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Abstract

Let F be an integral linear recurrence, G an integer-valued polynomial splitting over the rationals and h
a positive integer. Also, let AF,G,h be the set of all natural numbers n such that gcd(F(n),G(n)) = h. We
prove that AF,G,h has a natural density. Moreover, assuming that F is nondegenerate and G has no fixed
divisors, we show that the density ofAF,G,1 is 0 if and only ifAF,G,1 is finite.

2010 Mathematics subject classification: primary 11B37; secondary 11A07, 11B39, 11N25.

Keywords and phrases: greatest common divisor, linear recurrences, natural densities.

1. Introduction

An integral linear recurrence is a sequence of integers F(n)n≥0 such that

F(n) = a1F(n − 1) + · · · + akF(n − k), (1.1)

for all integers n ≥ k, for some fixed a1, . . . , ak ∈ Z, with ak , 0. We recall that F is
said to be nondegenerate if none of the ratios αi/α j (i , j) is a root of unity, where
α1, . . . , αr ∈ C

∗ are all the pairwise distinct roots of the characteristic polynomial

ψF(X) = Xk − a1Xk−1 − · · · − ak.

Moreover, F is said to be a Lucas sequence if F(0) = 0, F(1) = 1 and k = 2.
In particular, the Lucas sequence with a1 = a2 = 1 is known as the Fibonacci sequence.
We refer the reader to [8, Chs. 1–8] for the basic terminology and theory of linear
recurrences.

Given two integral linear recurrences F and G, the arithmetic relations between
the corresponding terms F(n) and G(n) have generated much interest. For instance,
finding the positive integers n such that G(n) divides F(n) is a classical problem which
goes back to Pisot, and the major results have been given by van der Poorten [23]
and Corvaja and Zannier [5, 6]. (See also [14] for a proof of the last remark in [6].)
In particular, for the special case in which G = I, where I is the identity sequence given
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24 D. Mastrostefano and C. Sanna [2]

by I(n) = n for all integers n, there are results by Alba González et al. [2], under the
hypothesis that F is simple and nondegenerate, and by André-Jeannin [3], Luca and
Tron [13], Sanna [15], Smyth [21] and Somer [22], when F is a Lucas sequence or the
Fibonacci sequence.

For large classes of integral linear recurrences F, G, upper bounds for
gcd(F(n),G(n)) have been proved by Bugeaud et al. [4] and Fuchs [9]. Also,
Leonetti and Sanna [12] studied the integers of the form gcd(F(n), n), when F is the
Fibonacci sequence; while Sanna [16] determined all the moments of the function
n 7→ log(gcd(F(n), n)) for any nondegenerate Lucas sequence F.

For two integral linear recurrences F,G and a positive integer h, let us define

AF,G,h :=
{
n ∈ N : gcd(F(n),G(n)) = h

}
and also putAF,G :=AF,G,1. Sanna [17] proved the following result onAF,I .

Theorem 1.1. Let F be a nondegenerate integral linear recurrence. Then the set AF,I

has a natural density. Moreover, if F/I is not a linear recurrence (of rational numbers),
then d(AF,I) > 0. Otherwise,AF,I is finite and, a fortiori, d(AF,I) = 0.

In the special case of the Fibonacci sequence, Sanna and Tron [18] gave a more
precise result.

Theorem 1.2. Assume that F is the Fibonacci sequence. Then, for each positive integer
h, the natural density ofAF,I,h exists and is given by

d(AF,I,h) =

∞∑
d=1

µ(d)
lcm(dh, z(dh))

,

where µ is the Möbius function and z(m) denotes the least positive integer n such
that m divides F(n). Moreover, d(AF,I,h) > 0 if and only if AF,I,h , ∅ if and only if
h = gcd(`, F`) with ` := lcm(h, z(h)).

Sanna and Tron also pointed out that their result can be extended to any
nondegenerate Lucas sequence F with gcd(a1, a2) = 1. Kim [11] gave an analogous
result for elliptic divisibility sequences.

Trying to extend the previous result to AF,G,h for two arbitrary integral linear
recurrences is quite tempting. However, already establishing if the set AF,G is infinite
seems too difficult for the current methods. Indeed, the following conjecture of Ailon
and Rudnick [1] is still open.

Conjecture 1.3. Let a, b be two multiplicatively independent nonzero integers with
gcd(a − 1,b − 1) = 1. Then, for the linear recurrences F(n) = an − 1 and G(n) = bn − 1,
the setAF,G is infinite.

In this paper, we focus on the special case in which the linear recurrence G is an
integer-valued polynomial splitting over the rationals. Our main result is the following
theorem.
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Theorem 1.4. Let F be an integral linear recurrence, G be an integer-valued
polynomial with all roots in Q and h be a positive integer. Then the set AF,G,h has
a natural density. Moreover, if F is nondegenerate and G has no fixed divisors (and
h = 1), then d(AF,G) = 0 if and only ifAF,G is finite.

It would be interesting to prove Theorem 1.4 for any integer-valued polynomial
G, dropping the hypothesis that all the roots of G must be rational or allowing the
presence of a fixed divisor. However, doing so presents some difficulties, which we
will highlight in the final section.

Notation. Throughout, the letter p will always denote a prime number and we write νp

for the p-adic valuation. For a set of positive integers S, we put S(x) := S ∩ [1, x] for
all x ≥ 1, and we recall that the natural density d(S) of S is defined as the limit of the
ratio #S(x)/x as x→ +∞, whenever this exists. We employ the Landau–Bachmann
‘big oh’ and ‘little oh’ notation O and o, as well as the associated Vinogradov symbols
� and �, with their usual meanings. Any dependence of the implied constants is
explicitly stated or indicated with subscripts.

2. Preliminary results

In this section, we collect some definitions and preliminary results needed in the
later proofs. Let F be a nondegenerate integral linear recurrence satisfying (1.1) and
let ψF be its characteristic polynomial. To avoid trivialities, we assume that F is not
identically zero. Let K be the splitting field of ψF over Q and let α1, . . . , αr ∈ K be all
the distinct roots of ψF .

It is well known that there exist nonzero polynomials f1, . . . , fr ∈ K[X] such that

F(n) =

r∑
i=1

fi(n)αn
i (2.1)

for all integers n ≥ 0. The expression (2.1) is known as the generalised power sum
representation of F and is unique (assuming that the roots α1, . . . , αr are distinct), up
to the order of the summands.

Let G be an integer-valued polynomial and let h be a positive integer. We begin
with two basic lemmas aboutAF,G,h.

Lemma 2.1. We can decompose AF,G,h as the disjoint union of a finite set and finitely
many sets of the form aAF̃,G̃ + b, where a,b are positive integers, F̃ is a nondegenerate
integral linear recurrence and G̃ is an integer-valued polynomial.

Proof. First, it is well known and easy to prove that there exists a positive integer c
such that, setting F j(m) := F(cm + j) for all nonnegative integers m and j < c, each
F j is an integral linear recurrence which is nondegenerate or identically zero. Then
AF,G,h is the disjoint union of the sets AF j,G j,h, where G j(m) := G j(cm + j). Thus,
without loss of generality, we can assume that F is nondegenerate.
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Clearly, if n ∈ AF,G,h, then h divides both F(n) and G(n). Since integral linear
recurrences (and, in particular, integer-valued polynomials) are ultimately periodic
modulo any positive integer, there exist a finite set E and positive integers a, b1, . . . , bt

such that h | gcd(F(n),G(n)) if and only if n ∈ E or n = am + bi, for some positive
integer m and some i ∈ {1, . . . , t}. Moreover, if n = am + bi, for some integers m ≥ 1
and i ∈ {1, . . . , t}, then n ∈ AF,G,h if and only if m ∈ AF̃ j,G̃ j

, where F̃i(`) := F(a` + bi)/h

and G̃i(`) := G(a` + bi)/h for all integers ` ≥ 0. In particular, F̃i is a nondegenerate
integral linear recurrence and G̃i is an integer-valued polynomial. So, we have proved
that AF,G,h is the disjoint union of the finite set E and aAF̃i,G̃i

+ bi, for i = 1, . . . , t, as
desired. �

Lemma 2.2. If G, f1, . . . , fr have a nontrivial common factor, thenAF,G is finite.

Proof. Suppose that X − β divides each of G, f1, . . . , fr for some algebraic number β.
Let g ∈ Q[X] be the minimal polynomial of β over Q. Clearly, g divides G. Also, if L
is the splitting field of gG f1 · · · fr, then, for each σ ∈ Gal(L/Q),

F(n) = σ(F(n)) =

r∑
i=1

(σ fi)(n)(σ(αi))n

for all positive integers n. In particular, σ(β) is a root of each σ fi, since β is a root
of each fi. Therefore, by the uniqueness of the generalised power sum expression of
a linear recurrence, σ(β) is a root of each fi and, as a consequence, g divides each fi.
Now let B be a positive integer such that all the polynomials BG/g, B f1/g, . . . , B fr/g
have coefficients which are algebraic integers. Then it follows easily that BF(n)/g(n)
and BG(n)/g(n) are both integers for all positive integers n. (Note that g(n) , 0, since
g is irreducible in Q[X].) Hence, n ∈ AF,G implies that g(n) | B, which is possible only
for finitely many positive integers n. �

For r ≥ 2 and for all integers x1, . . . , xr, we set

DF(x1, . . . , xr) := det(αx j

i )1≤i, j≤r

and, for any prime number p not dividing ak, we define TF(p) as the greatest integer
T ≥ 0 such that p does not divide∏

1≤x2,...,xr≤T

max{1, |NK(DF(0, x2, . . . , xr))|},

where the empty product is equal to 1 and NK(α) denotes the norm of α ∈ K over Q.
It is known that such T exists [8, page 88]. If r = 1, then we set TF(p) := +∞ for all
prime numbers p not dividing a1.

Finally, for all γ > 0, we define

PF,γ := {p : p - ak, TF(p) < pγ}.

The next lemma shows that TF(p) is usually larger than a power of p.
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Lemma 2.3 [2, Lemma 2.1]. For all γ ∈ (0, 1/r] and x ≥ 21/γ,

#PF,γ(x)�F
xrγ

γ log x
.

From the previous estimate, is easy to deduce the following bound.

Lemma 2.4. We have ∑
p>y

1
pTF(p)

�F
1

y1/(r+1)

for all sufficiently large y.

Proof. We split the series into two parts, separating between prime numbers which
belong to PF,γ and those which do not. In the first case, by partial summation and
Lemma 2.3, for a fixed γ ∈ (0, 1/r),∑

p>y
p∈PF,γ

1
pTF(p)

≤
∑
p>y

p∈PF,γ

1
p

=

[
#PF,γ(t)

t

]+∞

t=y
+

∫ +∞

y

#PF,γ(t)
t2 dt�F,γ

1
y1−rγ . (2.2)

On the other hand, in the second case,∑
p>y

p<PF,γ

1
pTF(p)

≤
∑
p>y

1
p1+γ

�

∫ +∞

y

dt
t1+γ
�γ

1
yγ
. (2.3)

If we put γ := 1/(r + 1) and collect together the estimates (2.2) and (2.3), we obtain
the result. �

The next lemma is an upper bound in terms of TF(p) for the number of solutions of
a certain congruence modulo p involving F. The proof proceeds essentially like the
one of [2, Lemma 2.2], which in turn relies on previous arguments given in [20] (see
also [8, Theorem 5.11]). We include it for completeness.

Lemma 2.5. Let p be a prime number dividing neither ak nor the denominator of any of
the coefficients of f1, . . . , fr. Moreover, let ` ≥ 0 be an integer such that f1(`), . . . , fr(`)
are not all zero modulo some prime ideal of OK lying over p. Then, for all x > 0, the
number of integers m ∈ [0, x] such that F(pm + `) ≡ 0 (mod p) is

Or

(
x

TF(p)
+ 1

)
.

Proof. For r = 1, the claim can be proved quickly using (2.1). Hence, assume
that r ≥ 2. Let I be an interval of TF(p) consecutive nonnegative integers, and let
m1 < · · · < ms be all the integers m ∈ I such that F(pm + `) ≡ 0 (mod p). Also, let π
be a prime ideal of OK lying over p. Then, by (2.1), and since no denominator of the
coefficients of f1, . . . , fr belongs to π,

r∑
i=1

fi(`)(αi)`+pm1 (αp
i )m j−m1 ≡

r∑
i=1

fi(pm j + `)αpm j+`

i ≡ 0 (mod π) (2.4)
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for j = 1, . . . , s. By a result of Schlickewei [19], there exists a constant C(r), depending
only on r, such that for any B1, . . . , Br ∈ K, not all zero, the exponential equation

r∑
i=1

Biα
x
i = 0

has at most C(r) solutions in positive integers x. Suppose that s ≥ C(r) + r. Put x1 := 0
and, setting X2 := {m j − m1 : j = 2, . . . , s}, pick some x2 ∈ X2 such that

det(αx j

i )1≤i, j≤2 , 0.

This is possible by the same result of Schlickewei, since

#X2 = s − 1 ≥ C(r) + r − 1 > C(r).

For r ≥ 3, set X3 := X2 \ {x2} and pick x3 ∈ X3 such that

det(αx j

i )1≤i, j≤3 , 0. (2.5)

Again, this is still possible since, by the choice of x2, (2.5) is a nontrivial exponential
equation and

#X3 = s − 2 ≥ C(r) + r − 2 > C(r).

Continuing in this way, after r − 1 steps, we obtain integers x2, . . . , xr ∈ [1,TF(p)) such
that

DF(0, x2, . . . , xr) , 0. (2.6)

Now, since fi(`) are not all zero modulo π, by (2.4),

det(αpx j

i )1≤i, j≤r ≡ 0 (mod π),

so that

NK(DF(0, x2, . . . , xr))p = NK(det(αx j

i ))p ≡ NK(det(αpx j

i )) ≡ 0 (mod p),

which is impossible by the definition of TF(p) and condition (2.6). Hence, s < C(r) + r
and the desired claim follows easily. �

Our final lemma is a consequence of Bézout’s theorem.

Lemma 2.6. If gcd(G, f1, . . . , fr) = 1, then there are only finitely many prime numbers
p such that p | G(`), for some integer `, and f1(`), . . . , fr(`) are all zero modulo some
prime ideal of OK lying over p.

Proof. By Bézout’s theorem for polynomials in K[X], there exist h0, . . . , hr ∈ K[X]
such that

Gh0 + f1h1 + · · · + frhr = 1.

Let B be a positive integer such that all the coefficients of Bh0, . . . , Bhr are algebraic
integers. If π is a prime ideal of OK lying over p such that f1(`), . . . , fr(`) are all zero
modulo π, then

B ≡ BG(l)h0(l) + B f1(l)h1(l) + · · · + B fr(l)hr(l) ≡ 0 (mod π),

since p | G(`). Hence, p | B and this is possible only for finitely many primes p. �
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3. Proof of Theorem 1.4

We begin by proving thatAF,G,h has a natural density. First, in light of Lemma 2.1,
without loss of generality, we can assume that F is nondegenerate and not identically
zero, and that h = 1. By Lemma 2.2, if G, f1, . . . , fr share a nontrivial common factor,
then AF,G is finite and, obviously, d(AF,G) = 0. Therefore, we can also assume that
gcd(G, f1, . . . , fr) = 1.

Put CF,G := N \ AF,G, so that, equivalently, we have to prove that the natural density
of CF,G exists. For each y > 0, we split CF,G into two subsets:

C−F,G,y :=
{
n ∈ CF,G : p | gcd(G(n), F(n)) for some p ≤ y

}
,

C+
F,G,y := CF,G \ C

−
F,G,y.

Recalling that F,G are ultimately periodic modulo p, for any prime number p, we see
that C−F,G,y is a union of finitely many arithmetic progressions and a finite subset of N.
In particular, C−F,G,y has a natural density. If we put δy := d(C−F,G,y), then it is clear that
δy is a bounded nondecreasing function of y. Hence, the limit

δ := lim
y→+∞

δy (3.1)

exists and is finite. We shall prove that CF,G has natural density δ. If n ∈ C+
F,G,y(x),

then there exists a prime p > y such that p | G(n) and p | F(n). In particular, we can
write n = pm + `, for some nonnegative integers m ≤ x/p and ` < p, with p | G(`). For
sufficiently large y, how large depending only on F,G, we see that p divides neither ak
nor any of the denominators of the coefficients of f1, . . . , fr and that, by Lemma 2.6,
the terms f1(`), . . . , f2(`) are not all zero modulo some prime ideal of OK lying over p.
On the one hand, by Lemma 2.5, the number of possible values for m is

Or

(
x

pTF(p)
+ 1

)
.

On the other hand, for sufficiently large y, depending on G, the number of possible
values for ` is at most deg(G). Furthermore, we have p�G x, since all the roots of G
are in Q. (Note that this property is preserved by the reduction to G̃ in Lemma 2.1.)
Therefore, setting γ := 1/(r + 1),

#C+
F,G,y(x)�F,G

∑
y<p�G x

(
x

pTF(p)
+ 1

)
�F,G

x
yγ

+
x

log x
, (3.2)

where we used Lemma 2.4 and Chebyshev’s estimate for the number of primes not
exceeding x. Thus,

lim sup
x→+∞

∣∣∣∣∣#CF,G(x)
x

− δy

∣∣∣∣∣ = lim sup
x→+∞

∣∣∣∣∣∣#CF,G(x)
x

−
#C−F,G,y(x)

x

∣∣∣∣∣∣
= lim sup

x→+∞

#C+
F,G,y(x)

x
�F,G

1
yγ
. (3.3)

Hence, letting y→ +∞ in (3.3) and using (3.1), we see that CF,G has natural density δ.
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At this point, assuming that G has no fixed divisors, it remains only to prove that
the natural density of AF,G is positive. In turn, this is equivalent to δ < 1. Clearly,

C−F,G,y ⊆
{
n ∈ N : p | G(n) for some p ≤ y

}
.

Hence, by standard sieving arguments (see, for example, [10, Section 1.2.3,
Equation (3.3)]),

#C−F,G,y(x)

x
≤ 1 −

∏
p≤y

(
1 −

ρG(p)
p

)
+ OG

(1
x

∑
d|P(y)

ρG(d)
)
,

where P(y) :=
∏

p≤y p, while ρG is the completely multiplicative function supported on
squarefree numbers and satisfying

ρG(p) :=
#
{
z ∈ {1, . . . , p1+νp(B)} : BG(z) ≡ 0 (mod p1+νp(B))

}
pνp(B) ,

for all prime numbers p, where B is a positive integer such that BG ∈ Z[X]. Since G
has no fixed divisors, ρG(p) < p for all prime numbers p. Also, ρG(p) ≤ deg(G) for all
sufficiently large prime numbers p. Therefore,∏

p≤y

(
1 −

ρG(p)
p

)
�G

1
(log y)deg(G)

if y is large enough, which implies that

lim sup
x→+∞

#C−F,G,y(x)

x
≤ 1 −

c1

(log y)deg(G) , (3.4)

where c1 > 0 is a constant depending on G. Recall that δ is defined by (3.1) and that
we proved that δ is equal to the natural density of CF,G. Hence, putting together (3.3)
and (3.4),

δ = lim
x→+∞

#CF,G(x)
x

≤ lim sup
x→+∞

#C−F,G,y(x)

x
+ lim sup

x→+∞

#C+
F,G,y(x)

x

≤ 1 −
(

c1

(log y)deg(G) −
c2

yγ

)
, (3.5)

where c2 > 0 is a constant depending on F,G. Finally, picking a sufficiently large
y, depending on c1 and c2, the bound (3.5) yields δ < 1, as desired. The proof of
Theorem 1.4 is complete.

4. Concluding remarks

4.1. The case in which G has a fixed divisor. Suppose that F is a nondegenerate
integral linear recurrence and that G is an integer-valued polynomial with all roots
in Q and having a fixed divisor d > 1. In order to study AF,G, one could try to
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reduce from this general situation to the one where there is no fixed divisor, so that
Theorem 1.4 can be applied. However, the strategy used in Lemma 2.1, that is, writing
AF,G as the disjoint union of a finite set and finitely many sets of the form aAF̃,G̃ + b,
now does not work. The issue is that the resulting polynomials G̃ may have fixed
divisors. For example, let F be the Fibonacci sequence and G(n) = n(n + 1), so that
d = 2. Then 2 - F(n) if and only if n ≡ 1, 2 (mod 3), so thatAF,G is the disjoint union
of AF̃1,G̃1

and AF̃2,G̃2
, where F̃i(m) = F(3m + i) and G̃i(m) = G(3m + i)/2 for i = 1, 2.

Now, G1(m) = (9m2 + 9m + 2)/2 has no fixed divisors, but G2(m) = (9m2 + 15m + 6)/2
gained 3 as a new fixed divisor.

4.2. The case in which G does not split over the rationals. We note that there
are examples of integral linear recurrences F and integer-valued polynomials G, not
splitting over the rationals, such that AF,G has a positive density for elementary
reasons. For instance, for the following pair

F(n) = (n2 + 1)5n + (n2 + 2)3n, G(n) = (n2 + 1)(n2 + 2),

we have AF,G = N. Indeed, suppose by contradiction that there exists a prime p
dividing both F(n) and G(n). Then p | (n2 + 1) or p | (n2 + 2), exclusively. In the first
case, since p | F(n), we get p | 3n, that is, p = 3, which is not possible, since n2 + 1 is
never a multiple of 3. The second case is similar.

However, except for those easy situations, we think that if G does not split over
the rationals, then the study of AF,G requires different methods to those employed in
this paper. In fact, if p | G(n), we can only say that p�G xdeg(G) and, for deg(G) ≥ 2,
this does not allow one to conclude that lim supx→+∞ C

+
F,G,y(x)/x = o((log y)− deg(G)) as

y→ +∞, which is a key step in the proof of Theorem 1.4. In the following, we provide
a heuristic for the claim that C+

F,G,y(x)� x for all y. First, we can split C+
F,G,y(x) into

two parts: the first one is

{n ≤ x : gcd(F(n),G(n)) , 1 and p | gcd(F(n),G(n))⇒ y < p ≤ x},

which can be handled as in (3.2), whereas the second one is

{n ≤ x : ∃p | gcd(F(n),G(n)) with p > x}, (4.1)

which, by our heuristic, we believe should have cardinality� x.
For the sake of simplicity, we consider only the case where F is the Fibonacci

sequence and G(n) = n2 + 1. By a result of Everest and Harman about the existence of
primitive divisors of quadratic polynomials [7, Theorem 1.4],

#{n ≤ x : ∃p > x with p | G(n)} � x,

so that
Px

[
∃p > x with p | G(n)

]
� 1,

where we consider the events in the probability space ([x],P[x],Px), with [x] = {n ≤ x}
and Px is the discrete uniform measure on [x]. Let zF(m) be the least positive integer n
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such that m | F(n). It is well known that p | F(n) if and only if zF(p) | n. This means that
Px

[
p | F(n)

]
is roughly 1/zF(p). Therefore, interpreting the events of being divisible

by different prime numbers as independent, we expect that

Px
[
∃p > x with p | F(n)

]
≥ 1 − Px

[
p - F(n) for all p with x < p� x2]

= 1 −
∏

p: x<p�x2

(
1 −

1
zF(p)

)
> 1 −

∏
p: x<p�x2

(
1 −

1
p + 1

)
> 1/2 + o(1)

as x → +∞, since zF(p) ≤ p + 1 and thanks to Mertens’ theorem. Assuming
independence between the events that a prime divides F(n) or G(n), we deduce that
the expected value of the cardinality of (4.1) is∑

n≤x

Px
[
∃p > x with p | gcd(F(n),G(n))

]
=

∑
n≤x

Px
[
∃p > x with p | F(n)

]
· Px

[
∃p > x with p | G(n)

]
� x,

as claimed.
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[2] J. J. Alba González, F. Luca, C. Pomerance and I. E. Shparlinski, ‘On numbers n dividing the nth
term of a linear recurrence’, Proc. Edinb. Math. Soc. (2) 55(2) (2012), 271–289.
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Università degli Studi di Torino, Turin, Italy
e-mail: carlo.sanna.dev@gmail.com

https://doi.org/10.1017/S0004972718000606 Published online by Cambridge University Press

https://doi.org/10.1007/s40840-017-0514-8
http://orcid.org/0000-0002-4559-6464
mailto:danymastro93@hotmail.it
http://orcid.org/0000-0002-2111-7596
mailto:carlo.sanna.dev@gmail.com
https://doi.org/10.1017/S0004972718000606

	Introduction
	Preliminary results
	Proof of Theorem 1.4
	Concluding remarks
	The case in which G has a fixed divisor
	The case in which G does not split over the rationals

	References

