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ABSTRACT. The Savage—Hutter equations of granular avalanche flows are a hyperbolic
system of equations for the distribution of depth and depth-averaged velocity components
tangential to the sliding bed. They involve two phenomenological parameters, the internal
and the bed friction angles, which together define the earth pressure coefficient which assumes
different values depending upon whether the flow is either diverging or contracting. Because
of the hyperbolicity of the equations, since velocities may be supercritical, shock waves are
often formed in avalanche flows. Numerical schemes solving these free surface flows must cope
with smooth as well as non-smooth solutions. In this paper the Savage—Hutter equations in
conservative form are solved with a shock-capturing technique, including a front-tracking
method. This method can perform for parabolic similarity solutions for which the Lagrangian
scheme is excellent, and it is even better in other situations when the latter fails.

INTRODUCTION

The Savage—Hutter equations (1989, 1991) are a set of hyper-
bolic evolution equations that describe the geometry and
depth-averaged velocity in finite-mass avalanche flows. The
original equations are not written in conservative form and
thus can also only reproduce smooth solutions in cases when
shock should form. All numerical schemes based on these non-
conservative forms generated high oscillations at numerical
instabilities in the vicinity where shocks were expected. These
were at first damped by adding numerical diffusion but not
basing the model on equations in conservative form. This has
now been done, and the numerical integration scheme allows
the shocks to be identified without the manifestation of
spurious oscillations or the formation of instabilities and
without the introduction of additional numerical diffusion.
As a result, the numerically determined solutions reflect the
properties of the model without diffusive contamination.

Shocks are initiated when the avalanche velocity is faster
than its characteristic speed and the avalanche front reaches
the base of the slope or a solid wall. The shock wave then
travels upslope through the avalanche. Many detailed inves-
tigations of granular shocks were made by Gray and Hutter
(1997), in which the shock waves are considered to be an im-
portant feature in the granular flows. The Savage—Hutter
equations of granular avalanche flows are a hyperbolic
system of equations, such that velocities may be supercritical
and shock waves may occur.

To avoid the numerical instability, an artificial viscosity
term p10%u/0z” is introduced in the Lagrangian finite-
difference method proposed by Savage and Hutter (1989,
1991) for numerical stability, where the artificial viscosity p
was found to have values of 0.01-0.03. Such instability is here
supposed to be caused by shocks. Guido and Bartelt (unpub-
lished) applied an upwind total variation diminishing
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(TVD) difference scheme to solve quasi-Savage—Hutter
equations and concluded the numerical stability without
using artificial damping with their discretization schemes
with respect to the characteristic variables. However, in the
quasi-Savage—Hutter and Savage—Hutter equations there
are jumps within the characteristics as well as in the charac-
teristic variables. The treatment was not clear in their state-
ment. An alternative is to solve the equations with the
conservative variables, the thickness h and the thickness-
integrated moment m = hu. In this paper a non-oscillatory
central (NOC) shock-capturing numerical scheme (Nessyahu
and Tadmor, 1990) is applied to the Savage—Hutter equations
(1989, 1991) with respect to the conservative variables to
describe the shock formation directly, without adding artificial
viscosity or other regularizations. Since this numerical scheme
1s based on a stationary uniform mesh, it is impossible to point
out the margin location (the material-free region) without
extra treatment. Therefore we combine our NOC scheme with
a front-tracking (FT) method, also developed in Tai (2000)
and Tai and others (2000). The resulting NOC-FT scheme is
able to accurately determine the material-free region.

GOVERNING EQUATIONS

In the Savage—Hutter theory (1989, 1991) the dry cohesion-
less granular material is assumed to be an incompressible
continuum with constant density throughout the entire
body. During flow the body behaves as a Mohr—Coulomb
plastic material at yield and slides over a rigid basal topog-
raphy with similar Coulomb-type frictional behaviour.
Scaling analysis isolates the physically significant terms in
the governing equations and identifies those terms that can
be neglected. Finally, depth integration reduces the theory
to one spatial dimension.
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The leading-order, dimensionless, depth-integrated mass
balance reduces to

oh 0O
E—k%(hu) =0, (1)

where h is the avalanche thickness and w is the velocity in
the downslope direction. The leading-order, dimensionless,
depth-integrated momentum balance is

d(hu) 0 9 2 oy
o —i—%(hu + B.h7/2) = hs, (2)
with net driving force
s, = sin ¢ — sgn(u) tan 6(cos ¢ + Axu?), (3)

where (,6 and Ak are local slope inclination angle, basal
Coulomb dry-friction angle and local curvature of the chute
profile, respectively. The term sgn(u) comes from the dry
Coulomb drag friction, and € < 1 is the aspect ratio of the
typical thickness and the length of the avalanche. Note that
Equations (1) and (2) are written in conservative form, while
in the original Savage—Hutter theory the smoothness
assumption yields the momentum-balance equation to the
velocity-evolution equation

du Oh

at - & ox’ @
The factor B, is defined as 3, = e cos (K, and the earth
pressure coefficient K relates the in-plane stresses to the
normal stress within the avalanche K, = p,./p... The value
of K, is given by the Mohr—Coulomb criterion with an ad
hoc assumption, depending on whether the avalanche body
extends or contracts,

o K, for Ou/dx >0,
K for Ou/ox <0,

Tpass
with

/1 —cos? ¢ 5
Kooy = 2<1 + m) sec” ¢ — 1, (6)

where ¢ is the internal friction angle of the granular material.

(5)

The original Lagrange finite-difference scheme (Savage
and Hutter, 1989) is implemented by the equation system, (1)
and (4), in Lagrangian form with primitive variables, i.e. the
local thickness of the avalanche h, and the downslope
velocity «. However, the shock-capturing scheme employed
here 1s applied to this equation system in conservative form,
(Equations (1) and (2)), with conservative variables, i.e. the
thickness h and the thickness-integrated moment m = hu.

SHOCK-CAPTURING NUMERICAL SCHEME

To describe the shock formation the NOC differencing scheme
(Nessyahu and Tadmor, 1990) is here employed, which is
similar in form to the Lax—Iriedrichs scheme. For complete-
ness, we briefly review the scheme. The fundamental differ-
ence between the NOC scheme and standard upwind finite-
difference schemes is that the boundaries of the cells at the
new time level are the centers of the cells at the old time level
(see Fig. 1). In other words, the cell average values W}I:llﬂ
bounded by [z}, ;1] at time level £"*! are computed from
the information from the cell average values W/ bounded by
[%‘4/2, 1‘j+1/2] and W?Jrl bounded by [33]‘+1/2, .Z'j+3/2} at time
level t" (see Fig. 1, top). This motivates the term “central”. For
the NOC scheme, the expensive Riemann solvers used in

upwind schemes can be completely avoided. The resulting
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Fig. 1. Diagram of NOC scheme. Top: Gridpoints computed in
the NOC' method. Bottom: NOC scheme computational
diagram, where @ indicate the gridpoints at time level n and
n +1, represent the positions where the fluxes f at time level n
+1/2 are approximated, & are for the source term s, and A
denote the quarter and three-quarter points meaning (e.g.

v o
Wit a0 Wies/a)-

scheme is easy to code, computationally efficient and can be
applied to general systems of conservation laws, where the
solution of the Riemann problem (i.e. the initial value
problem with piecewise constant data) may be complicated
or even impossible. For further details and references to recent
related work we refer the reader toTai and others (2000).

For simplicity the Savage—Hutter equations in the form
of Equations (1) and (2) are considered with w = (h,m)" as
basic variables and written in the form

Wy +f96 =S, (7)

where

f= <m2/h4:n@,h2/2> and = (h(;) ®

Let w} denote the cell average of w at (z;,1"); integrating
the governing equations over the rectangle [z}, z;.1] x
[t "] gives

Tj41 Lj+1 tni1
w'ldz = [ w'dx - / (fie1 —f;)dt
zj xj tn
—_———
—ntl A
= _177+1/2A’“‘ (9)
o+l

+/ / sdx dt.
tn zj

w1
So, the cell average over [z, xj+1],' W11/, can be computed
by the following discretized equation:

1 At :
—n+l _ —n —n n+1/2 n+1/2
Wit =3 <W1+1/4 * W.7‘+3/4) T Az (fjﬂ -1 )

At wi1je | nr1)2
+7 (Sj+1/4 853 )v (10)
as illustrated in Figure 1 (bottom). The values ofW}”_H/4 and
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Fig. 2. Cell reconstrution of the depth Hf () within the front-
margin fth cell. In the front-tracking method a precewise
linear reconstrution h #(x) over the margin cell is well
defined, such that the value of the cell average does not change
due to the definition of the reconstruction.

W?+3 4 are determined by the reconstruction over the jth
and (j + 1)th cell, i.e.

—n _=n !
Wi =W; + W

477
1 (11)

Wit/ = Wi — ZW;HLI’
where W} denotes the cell mean derivative determined by
TVD limiter (e.g. Yee, 1989) or the weighted essentially
non-oscillatory (WENO) cell reconstruction (Jiang and
Shu, 1996).
The transport flux f is approximated by the physical
quantities at (xj,t""/2) and (241, t""/?), i.e.
n+1/2 _ of __n+1/2
£ =g (w2, -
, At
w1 =W T 0w/ 0n)]
The integration of the source term represents the volume of
s over [z, zj11] X [t", "], which is approximated by the
values at (2414, t"+1/2) and (Tj43/45 /2y

n+1/2 (_n+1/2>7 sn+1/2 _ S(_n+1/2) (13)

Siv1/a = 8(Winn +3/4 Wi+3/4
and
—n+1/2 _ __ At n 1_
WJL+1/4 —w;L—i—?(aW/at)j Jrzw;, (14)
_n+l/2 _ __p At _ n 1 —
Wits/a = Wi T (Ow/0t);, — ZW;‘H-

The temporal derivative (0W/0t)} in Equations (12) and
(14) 1s determined by using Equation (7),

(0w/ot)} = (0f/dx)} + s (15)
= —A;w;/Az + 5],
where
(0f /0x)} = (0f/Ow)]} (0w /D)7, 16)

A = 0f /Ow : Jacobeanof f.

To keep the numerical stability and to ensure the non-oscilla-
tory property at a discontinuity the following CFL condition

At

. 1
s a™™ | < 3 forall j (17)
must hold during computation, where
amaX — ml?,X (’Lbj + ﬁz]’h]’) (18)
all j

1s the maximum wave speed.
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Fig. 3. Process of the avalanche simulated by the shock-cap-
turing NOC method at t = 0, 4, 8, 12, 16, 20 dimensionless
time units. As the front reaches the run-out zone and comes to
rest, the part of the tail accelerates further and the avalanche
body contracts. Once the velocity becomes supercritical, a shock
wave develops, which moves upward. For the Lagrangian
moving-grid method without applying any artificial viscosity,
oscillations take place (lowermost panel) when the shock
occurs, which may result in an element boundary overtaking
the other one and destroying the scheme.

FRONT-TRACKING

The shock-capturing method discretizes the governing
equations on a stationary uniform mesh. The margins may
be located between gridpoints, so that it is impossible to
point out the margin location without extra treatment. In
the front-tracking method used in this paper and developed
inTai and others (2000), the margin cell is reconstructed by a
piecewise linear distribution, so that outside the avalanche
body there is no material and the cell average does not
change due to the reconstruction (e.g. see Fig. 2 for the front
margin). It can be easily proven that the margin point fulfils
the smoothness assumption (Tai, 2000), and consequently its
motion can be described by the following evolution equation

du

dt
which is equivalent to the momentum-balance Equation (4)
in the original Savage and Hutter theory. This combination
is then called the NOC-FT method. During computation
all the numerical fluxes and the source term must be consid-

Sy = ﬁJ:%» ash — 0, (19)

ered if the margin moves into the neighbouring cell.

NUMERICAL SIMULATIONS
Upward-moving shock wave

Shock formations are often observed when the avalanche
slides into the run-out horizontal zone. Here the front part
comes to rest, while the tail accelerates further and its
velocity becomes supercritical. A comparison is made
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Iug. 4. Depth (upper) and velocity (lower) profiles of the
parabolic similarity solution computed by the NOC scheme
with the TVD Superbee limiter, where the whole computa-
tional domain s divided into 90 cells, the circles denote
simulated results and the solid lines represent the exact
solution. A thin layer with ho = 10" is added to the whole
computational domain.

between the shock-capturing method and the Lagrangian
moving grid technique. While such shock formation normally
induces numerical instability for the Lagrangian method, the
shock-capturing scheme can behave well for such shocks.

The granular material released from a parabolic cap
slides down an inclined plane and merges into the run-out
horizontal zone. The centre of the cap is initially located at
z = 4.0, and the initial radius and the height are 3.2 and 2.2
dimensionless length units, respectively. The inclination
angle of the inclined plane is 40°, and the transition region
lies between x = 21.5 and z = 25.5. The basal and internal
friction angle are both 30°.

Figure 3 illustrates the simulated process as the ava-
lanche slides on the inclined plane into the horizontal run-
out zone. The avalanche body extends on the inclined plane
until the front reaches the horizontal run-out zone. Here the
basal friction is enough to bring the front of the granular
material to rest, but the part of the rear accelerates further.
At this stage, a shock (surge) wave is created (¢ = 12), which
moves upward. Such shock waves make the Lagrangian
method unstable if no artificial viscosity is applied (see the
lowermost panel in Fig. 3).

Parabolic similarity solution

To test our shock-capturing method for a smooth solution
with moving boundaries, the results are compared with the
parabolic similarity solution (Savage and Hutter, 1989),
which has already been successfully modelled using the La-
grangian technique (Savage and Hutter, 1989, 1991). We refer
toTai (2000) for a generalization of that similarity solution.

Consider a finite mass of granular avalanche sliding on
an infinitely long inclined plane at ¢ = 40°, where the
internal and basal angles of friction are ¢ = ¢ = 30°. With
a linearly increasing distribution of velocity, du/0x > 0,
the avalanche body preserves its parabolic form.

Figure 4 demonstrates the results computed by the NOC
scheme without the front-tracking method, where the TVD
superbee (e.g. Yee, 1989) limiter is employed and a thin layer
hg =107* is added to the entire computational domain.
The results show that the added thin layer does not influence
the depth profile very much, if it is sufficiently small, but one
cannot determine the margin locations.
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g, 5. Depth (upper) and velocity (lower) profiles of the
parabolic similarity solution at t = 6 computed by the NOC
scheme with front-tracking method, where the precewise quad-
ratic (WENO 1 = 3) interpolations are implemented. The
crcles denote simulated results, and the solid lines represent
the exact solution. The whole computational domain is divided
wnto 90 cells, and the Courant number is selected to be 0.5.

However, as can be seen in the velocity profiles of Figure
4, there are large velocity gradients around the margins.
Since the regions outside the margin are covered by the
uniformly added thin layer, there is no contribution from
the depth gradient, h/Ox, in the momentum-balance
Equation (2). On the other hand, inside the avalanche body
there is a permanent contribution from the depth gradient
for the momentum balance equation. The velocity in this
region will therefore tend to increase differently from that
outside the avalanche body, so a jump of velocity develops
around the margins. Here the jumps are reproduced by a
smeared transition, (see the velocity profiles in Fig. 4). This
1s why there are deviations of the depth around the margin.
Furthermore, the smeared transition of velocity results in
several cells with Ou/dx < 0 around the margins. This
violates the presumption du/dz > 0 in the parabolic simi-
larity solution problem. Therefore, the front-tracking
method must be introduced.

Near the centre of the avalanche body there is a slight
buckling. This is caused by the first-order accurate approxi-
mation at the local extremum and is called the clipping
phenomenon, which is the weakpoint of the TVD schemes.
One way of avoiding this weakness is to apply the higher-
order WENO cell reconstruction.

Figure 5 demonstrates the results (circles) from the
NOC scheme with the front-tracking method, where a
WENO piecewise quadratic interpolation (Jiang and Shu,
1996) is employed. With this method both the parabolic
form of the avalanche depth and the margin locations can
be well described. The so-called clipping phenomenon is suc-
cessfully removed. The presumed stress state, du/0z > 0, in
the parabolic similarity solution problem is also maintained.

CONCLUSIONS

The shock-capturing numerical scheme provides an excel-
lent tool to describe shock formation in granular flows with
the Savage and Hutter theory. Combining this numerical
scheme with the front-tracking method makes it possible to
determine the margin locations of the avalanche. Numerical
tests of the upward-moving shock wave and a comparison
with the parabolic similarity solution confirm the super-
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iority of this combination over previous schemes.Further
numerical experiments, including flows for which the basal
and internal friction angles are different from each other,
are reported inTai (2000) and Tai and others (2000).
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