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Eigenfunction Decay
For the Neumann Laplacian
on Horn-Like Domains
Julian Edward

Abstract. The growth properties at infinity for eigenfunctions corresponding to embedded eigenvalues of the
Neumann Laplacian on horn-like domains are studied. For domains that pinch at polynomial rate, it is shown
that the eigenfunctions vanish at infinity faster than the reciprocal of any polynomial. For a class of domains
that pinch at an exponential rate, weaker, L2 bounds are proven. A corollary is that eigenvalues can accumulate
only at zero or infinity.

1 Introduction

Let Ω be a connected planar domain which has the following form:

Ω = {(x, y), x ≥ 0, h(x)− f (x) < y < h(x) + f (x)} ∪ κ,

where κ is a domain with compact closure. In this paper we assume that f (x) is a positive
function such that f (x) ↓ 0 as x → ∞. Such domains we shall label “horn-like”. In what
follows we also assume Ω obeys the segment condition, i.e. ∂Ω has a locally finite open
covering {Oi} and corresponding nonzero vectors {yi} so that for t ∈ (0, 1), x + t yi ∈ Ω if
x ∈ Ω ∩ Oi (see [15], p. 256 for more on segment condition).

It is well known that the Dirichlet Laplacian for such domains has discrete spectrum.
The decay properties of Dirichlet-eigenfunctions have been the object of considerable study
recently [1, 2, 3, 4, 6], and both lower and upper bounds on the eigenfunctions in a neigh-
bourhood of infinity have been obtained.

The spectral properties of the Neumann Laplacian are less well understood. For h(x) =
0, and under certain rapid decay hypotheses on f and its derivatives (e.g. f (x) = e−xα ,
α > 1), the spectrum of Neumann Laplacian has been shown to be discrete ([12, 7, 5]).
On the other hand, for f (x) of polynomial decay, or f (x) = e−xα , α ∈ (0, 1), it has been
shown that the essential spectrum consists of the interval [0,∞) and that the embedded
eigenvalues can accumulate only at zero or infinity ([7, 8, 9, 11, 12, 13]). In the case that
the essential spectrum is [0,∞), it was observed that for domains symmetric about the
x-axis, there exist infinitely many embedded eigenvalues [7].

In this note we prove upper bounds for the eigenfunctions corresponding to embed-
ded eigenvalues of Neumann Laplacian in horn-like domains. The methods used for the
Dirichlet Laplacian appear not to apply in the case of Neumann boundary conditions. In

Received by the editors May 8, 1997; revised January 22, 1999.
AMS subject classification: Primary: 35P25; secondary: 58G25.
Keywords: Neumann Laplacian, horn-like domain, spectrum.
c©Canadian Mathematical Society 2000.

51

https://doi.org/10.4153/CMB-2000-007-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-007-4


52 Julian Edward

fact lower bounds on the eigenfunctions are not generally possible, since the eigenfunctions
observed for symmetric domains in [7] vanish on the x-axis.

At the end of this section we will pose two sets of conditions on the pair ( f , h), which
we will label polynomial type decay and exponential type decay.

Theorem 1 Suppose f , h are either of polynomial or of exponential type decay. Suppose

∆ũ ≡ −
∂2ũ

∂x2
−
∂2ũ

∂y2
= Eũ

for E > 0, with ∂ũ/∂η|∂Ω = 0 and ũ a unit vector in L2(Ω, dx dy). Then for any positive
integer N, there exists a positive number C such that

‖xN ũ‖L2(Ω,dx dy) < C.

We remark in passing that for fixed N , the constant C in Theorem 1 can be made uni-
form for E ∈ [δ,M] for δ > 0, M <∞. Consequently, we can use a compactness argument
as in [10] to prove

Corollary 1 Under the hypotheses of Theorem 1, the eigenvalues of ∆ can accumulate only
at 0 or infinity.

As was previously noted, this result was proven by other methods in [7, 13, 8, 10]. How-
ever, our methods will treat some domains not treated in those above, such as h(x) = ln x,
f (x) = xε, ε ∈ (0, 2).

For polynomial type decay, Theorem 1 strengthens to a pointwise estimate:

Theorem 2 Suppose f , h are of polynomial type decay. Suppose ∆ũ = Eũ for E > 0, with
∂ũ/∂η|∂Ω = 0 and ũ a unit vector in L2(Ω, dx dy). Then for any positive integer N, there
exists a constant K such that

|ũ(x, y)| ≤ Kx−N .

We remark that the methods of this paper can be generalised to domains of higher di-
mensions and to manifolds.

The analysis in our proof is an adaptation of the methods in [10]. We use a change
of coordinates followed by a unitary transformation to show that the equation ∆ũ = Eũ
implies the following equation holds on the semi-infinite strip {(r, s), r > 0, s ∈ (−1, 1)}:

Hu = Eu,

with

H = −
∂

∂r
α−2 ∂

∂r
−
∂

∂s
β−2 ∂

∂s
+ V, r > 1.(1)

Here α, β, and V are functions on the strip that are determined by f , g. For r > 1 the
associated boundary conditions will be

(αβ)s

2αβ
u + us|s=±1 = 0.(2)
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An important role will be played by a family of Sturm-Liouville problems parametrised
by r: vss +λv = 0, s ∈ (−1, 1) with boundary conditions given by Equation 2 for any fixed r.
Let P be the orthogonal projection to the eigenspace associated to the smallest eigenvalue.

We analyse separately the terms Pu and (I−P)u. We apply the operator P to the equation
Hu = Eu. After commuting P to the right, we obtain a family of ordinary differential
equations for Pu, parametrised by s. Study of these differential equations yields bounds
on Pu. On the other hand, we will show that f−2D2

s (I − P)u is in L2. Since, for large r,
D2

s is strictly negative on the range of (I − P), this will show that f−1(I − P)u is in L2.
This will prove a preliminary decay estimate on u, which can then be strengthened by a
bootstrapping argument from [10].

We now define “polynomial-type decay” and “exponential-type decay”. Denote the jth
order derivative of f by f ( j), the jth power of f by f j , and similarly for h. We say f , h are
of “polynomial type decay” if

A1: f > 0,
A2: C1x−ε ≤ f (x) ≤ C2x−γ , for some γ, ε, C1, C2 > 0, and γ < min(ε, 1/2).
A3: f (1) = O(x−1), f ( j) = O(x−2), j ≥ 2.
A4: h(1) = O(x−1), h( j) = O(x−2), j ≥ 2.
A5: (h(1) f (1)/ f )( j) = O(x−2), j ≥ 0.
A6: (h(1) f (1)/ f 2)( j) = o(1), (h(2)/ f )( j) = o(1), j ≥ 0
A7: f (1)/ f = O(x−1); ( f (1)/ f )( j) = O(x−2), j ≥ 1.

We remark that if the assumption f = O(x−γ) is weakened to f = o(1), then somewhat
weaker analogues of Theorems 1, 2 can be proven.

We say f , h are of “exponential type decay” if conditions A1, A4, A5 hold, and conditions
A2, A3, A6, A7 are replaced by:

A2 ′: f = O(x−1),
A3 ′: f ( j) = O(x−2), j ≥ 2
A6 ′: (h(1) f (1)/ f 2)( j) = O(x−1), (h(2)/ f )( j) = O(x−1), j ≥ 2
A7 ′: ( f (1)/ f )( j) = O(x−1/2−γ− j/2), j ≥ 0, for some γ ∈ (0, 1/2).

Although the conditions for polynomial type decay or exponential type decay are restric-
tive, they are satisfied by a large number of examples including

1. h(x) = 0, f (x) = x−ε, ε > 0,
2. h(x) = 0, f (x) = exp(−xα), α ∈ (0, 1/2)
3. h(x) = log(x), f (x) = x−ε, ε ∈ (0, 2),
4. h(x) = x−2 sin x, f (x) = x−ε, ε ∈ (0, 2),
5. h(x) = sin

(
log(x)

)
, f (x) = x−ε, ε ∈ (0, 2).

2 Proof

In what follows, we will use interchangeably the notations ∂x/∂r and xr, etc. Also, it will

often be useful to denote ∂ j/∂r j by D j
r , etc.

We begin by defining a change of coordinates (x, y)→ (r, s). The properties listed below
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for this change of coordinates are proven in [9]; we merely cite them here. Let

s =
y − h(x)

f (x)
.(3)

The coordinate r = r(x, y) will be defined so that the level curves of r are orthogonal to the
level curves of s. Thus the level curves of r will be the flow lines for the vector field∇s. We
define r(x, y) geometrically as follows: given (x, y), let r(x, y) be the x-coordinate of the
line s = 0 intersected with the flow line of−∇s starting from (x, y).

The mapping (x, y) → (r, s) defines a diffeomorphism from the end in Ω to a semi-
infinite strip which we can assume to be {(r, s) : r > 0, s ∈ (−1, 1)}. Furthermore, x ∼ r
in the sense that as x→∞, r(x, y)− x→ 0 uniformly in y.

The Euclidean metric in coordinates r, s can be writtenα2dr2+β2ds2, withα, β satisfying
the following estimates:

Lemma 1 Let γ be the positive constant determined by A2 or A7 ′. Then:

i) α−2 − 1 = O(r−2),
ii) β−2 − f (r)−2 = O

(
r−2 f (r)−2

)
,

iii) αr/α
3 = O(r−2),

iv) βs/β
3 = O

(
( f (1)/ f )2

)
.

v) V = O(r−1−2γ), Vr = O(r−3/2−2γ), Vs = O(r−2), Vrr = O(r−2), with ε > 0
vi) For i + k ≥ 2 we have the estimates

( f−1Ds)
iDk

rα = O(r−2), ( f−1Ds)
iDk

rβ = O(r−2), ( f−1Ds)
iDk

rV = O(r−2).

vii) D j
r ( (αβ)s

αβ
) = O(r−1−2γ f 2), for j ≥ 0.

Note that the measure associated to the metric is αβdr ds. If ω is a positive, smooth
function defined by

ω−1 =

{
1 on {r < 0} ∪ κ

αβ for r > 1

then one can define a unitary transformation from L2(Ω, dx dy) to L2(Ω, ωdx dy) by U v =
(ω)−1/2v. The main reason this transformation is useful is that for r > 1,

ωdx dy = dr ds.

Henceforth we will denote L2(Ω, ωdx dy) by L2.
We define the operator H on L2 by H = U∆U−1. A straightforward calculation shows

that the differential expression for H is given by Equation 1, and that for r > 1 Neumann
boundary conditions are transformed to those given in Equation 2. Suppose∆ũ = Eũ for
ũ ∈ L2(Ω, dx dy). Letting u = U ũ, we have Hu = Eu, with u ∈ L2.

Let χ be a cutoff function that vanishes in the complement of {r > 0} which is identi-
cally 1 for r > 1.
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Lemma 2 For i + j ≤ 2, the operator

χ
(

f−1(r)Ds

) j
Di

r(H + 1)−
i+ j
2 : L2 → L2

extends to a bounded operator.

The proof is found in [8], Lemma 3.
We associate to Equation 1 the Sturm-Liouville problem

uss(s) + λ ju(s) = 0, s ∈ (−1, 1)

with boundary conditions given by Equation 2. Here λ0 < λ1 < · · · .
By Lemma 1, it follows that

lim
r→∞

(αβ)s

2αβ
= 0.

It thus follows that

lim
r→∞

λ0 = 0, lim
r→∞

λ1 = π
2/4.(4)

A more careful analysis of λ0 given in ([8], Lemma 7), together with Lemma 1 part vii of
this paper, proves

λ
( j)
0 = O

(
r−1−2γ f (r)2

)
, j = 0, 1, 2.(5)

Let v0 be the normalised eigenvector corresponding to λ0 in the associated Sturm-
Liouville problem. It is straightforward to show that for fixed r and for λ0 ≥ 0,

v0(s) =

(
1 +

sin 2
√
λ0

2
√
λ0

)−1/2

cos(
√
λ0s).(6)

For fixed r > 1, let P be the orthogonal projection of L2
(
(−1, 1), ds

)
onto v0. Thus,

Pu = v0

∫ 1

−1
u(s)v0(s) ds.(7)

The operator χP naturally defines a bounded operator L2(Ω, ω dx dy).
Since χD2

s Pu = −χλ0Pu, it follows by Equation 5 that the operator χD2
s P extends to be

bounded on L2(Ω, ωdx dy), satisfying the estimate

‖χD2
s Pu‖L2 ≤ C‖ f (r)2r−1−2γχu‖L2 .(8)

Lemma 3 The following operators extend to bounded operators on L2:

A: r2χ[D j
r , P](H + 1)( j−1)/2, j = 1, 2,

B: χ[H, P](H + 1)−1.
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For the proof of this lemma, the reader is referred [8], particularly Lemma 8.
The key steps in proving Theorem 1 are the three lemmas that follow:

Lemma 4 Suppose Hu = Eu, with ‖u‖L2 = 1 and E < M, M a positive constant. Then

−D2
r (Pχu) = E(Pχu) + w,

where w satisfies the estimate
‖r1+2γχw‖L2 ≤ C,

with C a positive constant dependent on M but independent of E and u.

Proof The proof goes largely along the lines of Lemma 2 in [10]. By Equation 1, the left
hand side of the equation χPHu = EχPu can be rewritten

−χPα−2D2
r u− χP(α−2)rDru− χPβ−2D2

s u− χP(β−2)sDsu + χPVu.(9)

We analyse the first term in Equation 9. We have

−χPα−2D2
r u

= −χ[P, α−2]D2
r u + χα−2[P,D2

r ]u + χ(α−2 − 1)D2
r Pu + [χ,D2

r ]Pu + D2
r (Pχu).(10)

We incorporate the first four terms of the right hand side into w as follows. For the first of
these terms,

χ[P, α−2]D2
r u = (E + 1)χ[P, α−2]D2

r (H + 1)−1u.

By estimates proven in [10], the operator r2χ[P, α−2] is bounded on L2, while by Lemma 2
of this paper, D2

r (H + 1)−1 is bounded on L2. The second, third, and fourth terms in
Equation 10, as well as the remaining terms in Equation 9, can similarly be treated, using
Lemmas 1, 2, 3A, the compactness of the support of the derivatives of χ, and Equation 5.

Lemma 5 Suppose Hu = Eu, with ‖u‖L2 = 1 and with E < M, M some positive number.
Then there exists δ > 0 such that

‖rδχPu‖ ≤
C ′
√

E
,

with constant C ′ independent of u, E, and s.

Although the proof can be found in [10], we include it here for completeness.

Proof We begin with the result of the previous lemma:

−D2
r (χPu) = E(χPu) + w,(11)

with
‖r1+2γχw‖L2 < C.
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Fixing s, we view Equation 11 as a family of ordinary differential equations parametrised
by s. Using the technique of variation of parameters, we obtain:

χPu

(12)

= − cos(
√

Er)

(∫ r

t=0

w
√

E
sin(
√

Et) dt + C1

)
+ sin(

√
Er)

(∫ r

t=0

w
√

E
cos(
√

Et) dt + C2

)
,

with C1, C2 constants which possibly depend on s. We use this equation to obtain bounds
on χPu. Since ‖r1+2γχw‖L2 < C , it follows that∫ ∞

r=0

∫ 1

s=−1
|w(r, s)| ds dr <∞.

It follows that w(s, r) ∈ L1
(
(0,∞), dr

)
for almost all s. This, along with the fact that

Pu ∈ L2, implies that Equation 12 can be written as

χPu =
cos(
√

Er)
√

E

∫ ∞
t=r

w sin(
√

Et) dt −
sin(
√

Er)
√

E

∫ ∞
t=r

w cos(
√

Et) dt,(13)

almost everywhere with respect to s. We estimate the first integral on the right hand side.
Fix ε > 0, and choose r sufficiently large that χ(r) = 1. Then∣∣∣∫ ∞

t=r
w sin(

√
Et) dt

∣∣∣ ≤ ∫ ∞
t=r
|w| dt

≤ r−1/2−2γ+ε

∫ ∞
t=r

t1+2γt−1/2−ε|w| dt

≤ r−1/2−2γ+ε
(∫ ∞

t=r
t−1−2ε dt

)1/2(∫ ∞
t=r

t2+4γχ2|w|2 dt
)1/2

≤ r−1/2−2γ+εr−ε/(2ε)1/2
(∫ ∞

t=0
t2+4γχ2|w|2 dt

)1/2
.

Clearly, the second integral on the right hand side of Equation 13 obeys the same estimate,
and thus

|χPu| ≤
C
√

E
r−1/2−2γ

(∫ ∞
t=0

t2+4γχ2|w|2 dt
)1/2
,

this estimate holding for almost all s. Note that C is independent of u, E and s (provided s
is not in a set of measure 0). Hence∫ 1

s=−1
|χPu(r)|2 ds ≤

C

E

∫ 1

s=−1
r−1−4γ

(∫ ∞
t=0

t2+4γχ2|w|2 dt
)

ds

=
C

E
r−1−4γ‖χr1+2γw‖2

L2

≤
C

E
r−1−4γ.(14)

Choosing 0 < δ < 4γ, the lemma follows.
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Lemma 6 Suppose Hu = Eu, with ‖u‖ = 1 and E < M for M a positive constant. Then

‖χ f−1(I − P)u‖L2 ≤ C,

with C a positive constant depending on M but independent of E, u.

Proof In what follows, C will denote various constants independent of u and E, provided
‖u‖ = 1 and E < M. First we show that ‖χ f−2D2

s (I − P)u‖ ≤ C . We have

χ f−2D2
s (I − P)u = χ f−2D2

s (H + 1)−1(H + 1)(I − P)u

= (E + 1)χ f−2D2
s (H + 1)−1(I − P)u

− (E + 1)χ f−2D2
s (H + 1)−1[H, P](H + 1)−1u.

By Lemma 2,

‖χ f−2D2
s (H + 1)−1(I − P)u‖ ≤ C.

By Lemmas 2 and 3B, the second term on the right hand side is also bounded by a constant
C .

Let λ2 be the second smallest eigenvalue of the associated Sturm-Liouville problem. By
Equation 4, there exists M0 such that r > M0 implies λ1 > 1. In what follows, we label
u1 = (I − P)u. Thus

∞ >

∫ ∞
0

∫ 1

−1
f−2(−D2

s )χu1χu1

≥

∫ ∞
0

∫ 1

−1
f−2λ2|χu1|

2

≥

∫ M0

0

∫ 1

−1
f−2λ2|χu1|

2 +

∫ ∞
M0

∫ 1

−1
f−2|χu1|

2

≥ ‖ f−1χu1‖
2
L2 −C.

The lemma now follows.
We now complete the proofs of Theorems 1 and 2. Note that by A2 or A2 ′, f−1(r) ≥

Crδ
′

for sufficiently small δ ′ > 0. Hence, we combine Lemmas 5 and 6 to obtain
‖rδ

′ ′
χu‖ < C for δ ′ ′ = min(δ, δ ′). We can now use a bootstrapping argument to prove

that ‖rNχu‖ < C for any integer N . The reader is referred to ([10], Lemma 4) for details.
An elliptic regularity argument(the reader is referred to [10], end of Section 3) can then

be used to prove the pointwise estimate

rNu(r, s) < C

with C independent of s and u provided ‖u‖L2 = 1.
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Finally, to obtain estimates in the variables x, y, recall that by definition, ũ ≡ U−1u =
(αβ)−1/2u. Because U is a unitary multiplication operator and x ∼ r as r →∞,

‖χxN ũ‖L2(Ω,dx dy) = ‖χxNU−1u‖L2(Ω,dx dy)

≤ C‖U−1(χrNu)‖L2(Ω,dx dy)

≤ C‖χrNu‖L2 .

Theorem 1 follows.
Theorem 2 follows from the pointwise estimates in r, s, the estimatesα ∼ 1 and β ∼ f (r)

as r →∞, and the hypothesis that f (x) ≥ Cx−ε.
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