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Abstract

Coastal wetlands are hotspots of carbon sequestration, and their conservation and restoration
can help to mitigate climate change. However, there remains uncertainty on when and where
coastal wetland restoration can most effectively act as natural climate solutions (NCS). Here,
we synthesize current understanding to illustrate the requirements for coastal wetland restor-
ation to benefit climate, and discuss potential paths forward that address key uncertainties
impeding implementation. To be effective as NCS, coastal wetland restoration projects will
accrue climate cooling benefits that would not occur without management action
(additionality), will be implementable (feasibility) and will persist over management-relevant
timeframes (permanence). Several issues add uncertainty to understanding if these minimum
requirements are met. First, coastal wetlands serve as both a landscape source and sink of carbon
for other habitats, increasing uncertainty in additionality. Second, coastal wetlands can poten-
tially migrate outside of project footprints as they respond to sea-level rise, increasing uncer-
tainty in permanence. To address these first two issues, a system-wide approach may be
necessary, rather than basing cooling benefits only on changes that occur within project
boundaries. Third, the need for NCS to function over management-relevant decadal timescales
means methane responses may be necessary to include in coastal wetland restoration planning
and monitoring. Finally, there is uncertainty on how much data are required to justify
restoration action. We summarize the minimum data required to make a binary decision on
whether there is a net cooling benefit from a management action, noting that these data are more
readily available than the data required to quantify the magnitude of cooling benefits for carbon
crediting purposes. By reducing uncertainty, coastal wetland restoration can be implemented at
the scale required to significantly contribute to addressing the current climate crisis.

Impact statement

Coastal wetlands, including mangrove forests, tidal marshes and seagrass meadows, can take
carbon out of the atmosphere and store it in plant tissue and soil at the highest rates of any
ecosystem. Because of this unique feature, coastal wetland restoration can act as a natural climate
solution (NCS), helping to mitigate climate change by having a net cooling benefit compared to
pre-restoration conditions. However, uncertainty remains in when and where coastal wetland
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restoration acts as effective NCS. This manuscript synthesizes the fundamental requirements for restoration to act as effective NCS:
additionality, permanence and feasibility. We highlight the minimum data required to understand these requirements, which are less robust
than the data needed for carbon crediting or accounting. Many of these data are spatial and widely available. We also highlight future
perspectives that may help address uncertainty in restoration as NCS, by taking a landscape-scale approach and incorporating methane
emissions. Ultimately, reducing uncertainty in when and where coastal wetland restoration acts as NCS supports the broader effort to

mitigate climate change most effectively.

Coastal wetlands as natural climate solutions

Climate change is causing cascading impacts to human and natural
systems globally, and all possible mitigation and adaptation actions
will be needed to keep warming below critical thresholds over the
next decade (United Nations Framework Commission on Climate
Change (UNFCCC), 2015; Intergovernmental Panel on Climate
Change (IPCC), 2022; Diffenbaugh and Barnes, 2023). For coastal
landscapes, sea-level rise is among the greatest drivers of change,
impacting coastal communities through increased flooding and
salinization risks (Intergovernmental Panel on Climate Change
(IPCC), 2021; Sweet et al., 2022). Natural climate solutions
(NCS), or those actions that mitigate climate change using ecosys-
tem management, can remove greenhouse gases from the atmos-
phere, complementing efforts to reduce fossil fuel emissions
(Fargione et al, 2018; Macreadie et al, 2021; United Nations

Pre-

Radiative balance
(mass of CO2-gq over space and time)

Net ecosystem carbon balance:
the net rate of carbon inputs and losses for an
ecosystem (Chapin et al. 2006, 2009)

Radiative forcing:

the net effect of a change in radiative balance
due to an external perturbation or action
(Ramaswamy et al. 2001, Neubauer 2021)

Restoration:

the process of assisting the recovery of an
ecosystem's structural and/or functional
characteristics after degradation, damage, or
destruction (Gann et al. 2019)

Permanence:
the capacity for cooling benefits to persist over
time (Glass et al. 2024)

Restoration

Environment Programme (UNEP) and International Union for
Conservation of Nature (IUCN), 2021). Although we explicitly
focus on NCS as actions that remove greenhouse gases here
(without concurrent negative impacts; Ellis et al., 2024), restoration
of coastal ecosystems comes with a host of additional co-benefits
(Hagger et al., 2022; Krauss et al., 2022a; Rogers et al., 2023b;
Novick et al., 2024).

Coastal wetlands, including mangrove forests, tidal marshes
and seagrass meadows (among all other tidal wetlands; Adame
et al., 2024), are highly productive ‘blue carbon’ ecosystems con-
necting terrestrial and marine realms globally. These ecosystems
are unique in their ability to mitigate climate change as they
continually absorb and store carbon from the atmosphere, leading
to a climate cooling benefit (Figure 1; Neubauer, 2021) that grows
over time if they continue to add carbon within the

IRadiative forcing

Post-
Restoration

Radiative balance:
the net effect of an ecosystem's carbon balance
on Earth's energy budget (Neubauer 2021)

Cooling benefit:

the amount of net negative radiative forcing
(cooling) due to an external perturbation or action
(Neubauer & Megonigal 2015, Neubauer 2021)

Additionality:

the cooling benefit due to a specific management
action, such as restoration (Mason et al. 2022,
Glass et al. 2024)

Feasibility:
the capacity for restoration to be successfully
carried out (Lovelock et al. 2022c)

Figure 1. Key terms as defined in this manuscript. Conceptual comparison is of the radiative balance of a coastal wetland in pre-restored (black) and post-restored (gray) states
(modified from Neubauer, 2021). In this example, the pre-restored and post-restored states both have positive radiative balances, adding energy to Earth’s energy budget. After
restoration, there is a change in radiative balance (i.e., a radiative forcing); restoration action led to a reduction in radiative balance. Because the radiative forcing is negative, this
example indicates a cooling benefit from restoration actions; the project has additionality.
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accommodation space created by sea-level rise (Rogers et al.,
2019a; Buffington et al., 2021). Present day coastal wetlands
initiated development when relative sea-level rise decelerated
sufficiently for coastal wetlands to maintain their position within
the tidal frame; the timing of this development varies globally due
to differences in glacio-isostatic adjustment of coastlines
(Woodroffe, 2019). Global distribution of blue carbon ecosystems
is variable as well and largely determined by climate constraints
(McKenzie et al., 2020; Jia et al., 2023; Worthington et al., 2024);
these ecosystem types vary in how they store and cycle carbon to
mitigate climate change.

At the regional scale, hydrogeomorphic setting (i.e., landscape
configuration) constrains the occurrence of blue carbon ecosystem
types and their ability to store carbon. Hydrogeomorphic setting
influences the dominance of water forcings (e.g., wind, wave, tide;
Boyd et al., 1992), sediment availability and deposition (Hupp et al.,
2019), connectivity to other habitats (Noe et al.,, 2016; Woo et al,,
2022), and freshwater availability and timing important for sulfate
concentrations and methane production (Poffenbarger et al., 2011;
Knox et al,, 2021). As one example, intermittently connected lakes
and lagoons (ICOLLs) or temporarily open/closed estuaries
(TOCEs), are coastal wetlands that can undergo state shifts in salinity
and water level that drive changes in ecosystem parameters like
macrophyte community extent and composition (Riddin and
Adams, 2008), presenting specific challenges in quantifying dynamic
climate benefits.

Accounting for the temporal evolution of coastal wetlands can
be challenging for practitioners, researchers and policy-makers
alike (Neubauer and Megonigal, 2015; Neubauer, 2021; Aber-
nethy and Jackson, 2022). Continuous and effectively permanent
soil carbon sequestration, a particularly important aspect of
coastal wetlands as blue carbon ecosystems, is a long-term addi-
tive process (Chmura et al., 2003; Mcleod et al.,, 2011). In the
context of NCS, however, decadal timescales are of primary inter-
est to assist in meeting climate commitments as soon as possible
(United Nations Framework Commission on Climate Change
(UNFCCC), 2015; United Nations Environment Programme
(UNEP) and International Union for Conservation of Nature
(IUCN), 2021). Greenhouse gas fluxes and herbaceous biomass
can respond rapidly to management actions in coastal wetlands
(Wang et al., 2021; Woo et al., 2022), and carbon sequestration
rates and woody biomass can also recover within decades in
certain situations (Marba et al., 2015; Osland et al., 2020; Eagle
et al., 2022; Rogers et al., 2023a). Regardless, losing millennia of
stored carbon simply cannot be regained over short timescales by
restoration; preservation of existing carbon stocks and function-
ing ecosystems is therefore key (Drexler et al., 2009; Arias-Ortiz
et al.,, 2021a).

Given historical degradation and land conversion of coastal
wetlands globally (Friess et al.,, 2019; Turschwell et al., 2021;
Campbell et al., 2022), under-recognized but tractable opportun-
ities exist to use restoration as NCS to recover carbon sequestra-
tion functionality (Macreadie et al, 2017; United Nations
Environment Programme (UNEP) and International Union for
Conservation of Nature (IUCN), 2021; Krauss et al., 2022b; Love-
lock et al., 2022a). Hydrologic impoundment is a leading cause of
stress and degradation for intertidal coastal ecosystems
(Montague et al., 1987; Warren et al., 2002; Lewis et al., 2016;
Chambers et al., 2019). Reconnecting degraded wetlands to their
watersheds is therefore a common restoration technique, with
documented success in halting oxidative loss of carbon stores or
otherwise shifting carbon cycling for a climate cooling benefit
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(Kroeger et al.,, 2017; Dittmann et al., 2019; Cormier et al., 2022;
Eagle et al., 2022; Windham-Myers et al., 2023). Sediment aug-
mentation is also commonly used to increase resilience to relative
sea-level rise in coastal wetlands that have deteriorated from
increased flooding stress (Stagg and Mendelssohn, 2010; Yuan
et al., 2022; Fard et al., 2024), leading to enhanced longevity of
carbon sequestration compared to no-action alternatives. Add-
itionally, improving water quality (e.g., eutrophication) and other
threats (Turschwell et al., 2021) before introducing large numbers
of foundation species may be critical for seagrass restoration
success (van Katwijk et al., 2016).

Regardless of restoration approach, coastal wetlands have been
identified as particularly impactful habitats for restoration actions
as NCS because of (a) their high rates of carbon sequestration and
high densities of carbon storage over centuries to millennia
(Bridgham et al., 2006; Mcleod et al., 2011; Poulter et al., 2022);
(b) the potential for management actions that have meaningful
impacts on carbon budgets of degraded habitats, leading to climate
cooling benefits; and (c) the potential for interventions to have
additional social and environmental co-benefits (Lovelock and
Duarte, 2019). Given that opportunities for restoration are dis-
tributed unevenly across continental scales (e.g., Holmquist et al.,
2023) and resources for restoration activity are limited, there
remains a lack of clarity on where coastal wetland restoration is
maximally effective as NCS, and under which circumstances
action is warranted.

Ultimately, to be effective as NCS, coastal wetland restoration
projects must accrue climate cooling benefits that would not occur
without management action (Figure 1). Here, we synthesize current
understanding to 1) illustrate the fundamental requirements for
coastal wetland restoration to be an effective NCS, addressing
uncertainty in where restoration maximizes climate benefits, and
2) discuss potential paths forward to overcome current implemen-
tation barriers, addressing uncertainty in when restoration action is
warranted.

Requirements for coastal wetland restoration as an effective
natural climate solution

Three fundamental criteria determine the effectiveness of restor-
ation actions as NCS: additionality, feasibility and permanence
(Table 1). Below, we discuss requirements in an ecological sense,
rather than within the context of a particular carbon finance or
accounting framework. Due to their potential to influence site-
specific climate benefits, local-scale factors are also considered.

Additionality

Coastal wetland restoration is effective as NCS when actions ‘add’
carbon to the landscape, reducing atmospheric greenhouse gas
concentrations and leading to a cooling benefit compared to initial
degraded conditions (Figure 1). Maximal cooling benefits occur
where the difference in pre-restoration and post-restoration climate
impact is large. For example, highly degraded pre-restoration sites
with large carbon emissions being converted to productive post-
restoration sites with large carbon sequestration maximizes add-
itionality. This cooling benefit can be achieved through restoring
areas back to their original ecosystem type (e.g., conversion of
shrimp ponds back to mangrove forests; Sidik et al., 2019), enhan-
cing or rehabilitating function within an ecosystem type (e.g., restor-
ing hydrology to impounded marshes, Eagle et al., 2022), or creating
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Table 1. The fundamental requirements for coastal wetland restoration to be effective as NCS: additionality, feasibility and permanence

Requirements

Values that maximize climate benefit

Minimum data required to quantify

Additionality Current pre—restoration conditions contribute to substantial climate Regional land use/land cover maps at a sufficient resolution and
warming (large positive radiative balance) specificity to allow area calculations for each land use/land cover
Expected post-restoration conditions contribute to substantial climate  class
cooling (large negative radiative balance), or contribute to substantially ~ Regional carbon radiative balance or emissions/removal factor
less climate warming in comparison to pre—restoration conditions estimates by land use/land cover classes
Large area of degraded, restorable habitat is available in the region
Potential for biomass carbon gain is high, particularly of woody plant
species

Feasibility Funding is secured and appropriate in scale Regional land ownership/tenure maps at a sufficient resolution to
Land tenure is secured, clearly communicated and respected allow project planning
Local communities are part of the project team and will gain access to  Estimates of restoration cost per area restored given regional
co—benefits of restoration for NCS restoration culture and available financial incentives
Governance is effective in the region Local reports of existing communication and collaboration among
Pre—restoration biophysical conditions are amenable to regional local communities to understand end-user involvement and
restoration practices/culture investment

Permanence High capacity for resilience through allochthonous processes (e.g., large  Regional estimates of coastal wetland resilience to relative sea—level

sediment supply)

High capacity for resilience through autochthonous processes (e.g., high

rates of root production)

Upslope and/or upstream accommodation space is available and

accessible for wetland migration
Low risk of short-term perturbations

rise

Regional topography maps, including anthropogenic alterations to
topography that influence hydrology, at a sufficient resolution to
allow project planning

Local reports from communities on equitable distribution of
restoration co-benefits

Note: Specific values of these requirements can maximize the cooling benefit of coastal wetland restoration. There are relatively straightforward minimum data needed to quantify if the
fundamental requirements are met to address the question, ‘Does this management action lead to a net climate benefit?’

new/novel habitat. Large areas available in degraded condition that
can be converted through management action to an enhanced
condition equates to large potential cooling benefits. Small estuarine
systems therefore may not have the same potential as large deltas/
bays (unless aggregated as regional systems; Duarte de Paula Costa
et al,, 2022), because habitat size (i.e., degraded land that can be
restored) was originally small. Beyond size considerations, often
ignored but potentially important biophysical changes can occur
after restoration, leading to net cooling benefits without changing
carbon cycling directly (e.g., changes in albedo, latent/sensible heat
flux, roughness; Graf et al., 2023; Zhu et al., 2024).

Conditions amenable to quick recovery of carbon storage pools,
reduction in greenhouse gas emissions, and/or enhanced carbon
sequestration rates are key to maximizing additionality in coastal
wetland restoration. While most carbon is stored in coastal wetland
soils over the long-term, biomass pools often develop more rapidly
and can be the first sign of additionality from restoration (Rogers
et al, 2023a). Habitat types with large woody vegetation
(characteristic of mangrove and tidal forests) contain substantially
more biomass carbon than habitat types with herbaceous vegeta-
tion (characteristic of tidal marshes and seagrasses) (Adame et al,,
2024), and can amass considerable additionality over 15-25 years
after restoration (Osland et al., 2020; Rogers et al., 2023a). Restored
sites that have the potential for large gains in biomass carbon after
management action may therefore maximize additionality over
decadal scales (e.g., Sasmito et al., 2019). This additional vegetation
biomass can be constrained by regional scale factors (e.g., Rovai
et al., 2021 for mangroves). The accommodation space for carbon
burial in an estuary also varies regionally, based largely on geologic
‘maturation’ stage (Owers et al., 2022; Rogers et al., 2022). Region-
ally variable sediment availability for allochthonous carbon burial
and freshwater availability to support autochthonous production
can drive the potential for adding carbon to the landscape as well
(e.g., Thorne et al., 2022) (see the discussion on allochthonous

https://doi.org/10.1017/cft.2024.14 Published online by Cambridge University Press

carbon in Section ‘Coastal wetlands as cross-ecosystem linkages’).
Additionality after restoration may not follow a linear increase,
instead showing rapid initial responses (e.g., for carbon accumula-
tion; Burden et al., 2019). For effective cooling, additionality and
general carbon cycling after restoration do not need to match
remnant ecosystems; there needs to be enhanced function com-
pared to the initial/alternative degraded state.

Feasibility

Coastal wetland restoration is effective as NCS when actions are
feasible to implement. Pinpointing areas on the landscape where
restoration actions will have the largest benefits to climate mitiga-
tion is inconsequential if the actions themselves cannot be com-
pleted. Feasibility is largely set by conditions external to the
restoration site, including regional socioeconomic and governance
constraints that influence human decision-making (Friess et al.,
2019; Stewart-Sinclair et al., 2020). Restoration can take consider-
able infrastructure and funding to implement; this funding must be
in place or accessible in the region for action to commence, and may
use a variety of financial instruments (Friess et al., 2022). Regional
and local land tenure is an additional crucial consideration for
effective restoration (Lovelock and Brown, 2019; Lovelock et al.,
2022c; Bell-James et al., 2023), as additional co-benefits should be
delivered to local communities and stakeholders, who are often
direct (and historical) users of coastal ecosystems (Wylie et al.,
2016; Dencer-Brown et al., 2022). Existing policies and regulations
can vary in scope and purpose across jurisdictional lines, making a
complex web that may impede effective coastal management,
including restoration activities (Herr et al., 2019). To maximize
feasibility, external conditions will support restoration action
through available funding, appropriate land tenure, and effective
governance (Stewart-Sinclair et al., 2020; Macreadie et al., 2022;
Windham-Myers et al., 2023).
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Table 2. A non-exhaustive list of example methods and applicable case studies for restoration of coastal wetlands that may lead to climate cooling benefits

Restoration method Description

Case study citations

(Un)Managed realignment

A type of hydrologic restoration. Breaching coastal embankments
that were installed to convert historical wetlands to other land uses,

Masselink et al., 2017; Hudson and Kenworthy, 2021;
Mossman et al., 2022

either intentionally (managed) or unintentionally (unmanaged).

Regulated tidal exchange

fashion.

A type of hydrologic restoration. Increasing tidal flow through
engineered structures or managing estuary mouths in a controlled

Kroeger et al., 2017; Hudson and Kenworthy, 2021;
Claasens et al., 2022; Cormier et al., 2022; Eagle et al., 2022

Subsidence reversal

A type of hydrologic restoration. Rewetting historical wetlands that

Miller and Fujii, 2011; Windham-Myers et al., 2023

have been converted to other drained land uses to halt and reverse

subsidence processes.

Re-seeding A type of biotic restoration. Collecting and deploying seeds/ Broome et al., 1988; Orth et al., 2012; Gamble et al., 2021;
propagules to restore foundation plant species populations. Sinclair et al., 2021
Re-planting A type of biotic restoration. Collecting and transplanting shoots/ Broome et al., 1988; O’Brien and Zedler, 2006; Zamith and

seedlings to restore foundation plant species populations.

Scarano, 2010; Gamble et al., 2021; Sinclair et al., 2021; van
Bijsterveldt et al., 2022

Sediment augmentation/
placement

Atype of geophysical restoration. Applying sediment to increase the
elevation capital of a coastal wetland. When placement is from
dredged material, can be called beneficial use.

Ray, 2007; Manning et al., 2021; Fard et al., 2024

(Broome et al., 1988; O’Brien and Zedler, 2006; Ray, 2007; Zamith and Scarano, 2010; Miller and Fujii, 2011; Orth et al., 2012; Kroeger et al., 2017; Masselink et al., 2017; Gamble et al., 2021; Hudson
and Kenworthy, 2021; Manning et al., 2021; Sinclair et al., 2021; Claasens et al., 2022; Cormier et al., 2022; Eagle et al., 2022; Mossman et al., 2022; van Bijsterveldt et al., 2022; Windham-Myers et al.,

2023; Fard et al., 2024)

Maximizing feasibility also includes ensuring internal site condi-
tions are amenable to region-specific restoration culture and prac-
tice. Pre-restoration land use can influence post-restoration
vegetation and water quality recovery, through impacts on elevation
and initial plant community composition (Janousek et al., 2020).
Restoration activities can also fail when restoration practice does not
align with local site conditions. For instance, planting mangrove
propagules on mudflats for rehabilitation can have low survival rates
if species are used that are unlikely to naturally establish at available
elevations (Wodehouse and Rayment, 2019; Lovelock et al., 2022¢).
Further, the cultural practice of restoration itself, including methods,
goals, and rationale, may vary by region (e.g., Hudson and Ken-
worthy, 2021; Lovelock et al., 2022b) (Table 2). Feasible restoration
actions mesh with the regional context of restoration practice and are
therefore context specific; creating shared goals across diverse stake-
holders can underpin feasibility and successful implementation in
this regard (Surgeon Rogers et al., 2019).

Permanence

Coastal wetland restoration is effective as NCS when cooling
benefits are ‘permanent’ over management-relevant timescales.
These timescales should be explicitly defined. Here, we propose
decades are the appropriate permanence timescale, to align with
2050 emissions reduction targets (United Nations Framework
Commission on Climate Change (UNFCCC), 2015; Intergovern-
mental Panel on Climate Change (IPCC), 2022). Permanence
over management-relevant timescales occurs when restored sites
are resilient to relative sea-level rise over the next several decades.
Regional controls on sediment type and availability influence the
capacity for wetland vertical accretion of allochthonous material,
and therefore resilience (Rovai et al., 2018; Gorham et al., 2021;
Breithaupt and Steinmuller, 2022). Resilient restoration will bal-
ance rates of relative sea-level rise and sediment supply to be
successful; restoration at low elevation sites where sediment
supply is low risks failure as vegetation may be rapidly over-
whelmed by rising sea levels or erosion from wave action. How-
ever, where sediment supply is ample, restoration at lower
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elevations may still be successful as rapid gains in elevation and
carbon addition from root biomass may occur (Liu et al., 2021;
Mossman et al., 2022). Permanence can also occur where autoch-
thonous production is high, particularly in more biogenic/orga-
nogenic settings (Krauss et al, 2017; Cahoon et al, 2021;
Windham-Myers et al., 2023). Restored coastal wetlands do not
need to depend on vertical processes alone for decadal-scale
permanence. Where geomorphic development has led to available
accommodation space and land use is amenable, lateral migration
into upland or upstream habitats can allow continued cooling
benefits of coastal wetland restoration activity even where vertical
elevation-building processes are expected to be overwhelmed
(Osland et al., 2022; Owers et al., 2022; Rogers et al., 2022; Wang
et al., 2023).

Perhaps of more immediate concern regarding restored site
permanence are short-term disturbances, such as stochastic storm
impacts and anthropogenic pressures on restored coastal wet-
lands (Hanley et al., 2020; Newton et al., 2020). Minimizing the
risk of such short-term perturbation will support permanence. If
short-term perturbation risks can be minimized, sites with high
sediment supply, large tide ranges, high rates of foundation
species primary productivity, shallow elevation gradients, and
harmonious upslope land use may both accumulate carbon rap-
idly and be resilient to future sea-level rise, retaining carbon in
the long term (Cahoon et al., 2021; Osland et al., 2022; Saintilan
et al., 2022). Overall, restoration may be most successful at
achieving permanence when targeting areas where intertidal sur-
faces can readily adjust vertically and/or laterally through a
combination of allochthonous and autochthonous processes,
ensuring resilience through 2050. Projects that do submerge from
relative sea-level rise after management-relevant timescales can
still have important mitigation contributions over the next several
decades.

Local factors

Whether or not the fundamental requirements of additionality,
feasibility and permanence are met by a restoration action is largely
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set by global and regional-scale factors. However, local-scale factors
including restoration design and the identity/abundance of biota
can enhance or detract from site-specific restoration effectiveness
as NCS. Restoration design decisions can determine channel dens-
ity and flow path, wetland elevation and inundation, and vegetation
cover and community identity through planting or natural colon-
ization approaches (Lester et al., 2020; Vanderklift et al., 2020;
Valach et al., 2021), all of which can influence the net cooling
benefit of restoration compared to initial conditions. Research
exploring the impact that coastal wetland restoration design deci-
sions have on restored site effectiveness as NCS could expand on
what little is currently known about which designs maximize
carbon sequestration. These studies may be especially informative
if they focus explicitly on how design options influence addition-
ality, feasibility and permanence.

Local interactions of environmental conditions with biota,
including macrophytes, macrofauna and microbes, can influence
restoration effectiveness as NCS as well. Vegetation influence on
local-scale carbon dynamics is becoming better characterized
(Jones et al., 2018; Mueller et al., 2020; Kennedy et al.,, 2022; Kong
et al., 2022; Jeffrey et al., 2023), although current work is often less
clear on the precise mechanisms of plant-mediation of carbon
processes (but see Vroom et al., 2022). Foundation plant species
often establish quickly after restoration, jump-starting wetland
carbon uptake, but this is not universally true where foundation
species are large and/or slow growing (Marba et al., 1996; Ballanti
et al,, 2017). Less well known are macrofaunal influences on res-
toration effectiveness as NCS. A growing body of literature has
emphasized the importance of crab bioturbation on carbon loss in
tidal marshes and mangroves, for example, via changes in sediment
permeability/exchange and microbial communities, among other
mechanisms (Gutiérrez et al., 2006; Guimond et al., 2020; Xiao
et al, 2021; Qin et al., 2024; Smith, 2024). Microbial processes,
dependent upon the abundance and identity of microbial commu-
nities, vary at small spatial scales and are strongly influenced by
tidal inundation and associated abiotic factors (e.g., water content,
salinity, oxygen and nutrient availability; Cheung et al., 2018; Rinke
et al,, 2022). Following wetland restoration, changes can occur in
fungal communities as well, as the ecosystem matures into a marine
setting (Walker and Campbell, 2010; Dini-Andreote et al., 2016).
Microbial communities may have a strong impact on restoration
effectiveness as NCS by exerting a key influence on carbon cycling
processes important for cooling benefits (e.g., methanogenesis and
methane oxidation; Oremland and Polcin, 1982; Segarra et al., 2013;
Capooci et al., 2024). Additional studies that explore how organism
presence and abundance impact a site’s capacity to meet the fun-
damental NCS requirements within the range set by climate and
geomorphology would be helpful.

Future perspectives

Coastal wetland restoration will be most effective as NCS where
additionality, feasibility and permanence are maximized. Verify-
ing these requirements are met in an ecological context (Table 1)
is more straightforward than the complex task of quantifying the
magnitude of project-specific cooling benefits for carbon finance
or accounting purposes. Issues with quantifying magnitudes of
climate benefit are not addressed here, as we focus below on the
issues impeding initial deliberation of whether restoration has a
net climate benefit, the crucial point for restoration implemen-
tation.
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Coastal wetlands as cross-ecosystem linkages

One issue in understanding when and where coastal restoration
actions are effective NCS is uncertainty in additionality for eco-
systems that are interfaces and integrators of terrestrial and
aquatic habitats. It is sometimes unclear if a restoration project
meets the fundamental requirement of having a net cooling benefit
when those cooling benefits can occur in habitats outside of
project footprints. For example, connectivity between restored
sites and surrounding landscapes can be an important driver of
the carbon cycling benefits of restoration (Woo et al., 2022;
Mazarrasa et al., 2023). Allochthonous material, in particular,
can be buried at substantial rates upon initial restoration in salt
marshes (Wollenberg et al., 2018; Mossman et al., 2022). The
reduced water movement through seagrass meadow canopies
(Peralta et al., 2008) not only facilitates high retention of autoch-
thonous production, but also results in increased deposition of
allochthonous carbon (Fonseca and Fisher, 1986; Hendriks et al.,
2008), estimated to contribute to ~50% of the sediment organic C
pool in these meadows on average (Kennedy et al., 2010). Tidal
forests can also trap substantial amounts of allochthonous mater-
ial (e.g., Noe et al,, 2016). However, there remains uncertainty on
whether allochthonous carbon removed from the atmosphere
upstream or upslope and then buried in a coastal wetland should
be considered part of the cooling benefit from the restoration
action. Similarly, there remains uncertainty on if autochthonous
carbon that is removed from the atmosphere in a coastal wetland
restoration area and then exported laterally to the near-shore
environment with potential long-term storage (especially as dis-
solved inorganic carbon or total alkalinity; Santos et al., 2019,
2021; Yau et al., 2022; Reithmaier et al., 2023) should be con-
sidered part of the cooling benefit. Ignoring these lateral connec-
tions can affect the estimated cooling benefit of a restoration
action, potentially influencing if projects meet the fundamental
requirement of additionality (Bogard et al., 2020; Schutte et al.,
2020; Correa et al., 2022).

To address this issue, one approach is to take a landscape/
systems view for determining if a specific management action will
lead to a net cooling benefit (Figure 2), regardless of the spatial
footprint that benefit occurs in (similar to the efforts underway
for landscape-scale carbon accounting; Glass et al., 2024). In
other words, tracking the response of a landscape (e.g., a water-
shed) to management actions, not the response of one habitat
type to management actions. Lateral export of carbon that is
buried (or emitted) outside of the restoration site should con-
tribute to understanding a wetland’s cooling benefit compared to
initial conditions, as long as the export would not have occurred
without restoration action. In the case of greenhouse gas emis-
sions, particular care must be taken to ensure appropriate base-
line comparisons that consider surrounding land uses as
potential sources contributing to wetland fluxes (e.g., N,O from
prairie pothole wetlands; Tangen and Bansal, 2022), to avoid
penalizing wetlands as the spot where allochthonous carbon
enters the atmosphere even when the land management decisions
driving carbon and nutrient export and mineralization are made
upslope or upstream. For allochthonous carbon burial, if the
accommodation space created by restoration allows the preser-
vation of carbon that would have otherwise been mineralized,
that leads to a cooling benefit even if the carbon was removed
from the atmosphere offsite (Wollenberg et al., 2018). We
acknowledge that taking a landscape approach to the cooling
benefit of coastal wetland restoration may be difficult in practice,
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Figure 2. Land-use types of interest to carbon sequestration and/or GHG mitigation across the relative tidal elevation range in Suisun Bay and Delta lands. Corn indicates
conventional row crops. Tidal channel refers to open-water aquatic habitats, whether deep or shallow (such as flooded islands) and which may be populated by submerged or
floating aquatic vegetation (SAV and FAV). Permanently flooded wetland refers to wetlands impounded to reverse subsidence. Seasonal wetland refers to wetlands managed via
freshwater flooding to benefit wildlife. Credit: lllustrated by Vincent Pascual, California Office of State Publishing, adapted from SFEI.

as mass balance approaches are most tractable at site-level scales.
However, this approach may allow a more holistic understanding
of additionality and cooling benefit from restoration actions in
coastal wetlands, incorporating the true connectivity of these
habitats as cross-ecosystem linkages.

Coastal wetland migration

Another issue in understanding when and where coastal restoration
actions are effective NCS is uncertainty in permanence for ecosys-
tems that are dynamic on the landscape. As they cope with accel-
erating sea-level rise, coastal wetlands have the potential to migrate
both upslope and upstream over management-relevant timeframes
(Krauss et al., 2018; Gedan and Fernandez-Pascual, 2019; Osland
et al., 2022; Wang et al,, 2023). Restored wetlands may therefore
move out of the original project footprint over time, making it
difficult to estimate the longevity of cooling benefits from manage-
ment actions. Restored coastal wetlands may submerge under
relative sea-level rise rates above ~5-7 mm/year (Saintilan et al.,
2022; Morris et al, 2023), converting to unvegetated flats
(Haywood et al., 2020; Schoolmaster et al., 2022). The fate of
wetland carbon cycling with such state change and concurrent
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potential erosion is not clear (Creamer et al., 2024), but cooling
benefit losses may be at least partially offset by cooling benefit gains
as upslope or upstream habitats are converted to new wetlands
(Osland et al., 2022; Wang et al., 2023). In certain regions with large
areas of accommodation space, in fact, relative sea-level rise may
increase the total habitat of coastal wetlands (Schieder et al., 2018),
although newly colonized habitat from upslope migration may
initially have lower soil carbon accumulation rates than mature
habitat (Sandi et al., 2021). The resilience of a restored wetland to
submergence over management-relevant decadal scales, including
the availability of accommodation space to migrate upslope or
upstream, therefore becomes of prime importance.

To address this issue, a landscape/systems approach again may
be helpful (Figure 2), but for permanence: not tying permanence of
restoration cooling benefit to a specific spatial footprint, unless
human constraints on wetland migration preclude movement of
carbon benefits across the landscape. This approach incorporates
the natural dynamism of coastal wetlands and the reality of com-
plex landscapes. Dealing with disturbance and dynamism is not
new for habitats used as NCS: forests also experience disturbances
like wildfire that can release stored carbon (Hurteau et al., 2008).
Unlike forests experiencing fire, it is possible that stored carbon
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from submerging wetlands can continue to be stored with lateral
export to shallow ocean shelves (Santos et al., 2021). Existing
remote sensing tools and analyses can help to identify priority areas
where restoration could be resilient and extend the lifetime of
restored wetlands undergoing relative sea-level rise impacts (e.g.,
Rogers et al., 2023b; Ganju et al,, 2024). Taking a landscape
approach to permanence provides an opportunity to move beyond
single-habitat focused restoration, thus aggregating restoration
action influence across the landscape (Thorslund et al., 2017).
Framing permanence in a management-relevant context (i.e., the
next few decades) addresses the concern that some wetlands will
submerge in the future (especially by the end of the century;
Saintilan et al.,, 2022); having enhanced uptake in the next few
decades can buy time for more robust climate solutions even if
additionality somewhat decreases with migration. Ultimately, a
landscape approach prevents focusing on the storage of a particular
molecule in a particular place, shifting perspective to the overall
cooling benefit of a management action.

Methane and management-relevant timeframes

Uncertainty in how to incorporate methane emissions is another
issue preventing understanding of when and where coastal restor-
ation actions are effective NCS. Methane is a potent but short-lived
greenhouse gas (Neubauer and Megonigal, 2015), and becomes a
crucial component of the cooling benefit of restoration actions
given decadal management-relevant timescales. Regardless of
methane emissions, wetlands commonly exhibit climate cooling
impacts on geologic timescales (Frolking et al., 2006; Neubauer and
Megonigal, 2015); on management-relevant timescales, however,
methane emissions can significantly influence the efficacy of res-
toration activities as NCS (Schutte et al., 2020; Arias-Ortiz et al.,
2021b). Microbial communities responding to environmental con-
ditions control the balance between methane production
(methanogenesis) and consumption (methanotrophy/oxidation)
in soils, as they break down organic matter for energy (Oremland
and Polcin, 1982; Segarra et al., 2013; Capooci et al., 2024; Hartman
etal., 2024). There is broad agreement that salinity (often used as a
proxy for sulfate concentrations) decreases methane emissions in
coastal wetlands, even if mechanisms remain uncertain (Bartlett
etal,, 1987; Poffenbarger et al., 2011; Bridgham et al., 2013; Chuang
et al., 2016; Rosentreter et al., 2021; Sanders-DeMott et al., 2022).
Dominant plant communities can also control methane emissions,
through plant-mediated gas fluxes. These fluxes can make up the
dominant pathway of methane emissions to the atmosphere in
coastal wetlands, as methane vents through herbaceous or woody
tissues (Jeffrey et al., 2019; Mueller et al., 2020; Villa et al., 2020;
Comer-Warner et al., 2022). Finally, it is becoming clear that lateral
export of dissolved methane is a potentially important, but under-
recognized, methane flux pathway (Santos et al., 2019; Schutte et al.,
2020; Chen et al., 2022; Wang et al., 2022b). Especially in low-
salinity conditions and/or with high productivity of wetland-
adapted plants, methane can complicate understanding if restor-
ation actions meet the basic requirement of NCS of having a net
cooling benefit.

Incorporating methane emissions is crucial, but may be most
helpful within the context of coastal restoration as NCS when
focused on the cooling benefit of specific management actions.
Methane emissions are not inherently bad, and productive low-
salinity restored sites with high methane emissions may still pro-
vide large cooling benefits compared to pre-restoration conditions
(Hemes et al., 2019; Guinther et al., 2020; Arias-Ortiz et al., 2021b;
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Nyberg et al,, 2022; Adame et al., 2024). Methane emissions are
sometimes measured in restored coastal wetlands, but often pre-
restoration baseline data or data from analog/alternative land use
sites are lacking, preventing an understanding of the net change in
methane emissions and overall cooling benefit attributable to res-
toration actions. Therefore, effective methane monitoring includes
data collection at alternative land use sites and begins pre-
restoration where possible. Additionally, coordinated synthesis
activities can help in gathering, making available, and interpreting
the rapidly accumulating greenhouse gas flux datasets from blue
carbon ecosystems, especially for marshes and mangroves (Knox
et al., 2019; Rosentreter et al., 2023; Arias-Ortiz et al., 2024).
Seagrasses pose a particular challenge here, as they exchange dis-
solved inorganic carbon with the water column rather than carbon
dioxide directly with the atmosphere. Coordinated synthesis of
benthic, air—water, and lateral fluxes in seagrass ecosystems, includ-
ing methane, can provide needed insight into their restoration
benefit as NCS, as with lateral fluxes in blue carbon ecosystems
more generally (Santos et al., 2021). Incorporating methane emis-
sions over management-relevant timeframes (e.g., by using
sustained-flux global warming potential for a 20-year time horizon;
Neubauer, 2021) without forgetting that methane emissions do not
inherently preclude effectiveness as NCS can help to move the field
toward inclusion of all tidal wetlands that may provide climate
mitigation benefits (Adame et al., 2024).

Minimum data requirements

Information supporting the likelihood that a project will, at a
minimum, lead to a cooling benefit is a prerequisite for taking
restoration action as NCS, but it is unclear if the magnitude of
cooling benefits also needs to be quantified before action takes
place. Modeling is often used as a tool for guiding restoration
decision-making, but some projects do not require modeling
approaches to understand the binary outcome of whether or not
an action will have a cooling benefit (e.g., Twomey et al., 2024).
Coastal wetland restoration projects are already happening around
the world without a modeled estimate of cooling benefit; this lack of
carbon accounting does not influence whether or not a real climate
benefit is occurring. In landscapes with multiple competing values,
or where a high level of precision is needed, complex models are
certainly required to understand if an action has a net benefit. In the
cases where more complex modeling is required, several biogeo-
chemical models designed for tidal wetlands enable the prediction
of organic carbon accumulation, sediment accretion, and other
carbon-related processes with changes in relative sea levels
(Buffington et al., 2021; Morris et al., 2023; Vahsen et al., 2024).
This particular scenario may be uncommon when considering all
the locations where blue carbon restoration is likely to be successful
globally. Where complex models are not required, there remains
disagreement on the data necessary to understand project effect-
iveness as NCS. When plot-level data exist, an additional uncer-
tainty is how best to use spatially explicit information to scale up to
footprints relevant for projecting landscape-level response to res-
toration action (Duarte de Paula Costa et al., 2022; Matthes et al.,
2014; Shahan et al., 2022). Regardless of the complexity of data
required, long-term post-implementation monitoring allows evalu-
ating actual restoration project responses and ensures projects are
meeting expectations and targets over time (Wortley et al., 2013;
Cadier et al., 2020; Lovelock et al., 2022c). A robust understanding
of carbon cycling responses to restoration action is crucial for
quantifying the total magnitude of cooling benefit, but where
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cooling benefit is not predicted to be large, it may be critical for
understanding if a cooling benefit exists at all.

It may be useful to explicitly differentiate the minimum data
requirements for coastal restoration as effective NCS (i.e., answering
‘does this management action accrue a climate benefit?’) from the
data requirements for quantifying the magnitude of cooling benefits
for carbon accounting purposes (i.e., answering ‘how much climate
benefit does this management action accrue?’). There is a need for
widely distributed, standardized minimum data that can be applied
to address the former question (Table 1). Much of the minimum data
needed is spatial in nature, as spatially explicit data are most useful to
land managers and restoration practitioners for on-the-ground pri-
oritization (Lovelock et al., 2022b; Rogers et al., 2023b). These spatial
data include up-to-date maps of regional land use/land cover (Sleeter
etal, 2018, 2022), land ownership (Lovelock and Brown, 2019), and
topography (including human alterations that impede wetland
migration; Osland et al., 2022; Rogers et al., 2023b). Vegetation types
in particular are often mappable, and may be crucial to up-scale data
on climate benefits using remote sensing observations (e.g., Kong
et al,, 2022). Other minimum data requirements are not explicitly
spatial (but may still vary regionally), including carbon balance or
emissions/removal factor estimates for land use/land cover classes
(from direct measurements or model outputs; Hagger et al., 2022;
Windham-Myers et al., 2023), estimates of restoration cost per area
restored given the prevailing restoration culture and financial incen-
tive (Taillardat et al., 2020; Hagger et al., 2022), and resilience to
relative sea-level rise (Holmquist et al., 2021; Ganju et al., 2024).
Further, communicating and collaborating with local communities
to ensure stakeholder involvement and equitable distribution of
restoration co-benefits is key in any project (Surgeon Rogers et al.,
2019; Dencer-Brown et al,, 2022; Lovelock et al., 2022¢). Beyond
these suggested standard data types, additional project-specific con-
siderations that impact additionality, feasibility and permanence will
arise. If minimum data requirements are unavailable in a region, that
helps prioritize new data collection efforts. One way to fill gaps for
areas without the minimum required data is to leverage areas with
more intensive data. Using regional-scale data stratified by local-
scale gradients like elevation, for example, can provide a path
forward for estimating the value of restoration from a carbon
perspective (Wang et al., 2022a; Lovelock et al., 2022b; Windham-
Myers etal., 2023; Yando et al., 2023). Understanding the magnitude
of cooling benefits for accounting purposes is a crucial, but distinct,
second step in the process of addressing effectiveness of coastal
wetland restoration as NCS. We posit that confounding these dis-
tinct questions can impede implementation of restoration projects
that are likely to have a climate benefit.

Conclusion

Here, we synthesize the fundamental requirements of additionality,
feasibility and permanence to address the question, ‘when and
where is coastal wetland restoration effective as a natural climate
solution? Maximizing the values underpinning these three key
factors can increase the effectiveness of restoration projects, for
example, by targeting regions with large areas of degraded habitat
that will net a substantial climate cooling benefit when restored
(additionality); where socio-economic and governance factors are
in place to support action (feasibility); and where there is high
resilience to future relative sea-level rise (permanence). Recent
work is leading the way for effective site-level prioritization
(Rogers et al., 2019b; Moritsch et al., 2021; Duarte de Paula Costa
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et al, 2022; Rogers et al., 2023b). To move toward successful
implementation at scale, we highlight paths forward on several
issues impeding confidence in coastal wetland restoration as
NCS. First, tracking the cooling benefit of specific management
actions across the interconnected coastal landscape, not project-
specific spatial footprints. Second, the importance of incorporating
methane into restoration considerations, as effective NCS will
function over management-relevant decadal timescales. Finally,
the minimum data required to understand if an action has a climate
benefit is likely more tractable than the data required to understand
the separate issue of quantifying the magnitude of climate benefit.
Ultimately, for maximal NCS effectiveness, energy and resources
will be focused on prioritizing sites with high additionality, where
restoration actions are feasible and where permanence is likely. We
stress that within this framework, coastal wetland restoration pro-
vides immense benefits beyond mitigating climate change (Vegh
et al,, 2019; Pindilli, 2022; Hambdck et al., 2023). There are strong
calls for ecosystem restoration over the next decade (United
Nations Environment Programme (UNEP), 2021). Reducing
uncertainty can help to ensure that coastal restoration actions
deliver climate cooling benefits within the decadal timeframes
necessary to function as one climate mitigation strategy
among many.
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