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ABSTRACT 

A system of spectral equations of magnetic turbulence in gases differing from 
that given by Ghandrasekhar is suggested. The solution of this system is 
examined. Correlation and structure functions of the turbulence of interstellar 
gases, determined according to the data on radial velocities of interstellar 
clouds from Adams's catalogue, are given. For motions of a scale less than the 
fundamental one (/ less than 80 pc) the spectral function F(k) is about Ar1'71, 
which agrees with the theoretical conclusions. 

1. The theory of isotropic turbulence of gases in the magnetic field 
(gasomagnetic turbulence) can be developed at present only by means of 
spectral methods. The correlative method does not permit, in general, to 
take into account the dissipation of energy in the shock-waves, arising as 
a result of'supersonic' turbulence. 

The theory of the isotropic turbulence in gases can be applied only in 
the absence both of the mean directed flow of gases and of the mean directed 
magnetic field, i.e. only in the case, when all directions of the velocity 
vectors and of the magnetic field are equally probable. Such is the case, 
for instance, when an originally weak magnetic field has been increased as a 
result of an' entanglement' of the magnetic lines of force caused by turbulent 
movements of ionized gases. The properties of motions in the interstellar 
space and in the nebulae can evidently be explained in the same mannner. 

2. The author offered in 1953-4 the following system of spectral equa­
tions [ij,[2] of magnetic turbulence in gases: 

+ 2 J** J[F(k) #>] [£,(*) F(k) +/i(k) G(k)] dk, (1) 
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e m = 2 ( A + ^ ; y « ^ ) / V ) ^ 

- 2 J* V[^(*) *3] &(*) + M*)] <?(*) * , (2) 

where v is the viscosity; \ = C%\\TT<T (<T = conductivity); A; = 27r/r (r is the 
characteristic scale of motion); F{k) is the spectral density of kinetic energy, 
G(k) is the spectral density of magnetic energy (referred to the unity of 
mass); Kf and Kg are some dimensionless quantities of the order of unity, 
£/(£), £g{k) and /i(k) are dimensionless, slowly varying functions; 

<>< &(*)<£/(*)< I, - ! < / * ( * ) < + I -
The first two members of the right part of Eq. (i) have the same meaning 

as in Heisenberg's theory [3] of turbulence of incompressible fluids. The first 
two members of the right part of Eq. (2) are analogous. In detail, the 
member with Kg describes the transmission of magnetic energy from big 
vortices to the lesser ones, occurring simultaneously with the decay of 
kinetic energy (member with Kf) of big vortices. The member 

2 f %(A) J[F(k) A8] G(k) die, 

positive in (1) and negative in (2), describes an increase or a decrease of 
magnetic energy as a result of 'entanglements' or respectively 'dis-
entanglements' of the lines offeree. The function ji(k) depends, actually, 
upon the relation F/G, being positive at F> G and negative at F> G and 
/i = o at F&G. 

The member with £f(k) describes the dissipation of the kinetic energy in 
shock-waves and the member with £0(k) describes the corresponding 
increase of the magnetic energy. Functions £f and £g depend upon the 
relation of gas velocities to the velocity of sound and tend to acquire con­
stant and positive values with the increase of these relations. 

Finally, the members ek and em respectively describe the total dissipations 
of the kinetic and magnetic energies in the vortices with wave numbers 
in the intervals between o and K. In steady states ek = constant and em = con­
stant. In the case of a decay of turbulence: 

6&= - | J * F(k, t) dk, em= - | J * G(k, t) dk. (3) 

It is necessary to note that, though the system of spectral equations (1) 
and (2) is postulated arbitrarily, the choice of members with magnetic 
energy is substantially limited by the linear character of these equations 
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in respect to G(k) inasmuch as the corresponding equations of magnetic 
gas dynamics are also linear. The choice of the two members in (2), 
describing the changes of magnetic energy (with Kg and fi) is due to two 
members from the corresponding correlative equations ( n ) . There are 
several other physical considerations in favour of this choice of systems 
(1) and (2). The values Kf and Kgy as well as the functions £f(k) and £g(k) 
should be known, the function /i(k) is determined from the conditions of 
compatibility of these equations. 

3. Systems (1) and (2) have two solutions for the spectral region of small 
wave numbers (analogous to the spectral region by Kolmogoroff): 

(A) F(k) = G(k) = F0(i^*) w + « ^ « / ^ ^ / ^ ^ - J , 

/*= -(**&+*/&)/(** + */)> 
F0 and k0 are arbitrary constants for the case of steady state. This solution 
corresponds to the case, when the magnetic and kinetic energies are in 
equilibrium. 

(B) F(k) = F0{kJk)W*«wwZfi*f+-'-\ 

'} (4) 

W.lZ^MMffi"'-"*-1-
/■-K-iH-t--12 Kf 

(5) 

The second solution corresponds to the case when the magnetic energy is 
mainly concentrated in vortices of the inner scale of turbulence (i.e. the 
case investigated by Batchelor in 1950 [4]). When analyzing the solution. 
(B) we suggested /Cp /̂cyA/y, if A < v and Kg&Kfy if A>y. In this case 
eklem~*l(FolkQ)lv~Re' Solution (B) may be conventionally called a 
quasi-stationary one. 

If the dissipation of energy in shock waves can be disregarded (hydro-
magnetic turbulence) we shall have in equations (1), (2), (4) and (5) 

The author investigated also the structure of spectra at different values 
of wave numbers. Unsteady magnetic turbulence in gases was also studied. 

4. It was often supposed that the equilibrium of kinetic and magnetic 
energies (solution (A)) cannot occur in the presence of magnetic tur­
bulence in gases, because the magnetic field of a large scale suppresses 
gas motions of lesser scales. This makes the movements more regular, which 
contradicts the statistical character of turbulence. Such regulation of the 
movements does not occur in the case of solution (B). We may suppose that 
solution (A) can also be realized, but in this case vortices of different scales 
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should be more isolated than in the case of absence of a magnetic field (or 
solution (B)). Here the space fluctuation in the density of magnetic energy 
and consequently of the kinetic energy must be far greater. 
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Fig. i. The correlative and structural functions of interstellar turbulence. 

20 40 
J 

60 80 100 120 140 160 180 200 220 240 260 r 
10 B 20 25 30 3 5 4 0 ilk 0 5 

Fig. 2. The spectral function of interstellar turbulence. 

5. The theory of magnetic turbulence in gases describes satisfactorily 
the properties of chaotic motions in interstellar gases and nebulae. Fig. 1 
shows the correlation (B^) and structural (Z>„.) functions of the turbulence 
of interstellar gases, found by the author [5] on the basis of Adams's catalogue 
of radial velocities of interstellar clouds. Fig. 2 shows spectral function 
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F{k) calculated according to the data of Fig. i. In the region of motions of 
lesser scale than the principal one (r < 90 pc) we have F(k) ~ A-1'71, which 
is in good agreement with (4) and (5). 

2 

In 1955 Chandrasekhar proposed another system of spectral equations of 
hydromagnetic turbulence [6] 

-KF(k)i*(" /SS*- i .F(*)P, (6) 

- KG(k) FT JO®- dk - XG(k) k*. (7) 

The symbols used in these equations are the same as defined in § 1, K is the 
numerical constant equal to all members. 

In our theory is also taken into account the dissipation of energy in shock-
waves. But here, as we are interested in making a comparison of the 
system of Eqs. (1) and (2) with Chandrasekhar's we have excluded these 
members. Our system in this case, written in a differential form is as 
follows: 

-/»(*) G{k) J[F{k) k3] - vF{k) k\ (8) 

+p{k) G(k) J[F(k) *3] - XG(k) kK (9) 
It is necessary to point out that Eqs. (6) and (7) are the reduction to 

spectral language of the system of correlative equations of isotropic hydro-
magnetic turbulence, found by Chandrasekhar [6]: 

dQdH 
( g - A»Z)j) / / = - 2<?A H- 2HD, Q -
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where Q(r, t) and H(r, i) are correlative scalars, determining the correla­
tion of second-order tensors with the components of velocity and com­
ponents of strength of the magnetic field in two points of the fluid M' and 
AT, respectively, so that r= |r"-r ' | and t = f — t'. Z>5 is a differential 
operator. 

The system (8) and (9) is a reduction to spectral language of another 
system of correlative equations, also found by Chandrasekhar[7], 

W-wDtQ-*(rl + 5)(T-S)A 

Here the correlative scalars were taken for the same moments, i.e. f = t' 
and T, S, P are correlative scalars, determining the correlative third-order 
tensors. System (11) is derived from equations of magnetic hydro­
dynamics, supposing the turbulence to be of homogeneous and isotropic 
nature, while for the derivation of system (10) Chandrasekhar used the 
hypothesis by Millionschchikov [8] about the relation of the fourth corre­
lative moments to the second correlative moment. The correctness of this 
hypothesis in the complicated case of hydromagnetic turbulence was not 
clear. Moreover, it is necessary to show that this supposition (being not 
very correct even in the case of hydrodynamic turbulence) does not lead 
to wrong results. An introduction of this hypothesis may be justified, if the 
derivation of system (10) is the final aim, because system (10) is total and 
may be solved, contrary to Eq. (11). However, the use of this hypothesis 
was not suitable as the heuristic ground of the spectral theory, in the case 
when some other physical hypotheses must be made. System (11) is better 
for this purpose, because at its derivation no arbitrary mathematical 
hypothesis has been made. 

System (10) did not suit as a heuristic ground for the derivation of a 
spectral theory also for the reason shown below. It is evident that the left 
part of correlative equations was directly reduced to the spectral theory. 
For the reduction to the spectral theory of the right part of this equation, 
i.e. namely of the non-linear term, the hypotheses must be introduced. 
Comparing the left part of Eqs. (8) and (9) with (11) we see that Eqs. (8), 
(9)-(n) pass direcdy from one to the other. In (8) and (9) and (11) the 
members of the left part are also the first derivative of the energy with time. 
But the left part of Eq. (10) is not the first derivatives of energy with time. 
Therefore the right part of Eq. (10) cannot be directly related to the right 
part of Eqs. (6) and (7). 
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From these considerations one may say that system (i i) is much more 
suitable than system (10), as the heuristic ground for the postulation of 
the spectral theory. 

But Chandrasekhar's system of spectral equations proceeds, in the main, 
from system (10). For instance, the term ^\G(k)jh^\ describes ' turbulent 
resistance', in the same way as the term oJ[F(k)/k?] describes 'turbulent 
viscosity'. This is explained only by the symmetry of the right part of (10) in 
respect to Q and H. The same explanation was given by him in respect to 
the equality of the values of K in Eqs. (6) and (7). However, the appearance 
of the term ^[G(k)/k?] is difficult to interpret from a physical point of view. 
Indeed, there is dissipation of the magnetic energy, the same as of the 
kinetic energy (i.e. a transfer from big scale motions to small scale motions 
is taking place). But it must be kept in view, that the transfer of magnetic 
energy between the vortices of different scales is not determined by the 
magnetic field (because the Maxwell equations are linear), but are con­
nected with the motions of fluids, transferring the magnetic energy 
according to the principle of 'frozen' fines of magnetic forces. Thus, the 
'turbulent conductivity' does not depend upon the parameters *J[G(k)lk?] 
but depends upon the parameters «J[F(k)jk?]. There was an analogy with 
molecular viscosity and conductivity, which depend also upon the velocity 
and the length of the free path and does not depend upon the magnetic 
field (in isotropic conductor). It is also clear that the 'turbulent viscosity' 
Kf yJ[F(k) Ik?] and the' turbulent resistance' Kg *J[F(k) jkz] could not be quite 
equal and we choose therefore different values for the constants Kf and K0. 

We want particularly to point out that, owing to the term J[G(k)lkF] 
Eqs. (6) and (7) of Chandrasekhar are not linear in respect to the magnetic 
energy, while the fundamental hydromagnetic equation and Maxwell's 
equation, as well as the correlative equations, are linear in respect to 
magnetic energy. The non-linearity of (10) was made artificially by intro­
ducing tensors of higher orders. The linearity of the systems of spectral 
equations in respect to G(k) was one of the chief requirements followed in 
the derivation of Eqs. (8) and (9). 

The member fi(k) G(k) <J[F(k) k?] in Eqs. (8) and (9) describes the 
transfer of kinetic energy into the magnetic energy, owing to 'entangle­
ments' or 'disentanglements' of magnetic lines of force. Indeed, it is 
known that the density of magnetic energy increases owing to an 'en-

%~) '~a~> 

«-1 is the gradient of velocity in the direction of the vectors of the 
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magnetic field. In spectral terms this expression was written in the form 
given above. The presence of dimensionless functions /i{k) is explained by 
the necessity to describe the direction of the transfer of energy. This function 
may be defined by the conditions of compatibility of Eqs. (8) and (9). 
We may also suppose that an exchange of kinetic and magnetic energies in 
a definite scale of motions does not depend on the motion in other scales. 
Therefore, the member /i{k) G(k) <J[F(k) A3] was written in an integral 
form. It is possible, however, that this simple form would be insufficient in 
the future, we shall then easily write it in an integral form. This is not 
necessary at present. There are no members describing this process clearly 
in Chandrasekhar's system. 

As a summary of all that has been said above we arrive at the conclusion 
that the system of spectral equations of hydromagnetic turbulence proposed 
by Chandrasekhar does not reflect the physical process taking place in this 
case. This system does not satisfy the requirements of linearity in respect 
to the magnetic energy. According to our opinion, the system (8) and (9) is 
better suited to the physical picture of phenomena of hydromagnetic 
turbulence. 

We point out in conclusion that the solution of Eqs. (6) and (7) found by 
Chandrasekhar is also difficult to explain from the physical point of view. 
Indeed, Chandrasekhar [6] found two solutions in both of which there is the 
equipartition of the kinetic and magnetic energies in vortices of the biggest 
scales (£->o), i.e. in such scales of motions, in which systems (6) and (7) are 
not quite correct. The relation G{k)jF{k) tends to zero in the first Chandra­
sekhar's solution and to 2-6 in the second solution with increasing k. In 
the second case the magnetic energy is always greater, than the kinetic 
one. 

Meanwhile, we can think that on the whole the inequality G(k) ̂  F(k) 
must be fulfilled, because in the reverse case the magnetic field suppresses 
the motion of fluids. Furthermore, as the external energy is transferred into 
turbulence in the shape of big vortices we can think that it must be 
G(k)/F(k)->o since k-+o. We can suppose, at last, that among the 
possible solutions of spectral equations, there must be an equipartitional 
solution for sufficiently large intervals of wave numbers. Solutions of 
systems (6) and (7) do not satisfy any of these requirements. 

The solutions of our system of spectral equations, given in paragraph 1, 
satisfy these requirements, because they are more probable as compared 
with Chandrasekhar's solution. 
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