlations is present in image reconstruction programmes
(e.g. MIRA, see Thiébaut 2008), model-fitting tools (e.g. Litpro,
see Tallon-Bosc et al. 2008), or the still widespread first version of
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aRecombination may be performed by software in the case of intensity interferometry
or heterodyne detection.

bFiber Linked Unit for Optical Recombination.
cInfrared and Optical Telescope Array.
dCenter for High Angular Resolution Array.
eVery Large Telescope Interforometer.

the Optical Interferometric FITS format (OIFITS v. 1, Pauls et al.
2005).

Unfortunately, ignoring correlations may lead to significant
errors in model parameters as Lachaume et al. (2019) evidenced
with stellar diameters using PIONIERf (Le Bouquin et al. 2011)
data at the VLTI. Also Kammerer et al. (2020) established that
accounting for correlations is necessary to achieve a higher con-
trast ratio in companion detection using GRAVITY (Eisenhauer
et al. 2011) at the VLTI.

Several sources of correlated uncertainties occur in a multi-
plicative context, when several data points are normalised with the
transfer function (Perrin 2003) or the coherent fluxes are derived
with the pixel-to-visibility matrix formalism (Tatulli et al. 2007). In
both cases, the uncertainty on the multiplicative factor translates
into a systematic, correlated one in the final data product. In the
context of experimental nuclear physics, Peelle (1987) noted that
this scenario could lead to an estimate falling below the individual
data points, a paradox known as Peelle’s Pertinent Puzzle (PPP).
It results from the usual, but actually incorrect, way to propagate
covariances, in which the measured values are used in the calcula-
tions (D’Agostini 1994; Neudecker, Frühwirth, & Leeb 2012). A
few workarounds have been proposed but they are either com-
putationally expensive (e.g. sampling of the posterior probability
distribution for Bayesian analysis, see Neudecker et al. 2012) or
require a conceptually difficult implementation (Becker et al. 2012;
Nisius 2014).

The issue, however, is not widely known in many other fields
where the problem has seldom arisen. In this paper, I present
the paradox within the context of long-baseline interferometry
(Section 2), derive the order of magnitude of its effect using the

fPrecision Integrated-Optics Near-infrared Imaging ExpeRiment.
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modelling of a single value (Section 3), analyse in detail its effect
in least squares model fitting (Section 4), and propose a simple,
computer-efficient way to avoid it (Section 5).

2. Peelle’s pertinent puzzle

I rewrite and adapt Peelle’s original example in the context of
long-baseline interferometry (see Neudecker et al. 2012, Sections 1
and 2.1). The mathematical symbols used in this article are sum-
marised in Table 1. One or several calibrator observations yield the
inverse of the instrumental fringe contrast τ ± τςτ . I use the rel-
ative uncertainty ςτ on the transfer function as it is often referred
to in percentage terms. A visibility amplitude is now estimated
from two contrast measurements ν1 ± σν and ν2 ± σν . For each
measurement, the visibility amplitudes are

V1 = τν1 ± τσν (±τν1ςτ ) , (1a)
V2 = τν2 ± τσν (±τν2ςτ ) , (1b)

where the second-order error term τςτ σν has been ignored.
They are normalised with the same quantity (τ ), so they are

correlated, hence the systematic uncertainty term between paren-
theses in Eq. (1). Error propagation yields the covariance matrix:

� =
⎛
⎝σ 2

ν τ 2 + ς2
τ V

2
1 ς2

τ V1V2

ς2
τ V1V2 σ 2

ν τ 2 + ς2
τ V

2
2

⎞
⎠ . (2)

Under the hypothesis of Gaussian errors, I obtain the least squares
estimate using the weight matrixW = �−1:

V = V1W11 + (V1 + V2)W12 + V2W22

W11 + 2W12 +W22
,

= V1 + V2

2

(
1+ ς2
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(V1 − V2)2

2τ 2σ 2
ν

)−1

, (3)

with the uncertainty:

σ 2
V = 1

W11 + 2W12 +W22
,

=
[(

τσν√
2

)2

+ V2
1 + V22
2

ς2
τ

]
2V

V1 + V2
. (4)

The visibility estimate V systematically falls below the average of
the two values V1 and V2. If the measurements differ significantly,
it can even fall below the lowest value. Figure 1 gives such an exam-
ple with an instrumental visibility of 50% and two measurements
on an unresolved target:

τ = 2.000± 0.100 (ςτ = 5%),
ν1 = 0.495± 0.003 (σν/ν1 ≈ 0.6%),
ν2 = 0.505± 0.003 (σν/ν2 ≈ 0.6%),

which yields two points 2.4 standard deviations apart

V1 = 0.990± 0.006 (±0.050) ,
V2 = 1.010± 0.006 (±0.051)

and the visibility amplitude estimate

V = 0.986± 0.004 (±0.050)

falls outside the data range. The uncertainties quoted for V corre-
spond to the first and second terms within the square brackets of
Eq. (4).

Table 1. Symbols used in this paper. Lower case bold font is used for vectors and
upper case bold font for matrices.

Symbol Meaning

a True value of a

< a> Expected value of a

AT Transpose of A

c= a� b Element-wise product of a and b

C= a⊗ b Outer product of a and b

c= Ab Matrix product of A and b

δ Kronecker delta

V Data

η Error (= V − V)

ε Relative error (= η/V)

σ Deviation (=√
< η2 >), uncertainty

ς Relative uncertainty (= √
< ε2 >)

� Covariancematrix (=< η ⊗ η >)

	 Correlation coefficient

x, X Sensitivity vector or matrix

p Parameters of themodel

μ Model values (= Xp≈ V)

aν a of themeasurement error

aτ a of the normalisation error

a
 a impacted by PPP

ςsys. Relative systematic uncertainty

ςstat. Relative statistical uncertainty
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Figure 1. Original Peelle problem rewritten in the context of interferometry. Top: Two
raw visibility amplitudes ν1 and ν2 (points with statistic error bars of ≈ 0.6%) are cal-
ibrated by the transfer function 1/τ (solid line with systematic error zone of 5%).
Bottom: the two calibrated visibility measurements V1 and V2 (points with statistic error
bars of ≈ 0.6%) are strongly correlated. The least squares estimate for the visibility V

(dashed line, with statistic uncertainty error zone displayed) falls outside of the data
range. The systematic error on V, V1, and V2 is shown on the right.

3. Fit by a constant

I now generalise the results of the last section to an arbitrary num-
ber of measurements of a single normalised quantity, such as the
visibility amplitude of an unresolved source, which is expected
to be constantly one for all interferometric baselines. Let the col-
umn vector V = (V1, · · · , Vn)T contain the n visibility amplitudes.
It is derived from an uncalibrated quantity like the fringe contrast,
ν = (ν1, · · · , νn)T and a normalisation factor, like the cotransfer
function, τ = (τ1, · · · , τn)T by

V = τ � ν, (5)
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where � denotes the Hadamard (element-wise) product of vec-
tors. With V, τ , and ν the true, but unknown, values of these
quantities, the error vector on V:

η = V − V, (6)

can bewritten as a sumofmeasurement and normalisation relative
errors if one ignores the second-order terms:

η = (εν + ετ )V. (7)

These errors are given by:

εν = 1
ν
(ν − ν), (8)

ετ = 1
τ
(τ − τ ). (9)

I assume εν and ετ are independent, of mean 0, and have
standard deviations ςν and ςτ , respectively. In addition, I con-
sider correlation of the normalisation errors, with correlation
coefficient 	. In the case of interferometry, it can arise from the
uncertainty on the calibrators’ geometry. The covariance matrix
of the visibility amplitudes is given by:

� =< η ⊗ η >, (10)

where ⊗ denotes the outer product of vectors and <> stands for
the expected value, so that

�ij =
[
ς2

ν + (1− 	)ς2
τ

]︸ ︷︷ ︸
ς2
stat.

V2δij + 	ς2
τ︸︷︷︸

ς2
sys.

V2. (11)

The non-diagonal diagonal elements of the matrix feature the
systematic relative uncertainty ςsys., that is, the correlated compo-
nent of the uncertainties. In the case of a fully correlated transfer
function (	 = 1), it is equal its uncertainty (ςsys. = ςτ ). The diago-
nal term of the matrix additionally includes the statistical relative
uncertainty ςstat., that is, the uncorrelated component of the uncer-
tainties. In the case of a fully correlated transfer function, it is equal
to the uncertainty of the uncalibrated visibility (ςstat. = ςν).

The value V is yet to be determined, so the covariances are often
derived using the measurements V in the propagation:

�

ij = ς2

stat.V
2
i δij + ς2

sys.ViVj. (12)

The least squares estimate for V is given by:

μ
 = xT�
−1V

xT�
−1x
(13)

where x= (1, · · · , 1)T is the trivial sensitivity vector. The covari-
ance matrix is the sum of an invertible diagonal matrix and one
of rank one—see (12)—, so that the inverse is obtained using the
Woodbury matrix identity:

{�
−1}ij = δij

σ 2
i

− ς2
sys.ViVj

σ 2
i σ 2

j

(
1+ ς2

sys.
∑
k

V2
k

σ 2
k

) , (14)

where we have introduced the statistical (uncorrelated) compo-
nent of the uncertainty on the calibrated visibilities:

σi = ςstat.Vi. (15)
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Figure 2. Fit μ
 to unresolved visibilities (V = 1), as a function of the relative uncer-
tainty on the calibration ςτ and the number of measurements n. 2/n× 105 simulations
were made and averaged, assuming that εν and ετ follow normal distributions. Top:
fully correlated normalisation like in original Peelle’s puzzle (ςν = 0.02 and 	 = 1).
Bottom: normalisation error without correlation (ςν = 0.02 and 	 = 0).

Appendix A.1 shows the analytical derivation for the least
squares estimateμ
 using the previous formulae. I write it in a way
that highlights the generalisation of Eq. (3) of the previous section:

μ
 =
∑
i

Vi
σ 2
i∑

i

1
σ 2
i

⎛
⎜⎜⎝1+ ς2

sys.

∑
i<j

(Vi−Vj)2

σ 2
i σ 2

j∑
i

1
σ 2
i

⎞
⎟⎟⎠

−1

. (16)

For small enough errors (ηi � V), the second-order Taylor
development in ηi = Vi − V yields (see Appendix A.2):

μ
 ≈ V + 1
n
∑
i

ηi − 1
V

(
1
2n

ς2
sys.

ς2
stat.

+ 1
n2

)∑
i �=j

(ηi − ηj)2. (17)

Since < ηi >= 0 and < (ηi − ηj)2 >= 2ς2
stat.V

2, the expected
value:

< μ
 >≈ V

[
1−

(
1− 1

n

) (
2ς2

stat. + nς2
sys.

)]
(18)

is biased. If the data are not correlated (ςsys. = 0), the bias is small
(ς2

stat. to 2ς2
stat.) but it becomes larger for correlated data if the num-

ber of points is large (n/2 to n× ς2
τ for fully correlated data) as

D’Agostini (1994) already noted. This analytical derivation con-
firms the numerical simulation by (Neudecker et al. 2012, see their
Figure 4). For visualisation purposes, Figure 2 shows a similar sim-
ulation of the bias as a function of the normalisation uncertainty
ςτ for various data sizes (n= 2 to 100). I have verified that it repro-
duces the quadratic behaviour of Eq. (18) for small values of ςstat.
and ςsys. (bias inferior to 10–20% of V).

The bias from PPP arises, intuitively, because the modelled
uncertainty is a non-constant function of the measured value. In
the present case, data that fall below the average are given a lower
uncertainty and, thus, a higher weight in the least squares fit.
Conversely, data that fall above the average have a higher uncer-
tainty and a lower weight. This fundamentally biases the estimate
towards lower values. The effect is much stronger with correla-
tions because it impacts the ∼ n2/2 independent elements of the
covariance matrix instead of being restricted to the n diagonal
ones. In the literature, the puzzle is generally discussed as aris-
ing from a normalisation, as it it where it has been first identified.
However, I show in Appendix A.3 that it is not necessary and
determine the bias in the case of correlated photon noise.
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For spectro-interferometric observations with four telescopes,
the number of correlated points can be over 1 000, so even
with a low correlation coefficient, the bias can be significant. For
instance, a single GRAVITY observation in medium spectral res-
olution yields n= 6× 210 visibility amplitudes. With an observed
correlation of 	 ≈ 16% in the instrumental visibility amplitudes
(Kammerer et al. 2020) and a typical ςτ = 1–2% normalisation
error, the bias on the calibrated visibilities could be 2–8%.

4. General model fitting

I now consider a set of measurements corresponding to the linear
model:

μ = Xp, (19)
where p are the unknown parameters and X is the known sen-
sitivity matrix. Typically, xik = fk(ui, vi) for a linear model and
xik = ∂f /∂pk(ui, vi) for a non-linear model approximated by a lin-
ear one close to a solution. (u, v) is the reduced baseline projected
on to the sky, that is, u= Bu/λ if B is the baseline and λ, the
wavelength. The true values V are impacted by errors so that the
data are

V = V + η (20)
with the error term η again expressed as the sum of ameasurement
and a normalisation error:

η = ην + ετ � V. (21)
The measurement errors ην and normalisation errors ετ follow
multivariate distributions of mean zero with covariance matrices
�ν and �τ , respectively. Given the covariance matrix � of this
model, the least squares estimate is

p= (XT�−1X)−1(XT�−1V) (22)
I investigate four ways to determine the covariance matrix �

1. Ignoring the correlations in the normalisation using �0 =
�ν + (V ⊗ V)� (�τ � I). Letμ0 = X(XT�−1

0 X)−1XT�−1
0 V the

resulting model of the data.
2. Using the nave estimate �
 = �ν + (V ⊗ V)� �τ which is

known to lead to PPP in the trivial case of a constant model.
3. Using the data model of the fit without the normalisation

error: �1 = �ν + (μ0 ⊗ μ0)� �τ . This is the generalisation
of the two-variable approach by Neudecker et al. (2014). The
resulting least squares model is μ1 = X(XT�−1

1 X)−1XT�−1
1 V.

4. Recursively fitting the data by updating the data model in the
covariance matrix. I derive μk = X(XT�−1

k X)−1XT�−1
k V using

�k = �ν + (μk−1 ⊗ μk−1)� �τ , starting with the estimateμ1
(k= 2).

In order to compare these covariance matrix prescriptions,
I will use the typical example of an under-resolved centro-
symmetric source observed at a four-telescope facility in medium
spectral resolution. It is close to the context under which I
serendipitiously noticed the effect while modelling stellar diam-
eters (see Lachaume et al. 2019). The python code to produce
the results (figures in this paper) is available on github.g In the
under-resolved case all models—Gaussian, uniform disc, or limb-
darkened disc—are equivalent (Lachaume 2003), so I will use

ghttps://github.com/loqueelvientoajuarez/peelles-pertinent-puzzle.
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Figure 3. Model fitting to simulated correlated data from a four-telescope interfer-
ometer (6 baselines) with medium spectral resolution (R= 100) with 2% uncorrelated
measurement error and 3% correlated normalisation error (light grey points with the
measurement error bar). Top: Simulated under-resolved data V = 1− x2 (thick grey
line) are fittedwith linear least squaresmodelμ = a− bx2 using the four prescriptions
for the covariance matrix. Bottom: The same for well-resolved data V = exp−3x2 and
non-linear least squares with model μ = a exp−bx2. (a) Under-resolved, linear least
squares. (b) Well resolved, non-linear least squares.

instead a linear least squares fit μ = a− bx2 to V ≈ 1− x2 where
x is dimensionless variable proportional to the projected baseline
length

√
u2 + v2. This fit corresponds to the second-order Taylor

development of any of the aforementioned models. Figure 3(a)
shows the example of such a fit performed for each covariance
matrix prescription. Data have been simulated using V = (1−
x2)(1+ ετ )+ ην where ετ is a fully correlated normalisation error
(3%) and ην are uncorrelated statistical errors (2%). As expected,
the use of data V in the correlation matrix, method 2, leads to
grossly underestimated data values, in the very same way as in the
classical Peelle case described in Sections 2 and 3. Other meth-
ods, including ignoring correlations, yield reasonable parameter
estimates.

Figure 4(a) sums up the behaviour of the same fit performed a
large number of times on different simulated datasets, each follow-
ing V ≈ 1− x2. For each correlationmatrix prescription, it displays
the dispersion of the reduced chi-squared, the model parameters a
and b, and the difference between modelled value and true value.
It also reports the uncertainty on model parameters given by the
least squares optimisation routine in comparison to the scatter of
the distribution of the values. While the model fitting ignoring
correlations (method 1) does not show any bias on the parame-
ter estimates, it displays a higher dispersion of model parameters,
grossly underestimates the uncertainty on model parameters and
has a biased chi-squared. The correlation matrix calculated from
data (method 2) is, as expected, strongly biased. Both methods
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Figure 4. Distribution of the fitted parameters and fit properties for the four covariancematrix prescriptions analysed in Sect. 4. 5× 104 simulations of 6 groups of 100 correlated
data points V (measurement error ςν = 2%and normalisation error ςτ = 3%, correlation of the latter	 = 1, normal distributions) are performed and fittedwith amodel using least
squares minimisation. Top graph: under-resolved data follow V = 1− x2 and are fitted with linear least squaresμ = a− bx2. Bottom graph:well resolved data follow V = exp−3x2
and are fittedwith non-linear least squaresμ = a exp−bx2. Reported quantities includemedian and 1-σ interval of their distribution and, within brackets, themedian uncertainty
reported by the least squares fit. The covariancematrix prescriptions are: top row: correlations are ignored; second row: a nave covariancematrix uses the data values; third row:
covariancematrix uses modelled values from fit without correlations; bottom row: covariancematrix andmodel are recursively computed, with the covariancematrix of the next
recursion using the modelled value of the last step. (a) Under-resolved data fitted with a linear least squares model. (b) Well-resolved data fitted with a non-linear least squares
model.

estimating the correlation matrix from modelled data (methods
3 & 4) are equivalent in terms of the absence of bias, dispersion
of these quantities, and correct prediction of the uncertainty on
model parameters.

Given that fitting recursively the covariance matrix does not
yield additional benefits for the modelling, I would suggest to use

method 3. One would expect this to hold for any smooth enough
model, as the update in the covariance matrix is expected to be
a small effect. Indeed, I have checked that the result holds for a
fully resolved Gaussian disc V ≈ exp−3x2 fit by μ = a exp−bx2
(see Figures 3(b) and 4(b)) a well-resolved binary, with methods
3 & 4 providing unbiased estimates and similar uncertainties. If,
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for some other application, the model μ1 obtained with method 3
were to differ significantly from the starting guess μ0 (method 1),
it would certainly make sense to examine whether recursive fitting
(method 4) is needed. However, while it converged for the smooth
models I tested, I have not proven that it will necessarily do so, in
particular for less smooth models that may require it.

5. Conclusion

The standard covariance propagation, using the measurement val-
ues in the calculation, can result in a bias in the model parameters
of a least squares fit taking correlations into account. It will occur
as soon as the error bars and covariances depend on the mea-
sured values, in particular when a normalisation factor, such as the
instrumental transfer function of an interferometer, is obtained
experimentally. Some bias will even occur without correlations,
but the effect is strongest when a large set of correlated data
is modelled. This is precisely the case in optical and infrared
long-baseline interferometry, where the calibration of spectrally
dispersed fringes easily yields 102–103 correlated data points.

While solutions exist that are either numerically expensive or
require some care to be implemented (Burr et al. 2011; Becker et al.
2012; Nisius 2014), I have shown with a simple example that there
is an easy and cheap way to solve the issue. First an uncorrelated
fit is performed to estimate the true values corresponding to the
data. Secondly, these estimates are used to determine the covari-
ance matrix by error propagation. At last, this covariance matrix is
used to perform a least squares model fit.

Alternatively, it is possible to obtain an (almost) unbiased esti-
mate for themodel parameters by ignoring correlations altogether,
with the cost of a larger imprecision, underestimated uncertain-
ties, and a biased chi-squared. It is, at the moment, the approach
taken in the vast majority of published studies in optical interfer-
ometry, as data processing pipelines of most instrument do not
determine covariances. To my knowledge, Lachaume et al. (2019)
is the only work where PPP has been explicitly taken care of in
optical interferometry.

Acknowledgements. This work has made use of the Smithsonian/NASA
Astrophysics Data System (ADS). I thank the anonymous referee for reading
the paper carefully and providing constructive remarks, many of which have
resulted in changes to the manuscript.

References

Absil, O., et al. 2006, A&A, 452, 237
Becker, B., et al. 2012, JI, 7, P11002
Berger, D. H., et al. 2006, ApJ, 644, 475
Burr, T., Kawano, T., Talou, P., Pan, F., & Hengartner, N. 2011, Algorithms,

4, 28
D’Agostini, G. 1994, NIMPRA, 346, 306
Eisenhauer, F., et al. 2011, Msngr, 143, 16
ESO GRAVITY Pipeline Team, 2020, GRAVITY pipeline user manual Issue 1.4
ESO MATISSE Pipeline Team, 2020, MATISSE pipeline user manual Issue

1.5.1
Hummel, C. A., & Percheron, I. 2006, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series. p. 62683X,
10.1117/12.671337

Kammerer, J., Mérand, A., Ireland, M. J., & Lacour, S. 2020, A&A, 644, A110
Lachaume, R. 2003, A&A, 400, 795
Lachaume, R., Rabus, M., Jordán, A., Brahm, R., Boyajian, T., von Braun, K., &

Berger, J.-P. 2019, MNRAS, 484, 2656
Lawson, P. R., ed. 2000, Principles of Long Baseline Stellar Interferometry

Le Bouquin, J.-B., et al. 2011, A&A, 535, A67
Mayer, P. M., Rana, F., & Ram, R. J. 2003, APL, 82, 689
Millour, F., Valat, B., Petrov, R. G., & Vannier, M. 2008, in Optical and Infrared

Interferometry. p. 701349 (arXiv:0807.0291), 10.1117/12.788707
Monnier, J. D. 2007, NewAR, 51, 604
Neudecker, D., Frühwirth, R., & Leeb, H. 2012, NSE, 170, 54
Neudecker, D., Frühwirth, R., Kawano, T., & Leeb, H. 2014, NDS, 118, 364
Nisius, R. 2014, EPJC, 74, 3004
Pauls, T. A., Young, J. S., Cotton, W. D., & Monnier, J. D. 2005, PASP, 117,

1255
Peelle, R. W. 1987, Informal memorandum, Peelle’s Pertinent Puzzle. Oak

Ridge National Laboratory
Perrin, G. 2003, A&A, 400, 1173
Perrin, G., Ridgway, S. T., Coudé du Foresto, V., Mennesson, B., Traub, W. A.,

& Lacasse, M. G. 2004, A&A, 418, 675
Tallon-Bosc, I., et al. 2008, in Optical and Infrared Interferometry. p. 70131J,

10.1117/12.788871
Tatulli, E., et al. 2007, A&A, 464, 29
Thiébaut, E. 2008, in Optical and Infrared Interferometry. p. 70131I,

10.1117/12.788822

A. Analytical derivation

To shorten summations in the derivation, I introduce

ml =
∑
i

Vl
i

σ 2
i
, (moments)

dlk =
∑
i �=j

(Vk
i − Vk

j )l

σ 2
i σ 2

j
, (moments of differences),

el =
∑
i

ηl
i, (moments of errors)

flk =
∑
i,j

(ηk
i − ηk

j )
l (moment of error differences)

and note that the differences can be developed as:

d21 = 2m0m2 − 2m2
1,

f21 = 2ne2 − 2e21,
d41 = 2m0m4 − 8m1m3 + 6m2

2,
d22 = 2m0m4 − 2m2

2.

A.1. Equation (16)

I rewrite Equation (14) as:

{�
−1}ij = δij

σ 2
i

− 	ς2
τ ViVj

σ 2
i σ 2

j (1+ 	ς2
τ m2)

.

I then proceed from Equation (13):

μ
 =
∑
i,j

{�
−1}ijVi∑
i,j

{�
−1}ij

=
∑
i

Vi
σ 2
i

− 	ς2
τ

1+	ς2
τ m2

∑
i,j

V2
i Vj

σ 2
i σ 2

j∑
i

1
σ 2
i

− 	ς2
τ

1+	ς2
τ m2

∑
i,j

ViVj

σ 2
i σ 2

j
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so that, by separating summations in i and j,

=
m1 − 	ς2

τ m1m2
1+	ς2

τ m2

m0 − 	ς2
τ m2

1
1+	ς2

τ m2

= m1

m0 + 	ς2
τ (m0m2 −m2

1)

= m1

m0

(
1+ 	ς2

τ

d21
2m0

)−1

.

Equation (16) is obtained by noting that summation over i< j is
half of that over i, j.

A.2. Equation (17)

Since d12 is expressed in terms of (Vi − Vj)2 = (ηi − ηj)2, the previ-
ous equation can be simplified in the second order as:

μ
 ≈ m1

m0
− 	ς2

τ

m1

2m2
0

∣∣∣∣
η=0

d21
∣∣
σi=σ

+ o(||η||2)

= m1

m0
− 	ς2

τ

2nς2
stat.V

f21 + o(||η||2).

I now determine the Taylor development for

ml = Vl−2

ς2
stat.

∑
i

(1+ ηi/V)l−2

ml ≈ nVl−2

ς2
stat.

[
1+ l− 2

nV
∑
i

ηi + (l− 2)(l− 3)
2nV2

∑
i

η2
i

]

ml ≈ nVl−2

ς2
stat.

[
1+ l− 2

nV
e1 + (l− 2)(l− 3)

2n2V
e2
]
,

The Taylor developments form0 andm1 yield

m1

m0
≈ V

[
1+ e1

nV
+ 2e21 − 2ne2

n2V2

]
,

m1

m0
≈ V

[
1+ e1

nV
− f21

n2V2

]
,

so that

μ
 = V + e1
n

− 1
V

(
1
2n

	ς2
τ

ς2
stat.

+ 1
n2

)
f21.

A.3. PPP with photon detection

I model n photon measurementsNi of expected valueN with noise
uncertainty yi = √

Ni, showing correlation 	h under the assump-
tion of Gaussian errors (N 
 1). The statistical component of the
uncertainty is given by σ 2

i = (1− 	)Ni. The correlation matrix is

�

ij = σ 2

i δij + 	yiyj
and its (Woodbury) inverse:

{�
−1}ij = δij

σ 2
i

− 	yiyj
σ 2
i σ 2

j (1+ 	m′
2)
,

hCorrelation in the photon noise is a quantum effect detected in particular experimental
setting such as coupled lasers (e.g. Mayer, Rana, & Ram 2003). In astronomy, intensity
interferometrymakes use of these correlations.

with the momentsm′
l , d

′
lk, etc., defined with respect to yi, whileml,

dlk, etc., are defined with respect to Ni.
The least squares estimate for the number of photons is

given by:

μ
 = xT�
−1N
xT�
−1x

.

and, by using Ni = y2i ,

μ
 =
∑
i,j

{�
−1}ijy2i∑
i,j

{�
−1}ij

μ
 =
∑
i

y2i
σ 2
i

− 	

1+	m′
2

∑
i,j

y3i yj
σ 2
i σ 2

j∑
i

1
σ 2
i

− 	

1+	m′
2

∑
i,j

yiyj
σ 2
i σ 2

j

so that, separating summations along i and j,

μ
 =
m′

2 − 	m′
1m′

3
1+	m′

2

m′
0 − 	m′

1
2

1+	m′
2

,

μ
 = m′
2 + 	(m′

2
2 −m′

1m3)
m′

0 + 	(m′
0m′

2 −m′
1
2)
,

μ
 = m′
2

m′
0

(
1− 	

d′
22 − d′

41

8m′
2

)(
1+ 	

d′
21

2m′
0

)−1

or, more explicitly,

μ
 = n∑
i
N−1

i

1− 	

2n(1−	)
∑
i,j

(
√
Ni−

√
Nj)2√

NiNj

1+ 	

2(1−	)
∑
i
N−1

i

∑
i,j

(
√
Ni−

√
Nj)2

NiNj

.

In the second order in η, it can be simplified to

μ
 = n∑
i
N−1

i

⎛
⎝1− 	

2nN(1− 	)

∑
i,j

(
√
Ni −

√
Nj)2

⎞
⎠

and, by noting that
√
Ni −√

Nj = (Ni −Nj)/(
√
Ni +√

Nj)≈
(ηi − ηj)/(2

√
N),

μ
 = n∑
i
N−1

i

⎛
⎝1− 	

4nN2(1− 	)

∑
i,j

(ηi − ηj)2
⎞
⎠ .

The leading factor can be approximated in the second order
using the Taylor series:∑

i

N−1
i ≈ n

N
− e1

N2 + e2
N3

so that

n∑
i
N−1

i
≈N + e1

n
+ e21 − ne2

n2N
,

n∑
i
N−1

i
≈N + e1

n
− f21

2n2N
.
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Finally,

μ
 ≈N +
∑
i

ηi

n
−
(
1+ n	

2(1− 	)

) ∑
i,j
(ηi − ηj)2

2Nn2
.

With< (ηi − ηj)2 >= 2(1− 	)N and< ηi >= 0, the bias of the
best-fit estimate for the average number of photons is

< μ
 > ≈N −
(
1− 1

n

) (
(1− 	)+ n	

2

)

or, with the relative statistical and systematic uncertainties
ς2
stat. = (1− 	)/N and ς2

sys. = 	/N,

< μ
 > ≈N
[
1−

(
1− 1

n

) (
ς2
stat. +

n
2
ς2
sys.

)]
.

The bias from PPP is exactly half of that determined for normali-
sation errors in the main part of the paper. It shows that the effect
does not necessarily arise from a normalisation.
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