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Abstract

There is a deeper structure to the ordinary character theory of finite solvable groups than might at first
be apparent. Much of this structure, which has no analog for general finite groups, becomes visible
only when the characters of solvable groups are viewed from the perspective of a particular set it of
prime numbers. This purely expository paper discusses the foundations of this JT-theory and a few
of its applications. Included are the definitions and essential properties of Gajendragadkar's ^-special
characters and their connections with the irreducible n -partial characters and their associated Fong
characters. Included among the consequences of the theory discussed here are applications to questions
about the field generated by the values of a character, about extensions of characters of subgroups and
about M-groups.

1991 Mathematics subject classification (Amer. Math. Soc): 20C15.

1. Introduction

The purpose of this article is to discuss the growing body of results that concern
the classical (complex) character theory of a solvable group G, as seen from the
perspective of a particular set n of prime numbers. We consider n -special characters,
n -factored characters, n -partial characters and Fong characters, and we explore some
of the connections among these objects. This paper is intended as a survey; it is
entirely expository and contains no new theorems. We state most results without
proof, but in some cases we present detailed arguments. This is done in order to give
the flavor of the subject and to help clarify the interdependence of the various ideas.

In this author's opinion, it is a fair test for a mathematical theory to require that it
be able to contribute to the solution of problems beyond those suggested by the theory
itself. It is gratifying that the n -character theory of solvable groups passes this test,
and a substantial portion of our discussion here is concerned with applications of the
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theory.
Despite our reference to 'solvable groups' in the previous two paragraphs (and in

the title of this article), we usually do not actually require our groups to be solvable.
In most cases, it suffices that they be 7r-separable, which means that each composition
factor must be either a n -group or a it '-group. Unfortunately, there is some cost in
this added generality, and only a modest benefit. We require results such as the fact
that if H is a Hall 7r-subgroup of a 7r-separable group G, then every 7r-subgroup
of G is conjugate in G to a subgroup of H. This is true, but if we do not assume
that G is solvable, the only known proofs depend on the Feit-Thompson theorem that
groups of odd order are solvable. Since whatever interest our theorems might have is
already present when the results are stated in the solvable case, the reader is invited
to ignore the generality (and the dependence on the odd-order theorem) and simply to
read 'solvable' wherever we have written 'n-separable'.

2. 7r-special characters

Given an irreducible character ^ of a group G, there are two positive integers
naturally associated with x that necessarily divide \G\. One of these, of course, is the
degree x(l) and the other is the determinantal order o(x). (This latter number is the
order of the linear character det(x) in the group of linear characters of G.) If we fix
a set n of primes, and we wish to consider 'special' irreducible characters of G that
somehow reflect the 7r-structure of G, it is natural to restrict our attention to those
irreducible characters x £ Irr(G) for which both of these integers are n-numbers.
That this is not a completely ridiculous thing to do is suggested by the following well
known theorem of P. X. Gallagher. (See [5, Corollary 8.16].)

THEOREM 2.1. Let N < G and suppose 9 e Irr(A0 is invariant in G. Assume that
9(1) and o(9) are n-numbers and that \G/N\ is divisible by no prime in n. Then 9
is extendible to G. Furthermore, there is a unique extension x such that o(x) is a
n -number.

We mention that in Theorem 2.1, the extension x of 9 such that o(x) is a n-number
is called the canonical extension of 0, and it is often denoted 9. Its determinantal
order is actually equal to that of 9.

Since we are interested in solvable groups, which are characterized by having
an ample supply of normal subgroups, it is natural to consider irreducible characters
which behave well with respect to the normal structure of our group G. We would like,
therefore, to consider only normally heritable properties & of irreducible characters:
properties that satisfy the condition:
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(NH) If x e Irr(G) satisfies &>, and N < G, then all irreducible constituents of XN
satisfy &.

Our 'special' characters which will reflect the n-structure of G will be characters
with n -degree, and this property is normally heritable. But condition (NH) is not
automatic for the property that the determinantal order is also a n number, and so we
must impose it.

DEFINITION 2.2. Let G be n -separable. Then x £ Irr(G) is n-special provided
(i) x(l) is a n number, and

(ii) 0(6) is a 7r-number for every irreducible constituent 9 of Xs for every sub-
normal subgroup S of G.

We stress that the set 3£n(G) of n-special characters of G is defined if, but only
if, G is 7T-separable. (In particular, if G is jr-separable, we can speak of 7r'-special
characters of G, and if G is solvable, it makes sense to consider 7r-special characters
for arbitrary prime sets n.)

The definition of n -special characters appeared first in [6], but only in the case
where n = p', the complement of a single prime. It was shown in that paper that
St\ (G) is a set of canonical lifts for the //-degree irreducible p-Brauer characters
of a p-solvable group G. This set was then used to construct a normally heritable
collection of canonical lifts for all of the irreducible /?-Brauer characters of G, thereby
proving a strong form of the Fong-Swan theorem. (We shall have more to say about
this later.)

It was D. Gajendragadkar who first considered n -special characters for arbitrary
prime sets n, and he accumulated a number of striking results about these characters
in his paper [4]. Probably the most surprising of Gajendragadkar's theorems is the
following.

THEOREM 2.3. Let G be n-separable and suppose that a and fi are respectively
n -special and n'-special irreducible characters ofG. Then the product x = aft is
irreducible. If also x = 01'fi' is another factorization of x with a' and yS' respectively
n-special and n'-special, then a = a' and fi — fi'.

We mention that the proof of Theorem 2.3 proceeds via induction on the order of the
group. In order to prove that afi is irreducible, both parts of the inductive hypothesis
must be applied for some proper normal subgroup of G. In other words, the uniqueness
of the factorization in Theorem 2.3 is essential in proving the irreducibility of products
of n -special and n '-special characters.

Gajendragadkar's theorem suggests that it might be interesting to consider the set
of n-factored irreducible characters of G: those which can be written as products of
7r-special and n '-special characters. We observe that the property of being n -factored
is normally heritable. To see this, suppose that N < G and that x — <*P> where a and
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ft are respectively n-special and 7r'-special characters of G. Then XN = oeNflN, and
it follows that an irreducible constituent ^ of XN must be a constituent of CK0A) for
some irreducible constituents a0 and yS0 of aN and fiN. But a0 and /50 are respectively
7r-special and 7r'-special, and it follows by Theorem 2.3 that \jr = a0f50 is n-factored,
as claimed.

If G is the direct product of a n-group and a 7r'-group, it is clear that every
irreducible character of G is n -factored. It is not hard to show that the converse
of this statement is true too, but more interesting is the question of how common
are ;r-factored characters in the general case of n -separable groups. (Clearly, the
factorization theory would be of little use and minimal interest if n -factored characters
were very rare.) Fortunately, there is a very satisfactory result in this direction.

THEOREM 2.4. Suppose G is n-separable. Then every primitive irreducible char-
acter of G is n-factored.

This result, which was first proved in [7], is an easy consequence (via induc-
tion) of the following general result. (This inductive argument shows that in fact,
quasiprimitivity is sufficient to guarantee factorability.)

LEMMA 2.5. Let G be n-separable and suppose that N < G is such that

G/N = U/N x V/N ,

a direct product of a n -group and a n' -group, respectively. Suppose^ = afi € Irr(N),
where a is n-special and fi is n'-special, and where ft is invariant in U and a
is invariant in V. Then every irreducible character x € Irr(G) lying over \jr is
n-factored.

The key to the proof of Lemma 2.5 is to find conditions sufficient to guarantee that
characters are 7r-special. The fundamental results in this direction are the following.

LEMMA 2.6. Let G be n -separable, and suppose that N < G and that a 6 Irr(A0
is it -special.

(a) If G/N is a iz-group, then every irreducible character of G lying over a is
n-special.

(b) If G/N is a n'-group and a is invariant in G, then the canonical extension a of
a to G is n -special.

Lemma 2.6 can be found in this generality in [4], but we note that it appears already
in [6], in the case where it is the complement of a prime. We note that in the situation
of 2.6(b), it is not hard to see that a is the only n-special character of G lying over a.

Lemma 2.5 is easily proved using 2.6, and we sketch the argument.
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PROOF OF LEMMA 2.5. Let ji and a be the canonical extensions of yS and a to U
and V, respectively. These extensions are 7r'-special and ;r-special by Lemma 2.6(b),
and we conclude by 2.6(a) that all irreducible constituents of fiG and aG are ^'-special
and n-special, respectively. It follows that all irreducible constituents of (aG)(fiG)
are it -factored.

It suffices now to observe that ijfG = (aG)(f}G). This holds because

(apf = aup = {aN)vp = (aG)Np,

and thus
VG = ((afiff = 6iGpG ,

as required.

The significance of Theorem 2.4 for applications is this. Suppose that we wish to
prove something about some irreducible character x °f a ^-separable group G. It
may happen that x is induced from some character xfr of a proper subgroup of G. In
this case, and working by induction on \G\ or on the degree of x, we presumably
have information about ty from which we can deduce the desired conclusion about
X- In the remaining case, x is primitive, and hence is it -factored, and we can write
X — ufi, where a and /? are jr-special and 7r'-special, respectively. The hope here is
that we know enough about special characters to deduce information about a and fi,
and thereby to prove our result about their product x-

What kind of information might we hope to know about n -special characters,
beyond the mere fact that they are n -special? A useful heuristic principle is that
n-special characters of G 'think' that G is a n-group. Not only are their degrees
and determinantal orders necessarily it -numbers, but also in other respects, it -special
characters behave like characters of n -groups. The key to most results of this type is
the following theorem of Gajendragadkar [4].

THEOREM 2.7. Let H be a Hall it -subgroup of a n-separable group G. Then
restriction defines an injection of the set 3£n{G) of n-special characters of G into

It turns out that there is a very simple description of the image of this restriction
map. We present this in Corollary 8.3.

At this point, we have discussed enough results about special characters and factor-
ization theory to present our first (minor) application to the general character theory
of solvable groups. Note that the statement of the following theorem mentions none
of our technical definitions and that the result would definitely be false without the
solvability assumption.

THEOREM 2.8. Let x be a primitive character of a solvable group G. Then
divides \G\.
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PROOF. Fix a prime p and let P € Sylp(G). It suffices to prove that (x(l)P):

divides \P\, where we have written xO)P to denote the p-part of the degree xU)-
Since x 1S primitive and G is p-special, we can use Theorem 2.4 to write x = <*)8

where or is p-special and ft is p'-special. In particular, x(l) = a(l)/8(l), and since
CK(1) is a p-power and f}(\) is not divisible by p, we see that xO)p = «(!)•

Now aP is irreducible by Theorem 2.7, and hence |P | > aP(l)2 = a(])2. Sinct
for prime powers, inequality is equivalent to divisibility, we see that a(l)2 divides
|PI, as required.

The reader has probably noticed that the above argument actually proves mon
than we stated. In fact, in the situation of Theorem 2.8, we see that |G|/x(l)2 is ar
integer divisible by Y[ |Z(5P)|, where Sp is some Sylow p-subgroup of G. Anothei
application in somewhat the same spirit is the following result, whose proof we alsc
leave to the reader.

THEOREM 2.9. Let x e Irr(G), where G is solvable, and suppose that \G\/xW i-
not divisible by the prime p. Then there exists a p'-subgroup H c G and a charactei
ifr e Irr(//) such that x = VfG- in particular, x vanishes at all elements of G having
order divisible by p.

We close this section by mentioning that for solvable groups, Gajendragadkar'i
irreducibility theorem (2.3) can be extended as follows.

THEOREM 2.10. Let G be solvable and suppose that we have selected a p-specia
characterap e Irr(G)foreachprimedivisorpof \G\. Thenx — Y[p

apisirreducible
and x uniquely determines each of the factors ap.

This result follows directly from Theorem 2.3 using the fact that if a and /
are respectively 7T-special and a-special for disjoint prime sets n and a, then th<
irreducible character a/3 is (n U a)-special. It is not hard to see that Theorem 2/
can also be generalized: every primitive character of a solvable group has a 'ful
factorization', as in Theorem 2.10.

3. Fields of values

One of the most striking applications of the n -factorization theory is to the solvabh
case of Feit's conjecture concerning the field of values of a character. Following
standard notation, we write Q(x) to denote the subfield of the complex numben
obtained by adjoining to the rational field Q all values x (g) of a character x of ai
arbitrary finite group G. We also write Q̂ , to denote the cyclotomic field Qfe2*^"]
We know that Q(x) Q Q|GI» and we define fix) to be the smallest positive intege
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n such that Q(x) £ On- Observe that if also Q(x) i= Qm for some integer m, then
in fact n must divide m. This is so because Q« D Qm = Q^, where d = gcd(m, «),
and since d < n = fix), we conclude that d = n, and thus n divides m, as claimed.
Feit's conjecture is that whenever x e Irr(G), the group G necessarily contains an
element of order fix)-

The first proof of the solvable case of Feit's conjecture was given by G. Amit and
D. Chillag in f 1], and shortly thereafter, a proof via character factorization theory
was found by P. Ferguson and A. Turull [2]. As a demonstration of the power of
factorization techniques in the character theory of solvable groups, we present in this
section a slight variation on the Ferguson-Turull argument.

Theorem 2.7 allows us to deduce that the values of n -special characters look just
like the values of irreducible characters of it -groups. (This is consistent with the point
of view that a 7r-special character of G thinks that G is a it -group.) Specifically, we
have the following.

LEMMA 3.1. Let a e Irr(G) be n-special. Then the field Q(a) is contained in
Q[e], where e is an nth root of unity for some n-number n. More precisely, we have
Qia) = Qi<xH), where H is a Hall n-subgroup ofG.

PROOF. It suffices to prove the last assertion, and since it is obvious that Q(a#) c
Q(a), it is enough to show that this field extension, which is necessarily a Galois
extension, has trivial Galois group. Suppose that a e Gal(Q(a)/Q(o;//)). Observe
thata17 e Irr(G), and that in fact, aCT is7r -special. (This is because field automorphisms
preserve both degrees and determinantal orders of characters.) We have

OH = («* )" = (<*")//,

and thus a = a" by the injectivity of the restriction map in Theorem 2.7. It follows
that all values of a are fixed by a, and thus a is the identity automorphism of Q(a),
as required.

A similar argument yields the following.

LEMMA 3.2. Let x = <*P, where a and P are respectively n-special and n'-special
characters of a n-separable group G. Then Q(a) c

PROOF. We certainly have Qix) <~ Qia, f$), and this is a Galois extension of
fields. It suffices to show that any automorphism a of Q(or, /S) that fixes x also fixes
a. This holds because x — Xa — a" P", and oia and fi" are respectively it -special
and 7r'-special. Thus aa = a by the uniqueness in the Gajendragadkar factorization.

https://doi.org/10.1017/S1446788700036077 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036077


88 I. M. Isaacs [8]

The first step in the proof of the solvable case of Feit's conjecture is to observe that
we need consider only primitive characters.

LEMMA 3.3. Suppose that H c G and that x e Irr(G) has the form x = ifG

for some character ^r e Irr(//). Then fix) divides fiir). In particular, if Feit's
conjecture holds in H, it also holds in G.

PROOF. Certainly Q(x) Q Q(VO £ Q/w» an^ t n u s fix) divides /(V0> as re-
quired. If H contains an element x of order /(VO, then some power of JC is the desired
element of G with order fix)-

Suppose now that fix) = n, where x € Irr(G). For each prime divisor p of n, let
op denote a generator of the cyclic Galois group Gal(Q«/Qn/p), and observe that x is
not invariant under op since Q.n/P does not contain all values of x- Assuming that G
is solvable, and supposing (as we may) that x is primitive, we can factor x = <*PPp>
where ap is p-special and fip is p'-special. By Lemmas 3.1 and 3.2, we deduce that
Qifip) c Q(x) HQ^, where mis the p'-part of \G\. ThusQ(^) c 0 , 0 0 , c Qn/p,
and hence f5p is fixed by ap. Since x is not invariant under this field automorphism
and Q(ap) c Q(x), we conclude that iapY

p is defined and is unequal to ap.
Consider now the function

p\n

Expansion of the product shows that ty can be expressed as a sum and difference of
characters, each of which is a product of the form J"T yp, where for each prime p n,
the character yp is one of ap or iapy

p. In either case, yp is p-special, and thus by
Theorem 2.10, each of these summands of \j/ is irreducible and they are all distinct. It
follows that there can be no cancellation, and in particular, \fr is nonzero.

Now let x € G be any element for which \jfix) ^ 0. The proof of the solvable
case of Feit's conjecture will be complete if we can show that the order O(JC) of x is a
multiple of n. For each prime divisor p oin, we know that (ap — icCpY^ix) / 0, and
hence apix) is a member of the field Q,, that is not invariant under ap. This number
does not, therefore, lie in Qj,/P. Since apix) certainly lies in QoU), it follows that the
full p-part of n must divide o(x). But holds for all prime divisors of n, and thus n
divides O(JC), as desired.

4. The nucleus

Since an irreducible character of a group G can always be written in the form \jrG

for some primitive character \js of some subgroup H c G, it follows by Theorem 2.4
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that if G is n -separable, then every irreducible character is induced from some n-
factored character. The pair (//, V0 is certainly not uniquely determined (not even
up to conjugacy) by the conditions that f is a primitive character of the subgroup H
and that yj/G = x- Even without uniqueness, one might hope that there is some set of
additional requirements or some particular construction that can be used to determine
a canonical choice of the G-conjugacy class of the pair (H, ifr).

If there is a canonical way to define a 'primitive inducing pair' {H, \jr) for a
character x € Irr(G), it is unknown to this author. Nevertheless, in a n-separable
group G, it is possible to construct a pair (W, y), uniquely determined up to conjugacy
in G, where W c G and y e lrr(W) is n-factored and satisfies yG = x- We call
a pair obtained in this way a 'nucleus' for x» and it is the purpose of this section to
discuss the construction of nuclei. (The details all appear in [8].)

We start by considering the collection of all ordered pairs (//, £), where H c G
and £ e Irr(//). Observe that G acts on the set of such pairs by (//, £)« = (//«, £«),
where | g e Irr(//g) is, of course, defined by the formula %s(hg) = £(/*)• Also, we
construct a partial order on the set of pairs by defining (H, i-) < (K, rj) if H c K and
| is a constituent of the restriction r\H.

Assuming now that G is it -separable, we let & = <^(G) be the set of subnormal
n-factored pairs. These are the pairs (S, 0) for which S « G and 0 € Irr(S) is
7r-factored. We are particularly interested in the subset of & consisting of all pairs
maximal in &, and we write &* to denote this set of maximal subnormal 7r-factored
pairs.

If x € Irr(G), then it is obvious that there exist some pairs (S, 9) e & such that
(S, 0) < (G, x)- Of course, there will exist pairs in & maximal with this property,
but perhaps it is not so obvious that there actually exist pairs in &* which lie below
(G,xl

THEOREM 4.1. Let G be it-separable and suppose x G Irr(G). Then there exists
(S, 9) e &*{G) such that (5, 9) < (G, x)- Furthermore, the pair (S, 6) is uniquely
determined up to conjugation by elements of G.

Each character x £ Irr(G) determines via Theorem 4.1 a particular G-orbit in &*,
and it is natural to consider the stabilizer T = NG((S, 6)) of a member (5, 9) of this
orbit. If we knew that S was normal in G (and not merely subnormal), then T would
be the inertia group of the character 9 of S, and the Clifford correspondence would
apply. In particular, there would exist a unique irreducible character i/s e Irr(r) lying
over 9 and such that ij/G = x- Remarkably, this holds even without assuming that S
is normal.

THEOREM 4.2. Assume that G is n-separable. Let (S,9) e &*{G), and write
T = NG((S, 9)). Then induction defines a bijection from Irr(r|0) onto Irr(G|6>).
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Given x € Irr(G), it is obvious that if x is n-factored, then the pair (5, 6) given
by Theorem 4.1 is just (G, x)- Otherwise, S is a proper subgroup of G. (In fact,
one could view the index of S, or perhaps the subnormal depth of S, as a measure
of how far x is from being 7r-factored.) It is perhaps not completely obvious that
if x is not a factored character, then not only is 5 < G, but also T < G, where
T = NG((S, #)), as before. To see this, write 9 = a/J, where a and /J are respectively
7r-special and 7r'-special. Note that we can write T = A n B, where A = NG((5, or))
and B = Nc((5, /?)). Note also that both A and £ are contained in N = NG(5).

LEMMA 4.3. Assume the previous notation and suppose that x £ Irr(G) is not
7t-factored. Then either \N : B\ is divisible by some prime inn or\N : A\ is divisible
by some prime inn'. In particular, T — AD B < G.

PROOF. Since x is not n-factored, we know that S < G, and we can choose U « G
such that U/S is a composition factor of G. Since U > S and (S, 6) e «^"\ we know
that no irreducible constituent of 0u can be n-factored.

If U/S is a n-group, then by Lemma 2.5 we see that fi is not invariant in U, and
hence U % B. Since U/S is a subnormal 7r-subgroup of N/S that is not contained in
B/S, it follows that the index \N : B\ is divisible by some prime in n. Similarly, if
U/S is a 7r'-group, then \N : A\ is divisible by some prime in n'.

We are now ready to define the nucleus of an arbitrary irreducible character of oui
n -separable group G. If x e Irr(G) is not n -factored, it follows from the previous
three results that there exists a pair (T,\/f), where T < G is the stabilizer in G of some
member of &* and \jrG = x- Furthermore, the pair (T,\/f) (which we call a standard
inducing pair for x) is uniquely determined up to G-conjugacy. If \(r is 7r-factored,
stop; otherwise construct a standard inducing pair for \j/. Continuing like this, we see
that the process must eventually stop, since at each stage we get a proper subgroup.
At the termination of this iterative procedure, we have a pair (W, y), where y is a
7r-factored irreducible character of W. Furthermore, (W, y) is uniquely determined
by x up to G-conjugacy. We write nuc(x) to denote the G-orbit of pairs containing
(W, y), and we refer to each member of this orbit as a nucleus for x- Specifically, we
say that W is a nucleus subgroup for x and that y is a nucleus character for x-

5. Partial characters

As usual, we have in mind a fixed set n of prime numbers. For any group G, we
write G° to denote the set of n -elements of G, the subset consisting of all elements
whose order involves only primes in n. Also, for any (complex valued) class function
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<p of G, we write (p° to denote the restriction of <p to G°. The map <p i-> <p° is clearly a
complex vector space homomorphism which maps the space cf (G) of class functions
of G onto cf(G)°, the space of n-class functions, the functions defined on G° and
constant on conjugacy classes.

If X is a character of G, we say that the n -class function x° is a n-partial character
of G. The motivation for this definition is the 'classical' case where n = p', the
complement of a prime number p. In this case, the Brauer characters of G are defined
only on G°, and it is a result of Brauer that every ^'-partial character is a (possibly
reducible) Brauer character. Furthermore, if G happens to be n -separable (which is
the same as p-solvable in this situation) the Fong-Swan theorem guarantees that every
irreducible Brauer character of G is a it -partial character. It follows that when n = p'
and G is n -separable, the n -partial characters of G are exactly the Brauer characters
of G. Our goal is to generalize the theory of Brauer characters for arbitrary prime
sets n, for 7r-separable groups. We do this by studying the n -partial characters of G
rather than by trying to find some 7r-analog of modular representation theory.

Actually, some care is needed here. If N is the subgroup of G generated by the TT-
elements, it is certainly possible to have N < G. In this case N° = G° and there exist
characters x of G and ^ of N having identical restrictions to G° = N°. Nevertheless,
we should not consider x° and ^° to be the same 7r-partial character; one should be
viewed as a n -partial character of G and the other as a n -partial character of N. (In
the case of Brauer characters, for example, if N = OP(G), and <p is a Brauer character
of G, we would not consider the Brauer character (pN to be the same object as (p, even
though they are they are functions with equal domains and equal values. It is entirely
possible, for example, that <p is an irreducible Brauer character of G and yet <pN is
reducible when viewed as a Brauer character of N.) We want n-partial characters,
therefore, to retain some 'memory' of their original domain of definition. If we were
willing to be somewhat pedantic, we might have defined a n -partial character of G
to be an ordered pair whose first component is a function defined on G° and whose
second component is the group G.

Since the set Irr(G) spans the vector space cf (G) over C, it is immediate that the
n-partial characters of an arbitrary group G span cf(G)°. In the case where n = p',
the set IBr(G) is a basis for cf (G)°, and if G is p-solvable, this is a basis consisting
of n -partial characters. Furthermore, every n -partial character can be expressed as a
nonnegative integer linear combination of members of this basis.

We restrict our attention now to ?r-separable groups G, where n is an arbitrary
prime set. It would be pleasant if we could find in this situation (as we can when
n = p') a basis for cf (G)° consisting of n-partial characters and having the additional
property that every ;r-partial character of G is a nonnegative integer combination of
this basis. We seek, in other words, some sort of it -analog of irreducible Brauer
characters in n -separable groups.
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It is a fact (as we shall see later) that in the case where n = p', the characters x°
lie in IBr(G) for all //-special characters x of G. In this situation, however, the only
Brauer characters that could possibly be restrictions of //-special characters are those
having //-degree, and these usually do not exhaust the set IBr(G). This suggests
that in the general case (where n is arbitrary), we might be able to use the n -partial
characters x°, where x is n-special, as at least a part of the basis we seek for cf (G)°.

By Theorem 2.7 we know that the restrictions of the 7T-special characters of G to a
Hall it -subgroup H are distinct irreducible characters of H, and thus they are linearly
independent functions on H. Since H c G°, it follows that the n-partial characters
X° are distinct and linearly independent as x runs over 2Cn{G), the set of 7r-special
characters of G. Our task now is to find some natural way to expand this set to a full
basis for cf(G)°. In particular, we would like to expand the set 3Cn{G) by somehow
weakening the eligibility requirement that character degrees must be 7r-numbers.

It is a theorem of B. Huppert that in a /^-solvable group, every irreducible Brauer
character is induced from a Brauer character of //-degree of some subgroup. This
suggests that it might be possible to obtain the desired expansion of the set of n -special
characters by including certain characters that are induced from n -special characters
of subgroups. We would like to do this in such a way that the resulting characters
are still intimately associated with the prime set n, even though they might not have
jr-degree.

6. ThesetB^(G)

We are now ready to define the character set BW(G) for a n -separable group G.
This is the set of those irreducible characters of G for which a nucleus character is
it -special. Since a n -factored character is always its own nucleus character, we see
that the n -special characters of G all lie in B^(G), and they are exactly the jr-factored
characters in this set.

It is also true that the 7r-special characters of G are exactly those members of B* (G)
which have 7T-degree.

LEMMA 6.1. Suppose that xW is a n-number, where x £ B^(G). Then x is
n-special.

PROOF. Let (W, y) be a nucleus for x e B^(G). Then y is jr-special and there
exists (S, 9) e &*{G) with (5, 9) < (W, y). It follows that 9 is 7r-special, and so in
the notation of Lemma 4.3, we have a = 0 and A = T. Also, /5 is the trivial character
of 5 and B = N, and thus \N : B\ is divisible by no prime in n. Furthermore, since
X has 7T-degree and is induced from T, we see that \G : T\ is a n-number, and thus
|Af : AI is divisible by no prime in n'. By Lemma 4.3, therefore, it follows that x is
n-factored, and since it lies in B^(G), we deduce that it is n-special.
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The characters in Bn(G) can be viewed as being 'generalized' it-special, and in a
number of ways, their behavior is analogous to that of genuine it -special characters.
The principal exception to this, of course, is that they need not have it -degree. It is
true, for example, although it is certainly not obvious, that the property of being a
B,,-character is normally heritable, and there is also a strong analog for Lemma 2.6.

THEOREM 6.2. Let N < G, where G is it -separable, and suppose x G Bn (G). Then
all irreducible constituents of XN He in BM(N).

THEOREM 6.3. Let N < G, where G is it-separable, and suppose \jf e
(a) If G/N is a it-group, then every character x € Irr(G) that lies over %jf is in

BAG).
(b) If G/N is a n'-group, then there is a unique character x € Bn(G) which lies

over xjr. In this case, [XN, &] = I.

The proofs of Theorems 6.2 and 6.3 and of all the results in this section can be
found in [8].

Observe that in contrast with Lemma 2.6(b), it is not assumed in 6.3(b) that the
character \Jr is invariant in G. Because of this, the degree of the character x may
have a larger 7r'-part than does the degree of \fr, but since eligibility for membership
in the set Bn (G) imposes no requirement on the degree of a character, this is not a
problem. If it happens that x/r is invariant in G, however, the last part of assertion
6.3(b) guarantees that x is an extension of rfr, and the situation is entirely analogous
to that in Lemma 2.6.

In many cases, Theorem 6.3 (together with the fact that it -special characters are
B^-characters) suffices to determine the set B^(G). This is significant because in
practice, it is difficult to compute a nucleus for a character, and so it is awkward to try
to use the definition of the set B^ (G) in order to test membership.

We can use Theorem 6.3 in the case where G is the symmetric group S4, for example,
to compute the sets B(2)(G) and B{3)(G). Writing K to denote the Klein subgroup of
order 4 and A to denote the alternating group A4, we see that all four linear characters
of K are {2}-special, and hence lie in B[2}(K). It follows from Theorem 6.3 that the
irreducible character of A of degree 3 lies in B{2}(A). Of the three linear characters
of A, only the principal character is {2}-special and can lie in B{2)(A). We now see
by Theorem 6.3 that B(2)(G) consists exactly of the two irreducible characters of G
of degree 3 and the two linear characters.

To compute B(3)(G), we start with the observation that only the principal character
of K lies in B{3)(K), and thus B{3)(A) consists exactly of the three linear characters of
A. It then follows that the principal character and the irreducible character of degree
2 are exactly the members of B{3)(G).

Recall that by Theorem 2.7, restriction defines an injection from the set
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of n-special characters of G into Irr(//), where H is a Hall 7r-subgroup of G. We
consider next the generalization of this result for the set Bw (G).

THEOREM 6.4. Let H be a Hall n-subgroup of the it -separable group G and
suppose that x € BW(G). Let a be any irreducible constituent of XH of smallest
possible degree. The following then hold.

(a) The degree a (I) is exactly the n-part xO)* rfxW-
(b) The multiplicity of a as a constituent of XH is 1.

(c) If x 7̂  V*" e
 BJT(CT), then a does not occur as a constituent of\jrH.

Observe that if x e Irr(G) is n -special, then Theorem 6.4(a) tells us that XH = oi
is irreducible, and by Theorem 6.4(c), no other n -special character of G has the
same restriction to H. In other words, Gajendragadkar's Theorem 2.7 is included in
Theorem 6.4.

If His a Hall n -subgroup of Gas in Theorem 6.4, we say that a character a e Irr(//)
is a Fong character in G if it occurs as a constituent of minimal degree in XH for some
character x € BW(G). By Theorem 6.4(c), the Fong character a uniquely determines
X, and we say that a is a Fong character belonging to, or associated with x- We
stress that for each character x € B^(G), there may be several different associated
Fong characters, and it should be clear that these are permuted by the group NG(//).
Unfortunately, there can be more than one orbit of Fong characters belonging to x
under this action.

We mention that we have chosen the name 'Fong characters' for these irreducible
constituents of minimal degree of the restrictions of B^-characters to Hall n -subgroups
because in the 'classical' case, where n is the complement of a prime, there is a result
of P. Fong that is very closely related to our Theorem 6.4. (See Theorems 2B and 2D
of [3].)

Although we will not discuss the details of the proof of Theorem 6.4 here, we can
present some of the ideas that are involved.

LEMMA 6.5. Let Hbe a Halln-subgroup ofan-separable group G. Ifx 6 B^(G),
then XH has an irreducible constituent with degree not exceeding xWn-

PROOF. Write x — YG, where y is an irreducible character of ;r-degree of some
subgroup W Q G. Observe that the required pair (W, y) exists, since we could take it
to be a nucleus for x- Replacing (W, y) by a conjugate if necessary, we may assume
that H n W is a Hall n -subgroup of W.

Now define a = (y(Hnw))H and observe that a( l) = y(l)\H : H n W\ is a
7T-number. Now x(l) = y(l)|G : W\, and so we compute that

= \H:HH W\y(l) = ^ ^
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Thus

and taking it -parts of both sides, we see that a(l) =
By Mackey's induction theorem, we know that a is a constituent of XH, and it

follows that every irreducible constituent of a satisfies the conclusion of the lemma.

After Theorem 6.4(a) is proved, we can deduce that the character a in the above
argument must be irreducible, and it is thus a Fong character belonging to x- We
note also that if x is a monomial character, we can take y to be linear in the proof of
Lemma 6.5. It follows in this case that a is monomial, and we record this observation
here for future reference.

COROLLARY 6.6. Suppose that x G B^(G) is monomial. Then some Fong charac-
ter belonging to x is monomial.

The following result, when combined with Lemma 6.5, easily yields Theorem 6.4.
We mention this theorem (although we do not give the proof) because it is interesting
that it applies to all irreducible characters of a Hall n -subgroup, and not just to Fong
characters. This greater generality has not yet been exploited.

THEOREM 6.7. Let H be a Hall n -subgroup of the n -separable group G.Ifae
Irr(//), then ot(l) is equal to the sum (counting multiplicities) of the n-parts of those
irreducible constituents ofaG which lie in Bn(G). In other words,

a ( l ) =

7. Irreducible partial characters

If G is /j-solvable, we know by the Fong-Swan theorem that the set IBr(G) of
irreducible Brauer characters at the prime p is a set of 7r-partial characters of G,
where n = p'. We are now ready to construct the set I,, (G) , which turns out to be
the analog of IBr(G) for 7r-separable groups G, where n is an arbitrary prime set.

We define ln(G) simply to be the set of n -partial characters x° for X € B

LEMMA 7.1. The set I,r(G) is linearly independent and the map x ^ X° from
Bn (G) onto ln (G) is injective.

PROOF. Let H be a Hall n -subgroup of G and note that H c G°. It suffices to
show that if

https://doi.org/10.1017/S1446788700036077 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036077


96 I. M. Isaacs [16]

with complex coefficients ax, then ax = 0 for all x e B^(G). This follows from
Theorem 6.4(c), since Fong characters belonging to different members of B^(G) are
different, and they cannot cancel.

In fact, we have the following.

THEOREM 7.2. / / G is n-separable, then MG) is a basis for the set cf(G)° of
n-class functions ofG.

What is needed to complete the proof of this theorem is to count the members
of B^(G). Specifically, we need to show that the number of characters in this set is
exactly equal to the number of n -classes of G. The proof of this proceeds by induction
on | G |, and we sketch part of the argument.

Let N be a maximal normal subgroup of G. By the inductive hypothesis (and
Lemma 7.1) it follows that the table of values of characters in B^(N) at n-classes
of N is a square invertible matrix. It follows by Brauer's permutation lemma that
the number of G-orbits of n -classes of N is equal to the number of G-orbits of B^-
characters of N. The first of these numbers is just the count of those 7r-classes of G
that happen to be contained in N. In the case where G/N is a jr'-group, these are,
of course, all of the n -classes of G. Also in this case, it follows by Theorem 6.3 that
there is exactly one character in B^(G) lying over each G-orbit of B (̂A )̂, and by
Theorem 6.2, this accounts for all members of B^(G). The result thus follows when
G/N is a n'-group. The proof in the remaining case, where G/N is a n-group, is
technically more difficult, and it appears it [8]. We will not discuss it further here.

Not only is lw(G) a basis for cf(G)°; as promised, even more is true.

COROLLARY 7.3. Every n-partial character of G is a nonnegative integer linear
combination of\n{G).

PROOF. Let rfr e Char(G) and write

with complex coefficients av. Let xv be the unique character in B^ (G) whose restric-
tion to G° is <p, and choose some Fong character a9 belonging to x<p- (We assume that
we have fixed some Hall n -subgroup H of G and that all of the Fong characters av

lie in Irr(//).)
By Theorem 6.4(b), the character a9 occurs with multiplicity 1 in <pH, and by

Theorem 6.4(c) it does not occur at all as a constituent of 9H if cp ^ 6 e ln(G). It
follows that av is exactly the multiplicity of a9 as a constituent of the character xj/H.
It is therefore a nonnegative integer, as claimed.
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It is immediate from Corollary 7.3 that I^(G) is exactly the set of irreducible
n -partial characters of G, those which cannot be written as sums of other n -partial
characters. It follows that the set 1̂  (G) can be constructed without first locating the
(somewhat elusive) B^-characters. One can read off 1̂  (G) directly from the character
table of G simply by deleting all columns that do not correspond to n -classes, and then
deleting (one-by-one) rows of the resulting matrix which can be written as nonnegative
integer combinations of the remaining rows. We know that this process will terminate
with the square table of values of 1̂  (G).

There is available a direct proof, independent of the theory of nuclei and of the
definition of BW(G), that the process for the construction of I^(G) described in the
previous paragraph necessarily results in a basis for cf (G)°. This argument, originally
due to G. Robinson and R. Staszewski [11], appears in somewhat simplified form in
[10].

The definition and many of the properties of Fong characters are also independent
of the construction of BW(G). If <p G ̂ (G), then <pH = XH, where H is a Hall n-
subgroup and x £ B^(G) satisfies x° = <P- In particular, cpH is an ordinary character
of H, and its irreducible constituents of least degree can be described as the Fong
characters belonging to (p. A version of Theorem 6.4 can thus be stated with I* (G) in
place of B^(G), and this is proved in [10] without appeal to the theory of nuclei or to
the definition of B* (G).

Unfortunately, some of the properties of the irreducible n -partial characters that
are needed for applications seem to be unobtainable without going through the full
development of n -theory as we have outlined it here. It follows from our results,
for example, that if <p e I;r(G) and N < G, then <pN is a multiple of the sum of the
members of a G-orbit in lx(N). This version of Clifford's theorem follows easily
using Theorem 6.2, but it is not clear how to obtain it from the approach discussed in
the previous two paragraphs.

We know from Theorem 7.2 that the number of characters in the set B^ (G) is equal
to the number of n -classes of the 7r-separable group G. It also possible to count the
7r-special characters of G. Although we shall not need this information, we mention
the result that is proved as Corollary 1.16 of [ 12]: the number of n -special characters
of G is equal to the number of n -classes in a Hall ;r-subgroup of the normalizer in G
of a 7r-complement of G.

We now prove a fact to which we alluded earlier.

COROLLARY 7.4. Letn = p', the complement of the prime number p, and consider
the set IBr(G) of irreducible Brauer characters ofG at the prime p. IfGis p-solvable
(that is, is n-separable), then IBr(G) =

PROOF. Let 9 e IBr(G), and observe that by the Fong-Swan theorem, 0 is a n-
partial character of G. By Corollary 7.3, therefore, 9 can be written as a nonnegative
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integer linear combination of the members of I^(G). Since each of these partial
characters is in fact a Brauer character, it follows from the irreducibility of 9 that it is
actually a member of \n (G).

We now know that IBr(G) c 1^(0, and since both sets have cardinality equal to
the number of it -classes of G, equality holds.

In fact, something more general is proved in [8].

THEOREM 7.5. Let G be it-separable, and suppose p is any prime not lying in it.
Then restriction to the set of p-regular elements defines an injection from Bn (G) into
IBr(G), the set of irreducible Brauer characters ofG at the prime p.

Observe that G is not necessarily /^-solvable in Theorem 7.5, and so the Fong-Swan
theorem is unavailable, and it is not used in the proof. Nevertheless, the theorem tells
us that a certain number of the irreducible Brauer characters of the it -separable group
G can be lifted to ordinary characters. In the case where it = p', Theorem 7.5 tells
us that I^(G) c IBr(G) and thus equality holds. In other words, this result provides
an independent proof of the Fong-Swan theorem.

8. An application

Let H be a Hall it -subgroup of a it -separable group G, and suppose \(r is a character
of H. We ask when it is true that there is some character x of G such that XH = ty-
An obvious necessary condition is that \(r (x) = rfr(y) whenever x and v are elements
of H that are conjugate in G. (We shall say that \fr is conjugacy compatible in G if
this happens.) Remarkably, this condition is sufficient too.

THEOREM 8.1. Let H c G be a Hall it-subgroup, where G is it-separable. If
i(r G Char(//) is conjugacy compatible in G, then ijt extends to a character ofG.

Before proceeding with the proof of Theorem 8.1, we mention that without the
assumption that G is it -separable, the assertion would be false, even if we take H to
be a Sylow subgroup. In the alternating group A5, for example, let H be a Sylow
3-subgroup and take ty to be the sum of the two nonprincipal linear characters of H.
It is trivial to check that \/r is conjugacy compatible in G, but since the only character
of A5 of degree 2 is the sum of two copies of the principal character, we see that \j/
does not extend to a character of G in this situation. (Note, however, that \fr does
extend to a generalized character in this case. This is a general phenomenon, which
is easy to prove using Brauer's characterization of characters.)

We mention also that the case of Theorem 8.1 where H is normal in G is known and
elementary. When H is normal, conjugacy compatibility is equivalent to invariance in
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G, and if \fr is irreducible, extendibility is guaranteed by Gallagher's Theorem (2.1).
Even if if is not irreducible, a routine argument suffices to reduce the problem to the
situation of Theorem 2.1.

We prove a slightly strengthened form of Theorem 8.1.

THEOREM 8.2. In the situation of Theorem 8.1, the character \jr extends to a char-
acter ofG all of whose irreducible constituents lie in BAG).

PROOF. Define the function 8 e cf(G)° as follows. If g e G is a n-element,
choose x € H such that g is conjugate to x in G, and set 9{g) = ir(x). This is well
defined since if y e H had been chosen in place of x, with v conjugate to g in G, then
xfr (x) = \j/(v) by the assumption that \[r is conjugacy compatible in G.

Now write 0 = Y1 a<p<P> where the sum runs over <p e I* (G) and the coefficients av

are complex numbers. Let fa e B^(G) satisfy (fa)0 = <p, and choose Fong characters
av € Irr(//) associated with fa. By the usual argument, we see that the multiplicity
of av in 6H is equal to a9. Since 0H = \jr is a character of // , we deduce that av is
a nonnegative integer, and it follows that x = 2Za<eA> is a character of G. Since
(A>)w = <PH, we have xw = 0H = V, as required, and we have shown that i(r extends
to a character of G all of whose irreducible constituents lie in B^ (G).

COROLLARY 8.3. The image of the restriction map 36n(G) ->• Irr(//) g/ve/i m
Theorem 2.7 w exactly the set of conjugacy compatible irreducible characters of the
Hall n-subgroup H.

PROOF. Certainly, every character in the image of this map is conjugacy compatible
in G, and so it suffices to prove the converse. Suppose then that a e Irr(//) is
conjugacy compatible in G. By Theorem 8.2, there is some character x € Char(G)
such that XH =ot, and this can be done so that all irreducible constituents of x lie in
BAG).

Since a is irreducible, it follows that x is irreducible, and thus x £ BAG). We
have x(l) = ot(l) is a n-number, and it follows by Lemma 6.1 that x is 7r-special, as
required.

9. Fong characters

Given a Hall subgroup H of a it -separable group G, how can one tell whether or
not a given irreducible character of H happens to be a Fong character? Also, how
can one tell whether or not two Fong characters of H belong to the same B^-character
of G? Answers to both questions are easy consequences of the following corollary
of 7.3.
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COROLLARY 9.1. Let r)r e Char(G), where G is it-separable, and suppose H is a
Hall n -subgroup of G. Then ^rH is a nonnegative integer linear combination of the
characters XH for x G B,,(G).

PROOF. We know that the n -partial character \j/° is a nonnegative integer linear
combination of ln(G) = {x°\x e B^G)}. Since H is contained in G°, we can
further restrict to H, and the result follows.

COROLLARY 9.2. Assuming the above notation, let a € ln(H). Then a is a Fong
character of G iff there is some character x € Irr(G) such that a occurs as an
irreducible constituent of least degree in XH-

PROOF. If a is a Fong character belonging to x £ B^(G), then by definition, a is
an irreducible constituent of least degree in XH-

Conversely, suppose that a is an irreducible constituent of least degree in \}rH,
where if e Irr(G). By Corollary 9.1, we know that fH is a nonnegative integer
linear combination of XH for x G Bff(G), and it follows that the set of irreducible
constituents of \jfH is the union of the sets of irreducible constituents of XH, where x
runs over some subset of B^ (G). It follows that a is an irreducible constituent of least
degree of XH for some character x € B^(G). In other words, a is a Fong character.

COROLLARY 9.3. Continuing with the previous notation, assume that a and fi are
Fong characters of H. Then a and fl belong to the same character x £ BW(G) iff
aG = p G .

PROOF. The Bw-characters to which a and y6 belong are the unique irreducible
constituents of aG and fiG that lie in B* (G). In particular, if aG = fiG, then a and £
belong to the same character ^ e B,(G).

To prove the converse, it suffices to show that aG can be computed from a knowledge
of the character in B^ (G) to which a belongs. For \j/ e Irr(G), we need to be able to
determine the multiplicity of \js in aG, and this, of course, is the multiplicity of a in
\jfH- By Corollary 9.1, we can write

and we see that the multiplicity of a in i/rw is exactly ax, where a belongs to x-

There is an entirely different way to answer the two questions with which we began
this section. Although computationally much less useful, this point of view actually
gives additional insight into what is going on.
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Suppose H c G and that a and fi are (possibly reducible) characters of H. We
say that a and fi are linked in G if we can find a subgroup U c H, a character
y 6 Char((7) and an element g e G such that Ug c / / and such that yH = a and

(y')H = j8.
The relation 'linked' is clearly symmetric and reflexive, but it need not be transitive.

We say, therefore, that characters a and fi of H are connected in G if there is a chain
of links joining them.

What properties do two connected characters share? It is easy to see that linked
characters (and hence connected characters) must have equal degrees. More generally,
if a and fi are connected, then aG = fi°. There is one important property, however,
that is not generally respected by character connectivity: irreducibility. Some con-
nected components of characters of H consist entirely of reducible characters, some
components may contain both reducible and irreducible characters and some consist
entirely of irreducible characters.

It may seem that the utility of the idea of character connectivity in G would be
severely limited by the fact that irreducible characters of H may be connected to
reducible characters. Actually, it is this aspect of connectivity which makes the notion
useful.

THEOREM 9.4. Let G ben -separable, let H be a Hall n subgroup of G and suppose
that G-connectivity of characters of H is defined as in the foregoing discussion. Then
the Fong characters of H in G are exactly those characters that lie in connected
components consisting entirely of irreducible characters. Furthermore, two Fong
characters of H belong to the same character in BW(G) iff they are G-connected.

Theorem 9.4 is the main result of [9], and we will not give the proof here. The
following corollary, however, is easy to derive, and it has significance beyond the
ambit of the n -theory we have been discussing.

COROLLARY 9.5. Let H be a Hall n-subgroup of a n-separable group G and
suppose that a e Irr(//) is primitive. Then there exists ̂ e B , (G) such that the Fong
characters belonging to x ore exactly a and its conjugates under NG(//).

PROOF. If a is G-linked to some character fi of H, then by definition we can find
a subgroup U c H, a character y of U and an element g e G such that Us c H and
where yH = a and {yg)H = fi.

Since a is primitive, we must have U = H, y = a and g e NG(//). It follows that
fi = ag is conjugate to a in NG(//), and in particular, fi is itself primitive. Thus the
only characters that are G-connected to a are the conjugates of a under NG(//), and
it is easy to see that each of these is connected to (and in fact linked to) a. The result
now follows from Theorem 9.4.
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We close with an application to the theory of M-groups. If G is an M-group, then
it is solvable by Taketa's theorem, and thus for any set n of primes, G has a Hall n-
subgroup H. It has been conjectured that Hall subgroups of M-groups are themselves
necessarily M-groups, and we observe that if this were true, it would imply that the
only primitive characters that H could have would be linear. This consequence of
the Hall subgroup conjecture is actually true, and this can be considered as (weak)
evidence pointing toward the truth of the conjecture.

COROLLARY 9.6. Let H be a Hall n-subgroup of an M-group G and suppose that
a € hr(H) is primitive. Then a is linear.

PROOF. It follows from Corollary 9.5 that a is a Fong character belonging to some
character x € BK(G). Since G is an M-group, we know that x is monomial, and thus
by Corollary 6.6, some Fong character belonging to x is monomial. By Corollary 9.5,
however, we know that all of the Fong characters belonging to x are conjugate in
NG (//), and hence all of them are monomial. Thus a is both primitive and monomial,
and so it is linear.
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