
LATTICE THEORY OF GENERALIZED PARTITIONS 

JURIS HARTMANIS 

1. Introduction. In (1) the lattice of all equivalence relations on a set 
S was studied and many important properties were established. In (2) and 
(3) the lattice of all geometries on a set 5 was studied and it was shown to 
be a universal1 lattice which shares many properties with the lattice of equi­
valence relations on S. In this paper we shall give the definition of a partition 
of type n and investigate the lattice formed by all partitions of type n on a 
fixed set S. It will be seen that a partition of type one on S can be considered 
as an equivalence relation on S and similarly a partition of type two on S 
can be considered as a geometry on S as defined in (2). Thus we shall obtain 
a unified theory of lattices of equivalence relations, lattices of geometries and 
partition lattices of higher types. We shall observe that most of the properties 
which hold for the partition lattices of type one and two hold for partition 
lattices of any type. We shall first show that a partition lattice of type n on 
a set 5 is a complete point lattice which is isomorphic to the lattice of sub-
spaces of a suitably chosen geometry. A characterization of the lattice of 
equivalence relations on 6* was given in (1). We shall give a similar characteri­
zation of the lattice of all geometries on 5 (that is, the lattice of partitions 
of type two on S) by characterizing the geometries whose lattices of subspaces 
are isomorphic to the lattice of geometries. We shall then show that the 
lattices of partitions of any type are complemented and special properties 
of these complements will be investigated. It shall further be shown that 
these lattices are simple and the groups of automorphisms will be constructed. 
Finally we shall investigate the complete homomorphisms of lattices of sub-
spaces of geometries and characterize them in terms of polygons in the 
geometry. We shall conclude by stating some unsolved problems. 

2. Generalized partitions. 
Definition 1. A partition of type n, n > 1, on the set 5 consisting of n or 

more elements is a collection of subsets of 5 such that any n distinct elements 
of 5 are contained in exactly one subset and every subset contains at least 
n distinct elements. 

It can be seen that the subsets of a partition of type one on 5 define an 
equivalence relation on S and vice versa. Similarly a geometry on S is 
equivalent to a partition of type two on 5 if we consider the lines defining 
the geometry as the subsets which form the partition. 

Received March 20, 1958. 
1Any finite lattice is isomorphic to a sublattice of the lattice of all geometries on some 

finite set. 
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We recall that a subset T of S is said to be a subspace of a geometry G 
on S if with any two distinct elements of T the line containing these elements 
is in T. Thus the set of all subspaces of a geometry G on S ordered under 
set inclusion forms a complete lattice. 

We shall refer to the subsets defining a partition as blocks. A block of a 
partition of type n is said to be non-trivial if it consists of at least n + 1 
distinct elements. Otherwise we shall call the block trivial. We shall represent 
a partition P by the set of its non-trivial blocks,, P — {Sa}. 

Let us now order the set of all partitions of type n on S by defining P i < P 2 

if and only if every block of P\ is contained in a block of P2. Under this ordering 
it is a partially ordered set which is closed under arbitrary intersections. To 
see this we just have to note that if {Pa \ a G .4} is any set of partitions of 
type n on 5 then the partition, whose blocks containing any n prescribed 
points xi, x2, . • • , xn of S are obtained by intersecting the corresponding 
blocks of P a , a Ç A, is the g.l.b. of {Pa | a £ A}. Since this partially ordered 
set of partitions has a unit element we conclude that it is a complete lattice. 
We shall denote it by LPn(S). To simplify the statements of the theorems 
we shall first agree to define L Pn(S) to consist of a single element if 5 contains 
less than n elements, secondly, let L P0(S) denote the Boolean algebra of all 
subsets of S. It can be seen that LPn(S), \S\ > n > 1, is a point lattice and 
that the points are partitions consisting of only one non-trivial block and 
this block contains n + 1 distinct elements. 

THEOREM 1. L Pn{S) is isomorphic to the lattice of subspaces of some geometry. 

Proof. The result holds for n == 0, since L Po(S) is isomorphic to the lattice 
of subspaces of the geometry on 5 in which every line consists of exactly two 
points. By our previous convention the result holds trivially for LPn(S), 
n > 1, if S consists of n or less elements. If 5 consists of more than n elements 
then the union in L Pn(S) of any two distinct points P i = {(#i, a2, . . . , an+i)} 
and Pi — I (bi, b2, . . . , bn+i)} is either a partition with only one non-trivial 
block and then this block consists of n + 2 elements, or it is a partition con­
sisting of two non-trivial blocks, that is, P i \J P2 = {(&i, a2, . . . , an+i), 
(bi, b2l . . . , bn+i)}. In either case P i VJ P2 covers P i and P2 . This implies 
that the sets of points of LPn(S), which are contained in unions of two dis­
tinct points, form the set of lines for a geometry on the set of points of L Pn(S). 
We now observe that if T is a subspace of this geometry and if for a point Q 
of L Pn(S) we have that Q < U {P |P G T], then Q Ç T. This implies that 
L Pn(S) is isomorphic to the lattice of subspaces of the geometry denned by 
the unions of pairs of points of L Pn (S). 

3. Characterization of LG(S). We shall now characterize the geometries 
whose lattices of subspaces are isomorphic to the partition lattices of type 
two on S. 

We shall introduce some concepts which are essential for the following 
theory. 
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Definition 2. Two distinct points p and g of a geometry G are said to be 

related if the line denned by p and q is non-trivial. 

Definition 3. The points p and g of a geometry G are said to be close if p 
is equal to q, p is related to q, or there exists a point t of G such t h a t p is 
related to t and / is related to q. 

Definition 4. Let the line / of G consist of the four distinct points pu p2, 
pz, pi, and let w denote the set consisting of the three collinear points pi, p2, 
and pz. Then a point g of G is said to be close to T if one of the two following 
conditions holds: 

(i) q is equal to pi, p2, or pz, 
(ii) q is close to pu p2, pz', q is distinct from p^ and not related to p±. 

For further discussion w will denote a triplet of distinct collinear points of G. 

Definition 5. in is said to be close to 7r2 if every point in wi is close to TT2. 

T H E O R E M 2. Le£ Z, fo /Ae lattice of subspaces of a geometry G on W and let 
W consist of four or more points. Then L is isomorphic to the lattice of all geome­
tries on some set S if and only if G satisfies the following five axioms: 

Axiom 1. T h e non-trivial lines of G consist of four points and every point 
is contained in a t least one non-trivial line. 

Axiom 2. If a point p is close to TT\ and TTI is close to w2 then p is close to 7r2. 

Axiom 3. If 7Ti is close to 7r2 then 7r2 is close to TTI. 

Axiom 4. If 7Ti, 7r2, 7T3 are distinct then there exists a point p such t ha t p 
i s C l o s e tO 7Ti, 7T2, 7T3. 

Axiom 5. Let / be a non-trivial line and let p be a point which is not on this 
line bu t is close to every point on this line, then p is related to exactly two 
points of /. 

T o show t h a t L is isomorphic to the lattice of all geometries on some set 5 
we have to show tha t there exists a one-to-one mapping of the set W onto 
the set of points of LG(S) (LG(S) = L P2(S)) and t ha t this mapping pre­
serves lines. T o do this we shall introduce the concept of a star of G. Let T 
be a triplet of distinct collinear points of G. Then the set of all points which 
are close to -K will be called the star of G defined by IT. This set will be denoted 
by A(TT). We shall show tha t the lattice of all geometries on the set of stars 
of G is isomorphic to L. We know tha t a point of LG(S) is a geometry with 
only one non-trivial line and this line consists of three points. T h u s every 
point of LG(S) is characterized by the three elements of 5 which are con­
tained in its non-trivial line. Therefore we first have to establish a one-to-one 
mapping of the set W onto the set of all triplets consisting of dist inct s tars 
of G. We shall do this by showing t ha t every point of G is contained in exactly 
three distinct s tars and tha t any three distinct s tars have exactly one point 
of G in common. The proof consists of the following lemmas. 
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LEMMA 1. If the point p is close to n then there exists 7r2 such that p is con­

tained in 7T2 and 7r2 is close to TIL 

Proof. Let xi consist of the dist inct points pi, p2, pz and let the fourth col-
linear point of this line I be pi. If p is contained in / then p mus t be equal 
to p\, p2, or pz since by Definition 4 the fourth collinear point pi is not close 
to 7Ti. Thus we may set 7r2 — wi since then p is contained in 7r2 and by Definition 
4 and Definition 5 we see tha t wi is close to w\. Let us now assume t h a t p is 
not on the line / bu t is related to a point of 71*1. Let this point be pi as indicated 
in Figure 1. Then pi is related to pi and pi is related to every point of the 

FIGURE 1 

line defined by p and pi. T h u s by Definition 3, pi is close to every point on 
this line and therefore by Axiom 5, p± is related to exactly two of the four 
distinct points of this line. We know t h a t pi is related to pi and let us denote 
the second point to which it is related by s. Since the line defined by p and pi 
consists of four points there must exist a point q on this line which is dist inct 
from p and is not related to pi. Let T2 consist of p, pi, and q. We see t h a t p 
is contained in 7r2 and we shall show t h a t 7r2 is close to TT\. By Definition 5 
we have to show t h a t every point of 7r2 is close to xi. pi is contained in 71-1 
and therefore by Definition 4 close to xi. p and q are close to every point in 
7Ti and not related to pi. T h u s by Definition 4 they are close to xi. I t follows 
tha t 7T2 is close to xi. We may now assume t h a t p is not related to any point 
on the line /. Since p is close to pi there exists a point t oi G such t h a t p is 
related to / and t is related to pi as shown in Figure 2. Using the result of 
the previous case we know tha t there exists a tr iplet x3 on the line defined 
by p\ and / such t ha t t is contained in 7r;i and 7r;i is close to xi. Let us denote 

FIGURE 2 
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the point of this line which is not contained in 77-3 by 5 as we did in the previous 
case. We recall t h a t 5 is related to pi. Thus p cannot be related to 5 since 
otherwise p is related to s and s related to pi which implies t ha t p is close 
to pi and therefore close to every point on /. From this we would conclude 
tha t p is related to exactly two points on the line /, contrary to assumption. 
Bu t then p is close to TT3 and is related to t which is contained in 7r3. Using 
again the result of the previous case there exists a triplet 7r2 on the line defined 
by p a n d / such tha t p is contained in 77-2 and 77-2 is close to 7r3. N O W we have 
t h a t p is contained in 7r2, 7r2 is close to 7r3, and TT3 is close to -w\. Thus by Axiom 
2 we conclude tha t ir2 is close to ?n. This completes the proof of Lemma 1. 

LEMMA 2. Any there distinct collinear points contained in a star define the 
star. 

Proof. Let wi be contained in A(7r2). Then every point of wi is close to 7r2 

and therefore wi is close to 7r2. By Axion 3, 7r2 is close to TTI and therefore by 
Axiom 2 every point which is close to TTI is close to 7r2 and vice versa. From 
this it follows tha t A (71-1) = A(7r2). 

LEMMA 3. Every point p of G is contained in at least three distinct stars. 

Proof. By Axiom 1 a point p of G is contained in a t least one non-trivial 
line / and this line consists of four points. There are exactly three distinct 
triplets xi, 7T2, and 7r3 of / which contain p. The fourth collinear point of I 
which is not contained in wi is by Definition 4 not contained in A (77-1). But 
this point is contained in 7r2 and 7r3 and therefore it is contained in A(7r2) and 
A(7r3). Thus A (77-1) is distinct from A(7r2) and A(7r3). Similarly we show tha t 
A (77-9) is distinct from A(7r3). This shows tha t there are a t least three dist inct 
stars which contain p. 

LEMMA 4. There are exactly three distinct stars contining every point p of G. 

Proof. Let p be contained in a non-trivial line / and let TTI, 7r2, and 7r3 be 
the distinct triplets of / which contain p. By the previous result we know tha t 
the stars A (77-1), A(TT2), and A(7r3) are distinct. Let p be contained in some 
star A(TT); we shall show tha t A (71-) is equal to A(?n), A(7r2), or A(7r3). Note 
t ha t if p is contained in A (77-) then by Lemma 1 there exists a triplet 7/ such 
tha t p is contained in 77-' and TT' is close to TV. If 77-' is contained in the line / 
then it must be equal to TTI, 7r2, or 7r3 and therefore by Axiom 3 and Axiom 2 
we conclude tha t A (77-) is equal to A (77-1), A(7r2), or A (77-3). Thus we may assume 
tha t TT' is contained in a non-trivial line V and tha t V is distinct from /. Let us 
denote the point of V which is not contained in 7/ by q. Since p is contained 
in irf and therefore in V we see tha t a is related to p and p is related to every 
element of the line /. Thus a is close to every point on the line /.and therefore 
related to exactly two points of /. We know tha t a is related to p. Let the 
second point to which p is related be denoted by s. One of the triplets wi, 
7T2, or 7r3 does not contain the point s, say wi. Then 71-1 is close to w' since p 

https://doi.org/10.4153/CJM-1959-013-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-013-8


102 JURIS HARTMANIS 

is contained in in and the two remaining points of n are close to every point 
in rf and not related or equal to q. From the fact t h a t TTI is close to ir' it 
follows by Axiom 3 and Axiom 2 t h a t A (71-1) = A (71-') ; this proves Lemma 4. 

By Axiom 4 any three distinct s tars have a t least one point in common. 
The next lemma will show t h a t there cannot be more than one such point. 

LEMMA 5. Any three distinct stars have exactly one point in common. 

Proof. Let p and q be dist inct points of L. We shall show tha t the three 
dist inct s tars which contain p cannot all contain q. Let p be contained in the 
non-trivial line / and let 7ri, 7T2, and 7r3 be the distinct tr iplets of / which con­
tain p. These tr iplets define the three dist inct s tars which contain p. If q is 
also contained in the line / then q is not contained in one of these tr iplets . Let 
this tr iplet be TT\. Then q is not contained in the s tar A(TTI) since q is the 
point of / which is not contained in ir\. T h u s we may assume t h a t p and q 
are not related, which implies t ha t q cannot be close to 71-1, 7r2, and 7rs. Since 
if q would be close to xi, 7r2, and x3 then q would be close to every point on / 
and therefore q would be related to exactly two elements of /. Bu t then q 
would be related to an element of / which is not contained in one of the 
tr iplets Tri, 7T2, or 7T3 and therefore q would not be close to one of these tr iplets, 
cont rary to the assumption. T h u s q is not contained in one of the three s tars 
which contain p. This proves Lemma 5. 

So far we have shown t h a t there exists a one-to-one mapping of the set W 
onto the set of points of LG(S), where 5 is the set of s tars of G. Let us denote 
this mapping by 6. 

LEMMA 6. The mapping 6 preserves lines. 

Proof. Let / be a non-trivial line of G. Then / contains four distinct tr iplets 
7Ti, 7T2. 7T3, 7T4 and these tr iplets define the four dist inct s tars Ai, A2, A3, A4, 
respectively. Every point of the line I is contained in three of these tr iplets 
and therefore in three of these stars. Under the mapping 6 the line / is 
mapped into the line /' of LG(S) which consists of the four points {(Ai, A2, A3)}, 
{(Ai, A2, A4)}, {(Ai, A3, A4)}, and {(A2, A3, A4)}. This shows t h a t every point 
on the line / is mapped into a point of the corresponding line I' of LG(S). 
Conversely, let I' be a non-trivial line of LG(S) and let this line consist of 
the four points {(Ai, A2, A3)}, {(Ai, A2, A4)}, {(Ai, A3, A4)} and {(A2, A3, A4)}. 
Let {(Ai, A2, A3)} and {(Ai, A2, A4)} be mapped onto the points p and q 
respectively. Let p be contained in a non-trivial line / of G. We know t h a t the 
triplets 7Ti, 7r2, 7T3 of / which contain p define the s tars Ai, A2, A3, respectively. 
Then q is contained in Ai and A2 and therefore q is close to every point on /. 
T h u s q is related to exactly two points of I. T h u s q has to be related to p 
since otherwise one of the tr iplets wi or 7r2 would not contain a point of I to 
which q is related and therefore q would not be close to TTI or 7r2, cont rary to 
assumption. T h u s p and q are related. Wi thou t loss of generality we may 
assume t h a t p and q are contained in / and t h a t wi, 7r2, 7r3, 7r4 are the dist inct 
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triplets of /. Then wi, ir2, 7r3, and 7r4 define the stars Ai, A2, A3, and A4, 
respectively. Clearly every three distinct triplets of the set 7I"i, 7T2, 7T3, 7T4 
have a point in common and this point is contained in I. This shows that 
every point of the line /' is mapped into a point on the corresponding line /. 
Thus the mapping preserves lines and we conclude that L is isomorphic to 
LG(S). 

A straightforward computation shows that the five axioms of Theorem 2 
hold in LG(S)-ii S consists of four or more elements. 

Thus we have completed the proof. 

4. Lattice theoretic properties of LPn(S). We shall now study the 
lattice theoretic properties of LPn(S). 

THEOREM 3. For each given point P of L Pn(S) and a given integer ni,n > m 
> 0, there exists a complete sublattice L of L Pn(S) such that 

(i) L is isomorphic to L Pm(S — {a\ V a2 V . . . V aw_m}), 
(ii) L contains the point P, 

(iii) the unit and zero elements of L and L Pn{S) coincide. 

Proof. Let a point P = {a,\ v a2 v . . . v an+\) of L Pn{S) be given. If m = n 
then the theorem is trivially satisfied. Otherwise we let M denote the set 
{ai, a2, . . . , aw+i}. Let us now consider all the elements of L Pn(S) whose 
non-trivial blocks contain M and let us denote this set by L. It can be seen 
that P, 0, and I are in L and that L is closed under arbitrary intersections 
in LPn(S). Furthermore for any subset {Aa} of L and C in L Pn(S) such 
that Aa < C there exists C in L such that Aa < C < C. To obtain C from 
C we just remove all the non-trivial blocks of C which do not contain the 
set M and replace them by the necessary trivial blocks. From this we conclude 
that C\{A \ A > Aa] = \J{Aa] is an element of L, which shows that L is a 
complete sublattice of L Pn(S). 

To show that L is isomorphic to a partition lattice of type n-m on S-M we 
observe that after the removal of the set M any two blocks of an element in 
L can have almost n — m — 1 points in common. Thus any element of L can 
be considered as a partition of type n — m on 5 — M and to every partition 
of this type there corresponds a unique element of LPn(S). Since this one-to-
one correspondence is order-preserving we conclude that L is isomorphic to 
LPn„m{S- M). 

THEOREM 4. L Pn(S) is complemented. 

Proof. L Po(S) is known to be complemented. We shall give a general 
proof for n > 1 which will include the cases previously proven for n = 1 
and 2. To construct a complement for a partition P of LPn(S), P 9^ 1,0, 
we let A be a subset of S such that A has at most n points in common with 
any block of P. The collection of all such sets forms a partially ordered set 
under set inclusion and by the Maximal Principle it follows that there exists 
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a maximal element in this partially ordered set. Let us denote this maximal 
set by M and let us consider the part i t ion {M) whose only non-trivial block 
is M. We first observe t h a t {M} H P = 0. We shall now show tha t {M} \JP = / . 
Let the block of {M) \J P which contains M be denoted by K. Then {M} VJ P 
consists of K and the blocks of P which are not contained in K. Bu t this will 
be shown to imply t h a t K = S. If there should exist an x in 5 and not in M 
then, recalling t h a t M was a maximal set, there must exist n + 1 dist inct 
elements which are in M v {x\ and some block B of P. But 

then Xi, x2, . . . , xn are in K and B and therefore B C K. T h u s x is in K 
and we conclude t ha t K = S. Which proves t h a t L Pn(S) is complemented. 

We observe t h a t the complement of P which was constructed in the previous 
proof has only one non-trivial block and t h a t we can construct this block 
so t h a t it contains any n prescribed points of 5 . T h u s if P is not the zero 
or the uni t element of L Pn(S) it contains a block which contains a t least 
n + 1 distinct elements. We can pick two dist inct sets of n elements from this 
block and for each set construct a complement of P whose non-trivial block 
contains this set. I t can be seen t h a t these complements are distinct. T h u s 
we have proven the following result. 

COROLLARY 1. If P in L Pn(S),\n > 1, has a unique complement then P = I 
or 0. 

COROLLARY 2. L Pn(S) contains a sublattice isomorphic to a Boolean algebra 
and every element of L Pn(S) has a complement in this sublattice. 

Proof. The corollary holds for n — 0. Otherwise we know from Theorem 3 
t h a t the set of elements of L Pn(S) whose non-trivial blocks contain the fixed 
set consisting of n dist inct elements ai , a2, . . . , an forms a sublatt ice L which 
is isomorphic to a Boolean algebra. On the other hand, we know from the 
preceding remarks t ha t every element of L Pn(S) has a complement in this 
sublatt ice. This completes the proof. 

Let us now investigate the homomorphisms of LPn(S), n > 1. 

T H E O R E M 5. There are only trivial homomorphisms of L Pn(S), n > 1. 

Proof. In (1) Ore showed t h a t L P i ( S ) has only trivial homomorphisms. 
This will be shown to imply t h a t L Pn(S), n > 1, has only trivial homo­
morphisms. T o see this we recall t h a t if 6 is a homomorphism on a point 
lattice which identifies a t least two dist inct elements then a t least one point 
has to be mapped into the zero element. T h u s a point P of L Pn(S) has to 
be mapped into the zero element. On the other hand, by Theorem 3 we know 
t h a t there exists a sublatt ice L of L Pn(S) which is isomorphic to L Pi(S) 
and which contains P. Bu t then 6 identifies two dist inct elements of L == L 
Pi(S — M) which implies t ha t all elements of L are identified. Thus , since 
the zero and unit elements of L and L Pn{S) coincide, we conclude tha t all 
elements of L Pn(S) are identified. 
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T H E O R E M 6. The group of automorphisms of L Pn(S) is isomorphic to the 
symmetric group on S if S consists of more than n elements. 

Proof. The result has been shown to hold for n = 0, 1, 2. Our proof will 
hold for n > 1. We note t ha t any automorphism of L Pn{S) has to map an 
element of the form [S — p), p in S, onto some other element of the same 
type. This induces a permutat ion on the set 5 and clearly to every permu­
tat ion on the set 5 there corresponds an automorphism of LPn(S). Fur ther­
more we know tha t every element of L Pn(S) can be writ ten as a union of 
intersections of elements of the form {S — p). Thus we conclude t ha t the 
group of automorphisms of L Pn(S) is isomorphic to the symmetric group on S. 

In previous research and in this paper, it was seen tha t the concept of a 
geometry and the lattice of subspaces of this geometry does appear in many 
mathematical investigations. We shall now show the connection between the 
non-trivial polygons in the geometry G and the complete homomorphisms of 
the lattice of subspaces of G. 

We shall call a line I of G non-trivial if / consists of more than two points. 
Let us call a set of non-trivial lines lu Z2, . . . , ln a non-trivial polygon if, con­
sidering {/i}, {l2\, . . . , {ln} as part i t ions of type one on S, we have {h} 
VJ \l2} \J . . . VJ {ln} = {/i v h V . . . V In}- I t can be seen tha t the non-trivial 
polygons induce an equivalence relation on the points of the geometry G if 
we define a and b to be in the same equivalence class if and only if a and b 
can be connected by a non-trivial polygon. 

T H E O R E M 7. There is a one-to-one order preserving correspondence between 
the complete homomorphisms of the lattice of G and the subsets of the equivalence 
classes defined in G by the non-trivial polygons. 

Proof. Let S consist of three or more elements. Then the lattice of sub-
spaces of the geometry G on S, which has only one line I — S has only trivial 
homomorphisms. Note t ha t if S — {pi, p2, . . . , pn) then the lattices of sub-
spaces is {S > pi, p2, • . • , pn > <i>), bu t this lattice is known to have only 
trivial homomorphisms. This implies t ha t if a point p of any geometry G 
on S is mapped into the zero element by a homomorphism 6 then the points 
on any non-trivial line which contains p are mapped by 6 into the zero element. 
But then all the points contained in the equivalence class, induced by the 
non-trivial polygons of G, which contains p are identified with the zero element. 
T h u s every homomorphism 6 has to map all the points contained in a subset 
of the equivalence classes into the zero element. Conversely, to every subset 
of the equivalence classes there corresponds a homomorphism which identifies 
all the points in these equivalence classes with the zero element. Since every 
complete homomorphism 6 on a complete point lattice is uniquely defined by 
the set of points which 6 maps into the zero element we see tha t we have 
established a one-to-one order preserving mapping between the complete 
homomorphisms and the subsets of the equivalence classes. 
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The previous proof implies further the following result. 

COROLLARY 3. The lattice of complete homomorphisms of the lattice of sub-
spaces of G on S is isomorphic to the Boolean algebra on the set of equivalence 
classes on S induced by the polygons of G. 

Finally we observe that any two complete homomorphisms on the lattice 
of subspaces of a geometry G permute. 

So far we have characterized the complete homomorphisms of the lattices 
of subspaces of geometries. It remains an unsolved problem whether there 
are any incomplete homomorphisms in these lattices and if so how can these 
geometries be characterized. Furthermore, an interesting problem is to 
determine which geometries have complemented lattices of subspaces. Cer­
tainly one of the most interesting unsolved problems in lattice theory is 
Birkhoff's (4) problem number 48 which can be stated as follows: Is every 
finite lattice isomorphic to a sublattice of L Pi(S) for some finite set 5? So 
far we know by (2) and Theorem 3 that every finite lattice is isomorphic to 
a sublattice of L Pn(S), S finite, n > 2. 
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