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Abstract

Arrows are a popular form of abstract computation. Being more general than monads, they

are more broadly applicable, and, in particular, are a good abstraction for signal processing

and dataflow computations. Most notably, arrows form the basis for a domain-specific

language called Yampa, which has been used in a variety of concrete applications, including

animation, robotics, sound synthesis, control systems, and graphical user interfaces. Our

primary interest is in better understanding the class of abstract computations captured by

Yampa. Unfortunately, arrows are not concrete enough to do this with precision. To remedy

this situation, we introduce the concept of commutative arrows that capture a noninterference

property of concurrent computations. We also add an init operator that captures the causal

nature of arrow effects, and identify its associated law. To study this class of computations in

more detail, we define an extension to arrows called causal commutative arrows (CCA), and

study its properties. Our key contribution is the identification of a normal form for CCA

called causal commutative normal form (CCNF). By defining a normalization procedure, we

have developed an optimization strategy that yields dramatic improvements in performance

over conventional implementations of arrows. We have implemented this technique in Haskell,

and conducted benchmarks that validate the effectiveness of our approach. When compiled

with the Glasgow Haskell Compiler (GHC), the overall methodology can result in significant

speedups.

1 Introduction

Consider the following recursive mathematical definition of the exponential function:

e(t) = 1 +

∫ t

0

e(t)dt

In Yampa (Hudak et al., 2003), a domain-specific language (DSL) embedded in

Haskell (Peyton Jones et al., 2003), we can write this using arrow syntax (Paterson,

2001) as follows:

exp = proc ()→ do

rec let e = 1 + i

i ← integral−≺ e

returnA−≺ e

∗Presently at Intel Labs, Intel Corporation.
†Presently at Google Inc.
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Even for those not familiar with arrow syntax or Haskell, the close correspondence

between the mathematics and the Yampa program should be clear. As in most high-

level language designs, this is the primary motivation for developing a language

such as Yampa: reducing the gap between program and specification.

Yampa has been used in a variety of applications, including robotics (Paterson

et al., 1999a, 1999b; Hudak et al., 2003), sound synthesis (Giorgidze & Nilsson, 2008;

Cheng & Hudak, 2009), animation (Hudak et al., 2003), video games (Courtney et al.,

2003; Cheong, 2005), biochemical processes (Hudak et al., 2008), control systems

(Oertel, 2006), and graphical user interfaces (Courtney & Elliott, 2001; Courtney,

2004). There are several reasons that we prefer a language design based on arrows

over, for example, an approach such as that used in Fran (Elliott & Hudak, 1997).

First, arrows are more direct—they convey information about input as well as

output, whereas Fran’s inputs are implicit and global. Second, the use of arrows

eliminates a subtle but devastating form of space leak, as described in Liu & Hudak

(2007). Third, arrows introduce a meta level of computation that aids in reasoning

about program correctness, transformation, and optimization.

But in fact, conventional arrows are not strong enough to capture the family

of computations that we are interested in—more laws are needed to constrain the

computation space. Unfortunately, more constrained forms of computation—such

as monads (Moggi, 1991) and applicative functors (McBride & Paterson, 2008) –

are not general enough. In addition, there are not enough operators. In particular,

we find the need for an abstract initialization operator and its associated laws.

In this paper, we give a precise abstract characterization of a class of arrow

computations that we call causal commutative arrows, or just CCA for short. More

precisely, the contributions in this paper can be summarized as follows:

1. We define a notion of commutative arrow by extending the conventional set of

arrow laws to include a commutativity law.

2. We define an ArrowInit-type class with an init operator that captures the

essence of causal computation and satisfies a product law.

3. We define a restricted language called CCA, in which the above ideas are

manifest. For such arrows, we establish:

(a) a normal form and

(b) a normalization procedure.

We achieve this result using only CCA laws, without referring to any concrete

semantics or implementation.

4. We define an optimization technique for causal commutative arrows that yields

substantial improvements in performance over previous attempts to optimize

arrow combinators and arrow syntax.

5. Finally, we show how to implement our ideas in Glasgow Haskell Compiler

(GHC) to yield speedups, in certain cases, by over two orders of magnitude.

We begin the presentation with a brief overview of arrows in Section 2. The

knowledgeable reader may prefer to skip directly to Section 3, where we give

the definition and laws for CCA. In Section 4, we show that any CCA program

can be transformed into a uniform representation that we call causal commutative
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normal form (CCNF). We prove that the normalization procedure is sound, based

on equational reasoning using only the CCA laws. In Section 5, we discuss further

optimizations and, in Section 6, their implementations in GHC. We present some

benchmarks showing the effectiveness of our approach in Section 7. We discuss, in

Section 8, possible extensions and, in Section 9, related work.

2 An introduction to arrows

Arrows (Hughes, 2000) are a generalization of monads that relax the stringent

linearity imposed by monads, while retaining a disciplined style of composition.

Arrows have enjoyed a wide range of applications, often as a domain-specific

embedded language (DSEL) (Hudak, 1996; Hudak, 1998), including the many

Yampa applications cited earlier, as well as parsers and printers (Jansson & Jeuring,

1999), parallel computing (Huang et al., 2007), and so on. Arrows also have a

theoretical foundation in category theory, where they are strongly related to (but

not precisely the same as) Freyd categories (Power & Thielecke, 1999; Atkey, 2008).

2.1 Conventional arrows

Like monads, arrows capture a certain class of abstract computations, and offer

a way to structure programs. In Haskell, this is achieved through the Arrow -type

class:

class Arrow a where

arr :: (b → c)→ a b c

(�) :: a b c → a c d → a b d

first :: a b c → a (b, d ) (c, d )

The combinator arr lifts a function from b to c to a “pure” arrow computation

from b to c, namely, a b c where a is the arrow type. The output of a pure arrow

entirely depends on the input (it is analogous to return in the Monad class). The

operator � composes two arrow computations by connecting the output of the

first to the input of the second (and is analogous to bind >>= in the Monad class).

But in addition to composing arrows linearly, it is desirable to compose them in

parallel—i.e., to allow “branching” and “merging” of inputs and outputs. There are

several ways to do this, but by simply defining the first combinator in the Arrow

class, all other combinators can be defined. first converts an arrow computation

taking one input and one result, into an arrow computation, taking two inputs and

two results. The original arrow is applied to the first part of the input, and the result

becomes the first part of the output. The second part of the input is fed directly to

the second part of the output.

Other combinators can be defined using these three primitives. For example, the

dual of first can be defined as

second :: (Arrow a)⇒ a b c → a (d , b) (d , c)

second f = arr swap � first f � arr swap

where swap (a , b) = (b, a)
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left identity arr id ≫ f = f
right identity f ≫ arr id = f
associativity (f ≫ g) ≫ h = f ≫ (g ≫ h)
composition arr (g . f ) = arr f ≫ arr g
extension first (arr f ) = arr (f × id)
functor first (f ≫ g) = first f ≫ first g
exchange first f ≫ arr (id × g) = arr (id×g) ≫ first f
unit first f ≫ arr fst = arr fst ≫ f
association first (first f ) ≫ arr assoc = arr assoc ≫ first f

where assoc ((a, b), c) = (a, (b, c))

Fig. 1. Conventional arrow laws.

left tightening loop (first h ≫ f ) = h ≫ loop f
right tightening loop (f ≫ first h) = loop f ≫ h
sliding loop (f ≫ arr (id× k)) = loop (arr (id× k) ≫ f )
vanishing loop (loop f ) = loop (arr assoc−1 ≫ f ≫ arr assoc)
superposing second (loop f ) = loop (arr assoc ≫ second f ≫ arr assoc−1)
extension loop (arr f ) = arr (trace f )

where trace f b = let (c, d) = f (b, d) in c

Fig. 2. Arrow loop laws.

Parallel composition can be defined as a sequence of first and second:

(���) :: (Arrow a)⇒ a b c → a b ′ c′ → a (b, b ′) (c, c′)

f ��� g = first f � second g

A mere implementation of the arrow combinators, of course, does not make it an

arrow—it must additionally satisfy a set of arrow laws, which are shown in Figure 1.

2.2 Looping arrows

To model recursion, we can introduce a loop combinator (Paterson, 2001). The

exponential example given in the introduction requires recursion, as do many

applications in signal processing, for example. In Haskell, this combinator is captured

in the ArrowLoop class:

class Arrow a ⇒ ArrowLoop a where

loop :: a (b, d ) (c, d )→ a b c

A valid instance of this class should satisfy the additional laws shown in Figure 2.

This class and its associated laws are related to the trace operator in Street et al.

(1996) and Hasegawa (1997), which was generalized to arrows in Paterson (2001).

We find that arrows are best viewed pictorially, especially for applications such

as signal processing, where domain experts commonly draw signal flow diagrams.

Figure 3 shows some of the basic combinators in this manner, including loop.

2.3 Arrow syntax

Recall the Yampa definition of the exponential function given earlier:
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arr :: Arrow a ⇒ (b → c) → a b c
(≫) :: Arrow a ⇒ a b c → a c d → a b d
first :: Arrow a ⇒ a b c → a (b, d) (c, d)
( ) :: Arrow a ⇒ a b c → a b c → a (b, b ) (c, c )
loop :: Arrow a ⇒ a (b, d) (c, d) → a b c

(a) arr f (b) f ≫g (c) first f

(d) f g (e) loop f

Fig. 3. Commonly used arrow combinators.

commutativity first f ≫ second g = second g ≫ first f
product init i init j = init (i, j)

Fig. 4. Causal commutative arrow laws.

exp = proc ()→ do

rec let e = 1 + i

i ← integral−≺ e

returnA−≺ e

This program is written using arrow syntax, introduced by Paterson (2001) and

adopted by GHC (the predominant Haskell implementation) because it ameliorates

the cumbersome nature of writing in the point-free style demanded by arrow

combinators. The above program is equivalent to the following sugar-free program:

exp = fixA (integral � arr (+1))

where fixA f = loop (second f � arr (dup . snd ))

dup x = (x , x )

Although more cumbersome, we will use this program style in the remainder of the

paper, in order to avoid having to explain the meaning of arrow syntax in more

detail.

3 Causal commutative arrows

In this section, we introduce two key extensions to conventional arrows, and

demonstrate their use by implementing a stream transformer in Haskell.

First, as mentioned in the introduction, the set of arrow and arrow loop laws is

not strong enough to capture stream computations. In particular, the commutativity

law shown in Figure 4 establishes a noninterference property for concurrent

computations – effects are still allowed, but this law guarantees that concurrent

effects cannot interfere with each other. We say that an arrow is commutative if it
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satisfies the conventional laws as well as this critical additional law. Yampa is, in

fact, based on commutative arrows.

Second, we note that Yampa has a primitive operator called iPre that is used to

inject a delay into a computation; indeed, it is the primary effect imposed by the

Yampa arrow (Hudak et al., 2003). Similar operators, often called delay , also appear

in dataflow programming (Wadge & Ashcroft, 1985), stream processing (Stephens,

1997; Thies et al., 2002), and synchronous languages (Caspi et al., 1987; Colaço et al.,

2004). In all cases, the operator introduces stateful computation into an otherwise

stateless setting.

In an effort to make this operation more abstract, we rename it init and capture

it in the following type class:

class ArrowLoop a ⇒ ArrowInit a where

init :: b → a b b

Intuitively, the argument to init is the initial output; subsequent output is a copy

of the input to the arrow. It captures the essence of causal computations, namely

that the current output depends only on the current as well as previous inputs.

Besides causality, we make no other assumptions about the nature of these values:

they may or may not vary with time, and the increment of change may be finite or

infinitesimally small.

More importantly, a valid instance of the ArrowInit class must satisfy the product

law shown in Figure 4. This law states that two inits paired together are equivalent

to one init of a pair. Here we use the ��� operator instead of its expanded definition

first ... � second ... to imply that the product law assumes commutativity.

We will see in a later section that init and the product law are critical to our

normalization and optimization strategies. But init is also important in allowing

us to define operators that were previously taken as domain-specific primitives. In

particular, consider the integral operator used in the exponentiation examples. With

init , we can define integral using the Euler integration method and a fixed global

step dt as follows:

integral :: ArrowInit a ⇒ a Double Double

integral = loop (arr acc � init 0 � arr dup) where acc (x , i ) = i + dt ∗ x

dup x = (x , x )

To complete the picture, we give an instance (i.e., an implementation) of CCA

that captures a causal stream transformer, as shown in Figure 5, where

• SF a b is an arrow representing functions (transformers) from streams of

type a to streams of type b. It is essentially a recursively defined data type

consisting of a function with its continuation, a concept closely related to a

form of finite state automaton called a Mealy Machine (Mealy, 1955). Yampa

employs a similar implementation, and the same data type was called Auto in

Paterson (2001).

• SF is declared an instance of type classes Arrow , ArrowLoop, and ArrowInit .

For example, exp can be instantiated as type exp :: SF () Double. These
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newtype SF a b = SF {unSF :: a → (b, SF a b)}

instance Arrow SF where
arr f = SF h where h x = (f x SF h)
first f = SF (h f ) where h f (x, z) = let (y f ) = unSF f x

in ((y,
,

,

z), SF (h f ))
f ≫ g = SF (h f g) where h f g x = let (y, f ) = unSF f x

(z, g ) = unSF g y
in (z, SF (h f g ))

instance ArrowLoop SF where
loop f = SF (h f ) where h f x = let ((y, z), f ) = unSF f (x, z)

in (y, SF (h f ))

instance ArrowInit SF where
init i = SF (h i) where h i x = (i, SF (h x))

runs f :: SF a b → [a] → [b]
runs f f = g f where g f (x : xs) = let (y, f ) = unSF f x

in y : g f xs

Fig. 5. Causal stream transformer.

instances obey all of the arrow laws, including the two additional laws that

we introduced.

• runsf :: SF a b → [a ]→ [b ] converts an SF arrow into a stream transformer

that maps an input stream of type [a ] to an output stream of type [b ].

As a demonstration, we can sample the exponential function at a fixed time

interval by running the exp arrow over an uniform input stream inp:

dt = 0.01 :: Double

inp = () : inp :: [()]

∗Main > runsf exp inp

[1.0, 1.01, 1.0201, 1.030301, 1.04060401, 1.0510100501, ...

We must stress that the SF type is but one instance of a causal commutative arrow,

and alternative implementations such as the synchronous circuit type SeqMap in

Paterson (2001) and the stream-function-type (incidentally also called) SF in Hughes

(2004) also qualify as valid instances. The abstract properties such as normal forms

that we develop in the next section are applicable to any of these instances, and

thus are more broadly applicable than optimization techniques based on a specific

semantic model, such as the one considered in Capsi & Pouzet (1998).

4 Normalization of CCA

In most implementations, arrow programs carry a run-time overhead, primarily due

to the use of a data structure for arrow instances, as well as the extra tupling forced

onto function’s arguments and return values. There have been several attempts

(Hughes, 2004; Nilsson, 2005) to optimize arrow-based programs using arrow laws,

but the result has not been entirely satisfactory. Although conventional arrow and

arrow loop laws offer ways to combine pure arrows and collapse nested loops,

they are not specific enough to target effectful arrows, such as the init combinator.
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Fig. 6. Diagram for loopD .

(a) Original (b) Optimized

Fig. 7. Diagrams for exp.

Certain effectful arrows are dynamically optimized in Nilsson (2005), but they are

based on somewhat ad-hoc laws, and there are no normal forms.

Our new strategy is based on the following rather striking observation: any CCA

program can be transformed into a single loop containing one pure arrow and one

initial state value. More precisely, any CCA program can be normalized into either

the form arr f or

loop (arr f � second (init i ))

where f is a pure function and i is an initial state. Note that all the essential arrow

combinators, arr , �, second , loop, and init , are used exactly once, and therefore all of

the overheads (tupling, etc.) associated with multiple occurrences and compositions

of the arrow combinators are completely eliminated. Not surprisingly, the resulting

improvement in performance is rather dramatic, as we will see later.

First, we define a combinator called loopD that can be viewed as syntactic sugar

for the above form:

loopD :: ArrowInit a ⇒ d → ((b, d )→ (c, d ))→ a b c

loopD i f = loop (f � second (init i ))

A pictorial view of loopD is given in Figure 6. The second argument to loopD is

a pure function mapping a tuple of (b, d ) to (c, d ), where the value of type d is

initialized before looping back, and is often regarded as an internal state.

As a concrete example, Figure 7(a) is a diagram of the original exp example given

earlier. In Figure 7(b), we have in-lined the definition of integral and applied the

optimization strategy. The result is a single loop, where all pure functions can be

combined together to minimize arrow implementation overheads.

To be more precise as to what kind of arrows are subject to normalization, we

want to restrict our discussion in this section on well-formed and closed CCA terms.

Definition 4.1 (CCA)

A CCA is a valid instance of the ArrowInit class, whose terms are definable from

only the following combinators: arr , first , �, loop, and init . All CCAs must satisfy

the two CCA laws given in Figure 4 in addition to the arrow and arrow loop laws.
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composition arr f ≫ arr g arr (g . f )
left tightening arr f ≫ loopD i g loopD i (g . (f × id))
right tightening loopD i f ≫ arr g loopD i ((g× id) . f )
sequencing loopD i f ≫ loopD j g loopD (i, j) (assoc (juggle (g× id) . (f × id)))
extension first (arr f ) arr (f × id)
superposing first (loopD i f ) loopD i (juggle (f × id))
loop-extension loop (arr f ) arr (trace f )
vanishing loop (loopD i f ) loopD i (trace (juggle f ))

f ×g (x, y) = (f x, g y) swap (x, y) = (y, x)
assoc ((x, y), z) = (x, (y, z)) trace f x = let (y, z) = f (x, z) in y

assoc−1 (x, (y, z)) = ((x, y), z) juggle ((x, y), z) = ((x, z), y)
assoc f = assoc . f . assoc−1 juggle f = juggle . f . juggle

Fig. 8. Single-step reduction for CCA.

(NORM1)
arr f ⇓ arr f

(NORM2)
loopD i f ⇓ loopD i f

(INIT)
init i ⇓ loopD i swap

(SEQ)
e1 ⇓ e1 e2 ⇓ e2 e1 ≫ e2 e

e1 ≫ e2 ⇓ e

(FIRST)
f ⇓ f first f e

first f ⇓ e
(LOOP)

f ⇓ f loop f e

loop f ⇓ e

Fig. 9. Normalization of CCA.

Definition 4.1 effectively means:

1. We are only concerned with CCAs written in closed terms, without referencing

arrow definitions from the environment (syntactic sugar is still allowed).

2. Such arrows must not be recursively defined, otherwise normalization would

fail to terminate.

3. There is no lambda abstraction or application at the arrow level so that we

can avoid talking about beta reduction or variable substitution of arrow terms.

Note, however, that we do allow all forms of functions, including recursive

ones, to be lifted by arr .

Definition 4.1 may seem too restrictive as it precludes any form of modularity

for CCA since all terms are closed. We believe this is only a necessary step to

avoid complications in formalizing CCA properties, and can certainly be relaxed in

real-world implementations.

Our intuition behind the normalization process is to extend arrow loop laws

to loopD , so that we only get the loopD form as a result. Formally, we define a

single-step reduction 	→ for CCA as a set of rules in Figure 8, and a normalization

procedure in Figure 9. The normalization relation ⇓ can be seen as a large-step

reduction following an innermost strategy, and is indeed a function.
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(a) left tightening (b) right tightening (c) sequencing

(d) superposing (e) vanishing

Fig. 10. Illustrations of reduction rules.

Note that some of the reduction rules resemble the arrow laws of the same name.

However, there are some subtle but important differences: First, unlike the laws,

reduction is directed. Second, the rules are extended to handle loopD instead of loop.

To see how this works, it is helpful to visualize a few examples of the reduction

rules in Figure 8, as shown in Figure 10. We omit the simpler rules that follow

directly from the laws, and only show those that involve loopD . The diagrams in

Figure 10 can be explained as follows:

(a) left tightening. Figure 10(a) shows that we can move a pure arrow from a left

composition inside a loopD arrow. This follows directly from the left tightening

law of loop.

(b) right tightening. Figure 10(b) shows that we can move a pure arrow from a

right composition inside a loopD arrow so that it fuses with the pure function

inside the loopD . This follows directly from the left tightening law of loop and

the commutativity law of CCA.

(c) sequencing. Figure 10(c) shows that we can combine two loopD arrows into

one. In doing so, we have to reroute part of the computation, and make use

of product law to fuse two init arrows into one. Notice that there is also a

reordering of a pure arrow and an init arrow, which is due to the commutativity

law of CCA.

(d) superposing. Figure 10(d) shows a variant of the superposing law for loopD

using first instead of second . Instead of an outer parallel composition, the

second line simply passes through the loopD unchanged with some rerouting.

(f) vanishing. Figure 10(e) shows an extension of the vanishing law for loops to

handle loopD . Since the outer loop only acts on the pure function, it can be
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moved inside and composed with the trace function due to the loop extension

law.

Lemma 4.1 (Soundness)

The reduction rules given in Figure 8 are both type and semantics preserving, i.e., if

e 	→ e′ then e = e′ is syntactically derivable from the set of CCA laws.

Proof: By equational reasoning using arrow laws. The composition, extension, and

loop-extension reduction rules are directly based on the arrow laws with the same

name; left and right tightening, superposing, and vanishing reduction rules follow

the definition of loopD , the commutativity law and the arrow loop laws with the

same name. The proof of the sequencing rule is more involved, and is given in

Appendix B. �

Lemma 4.2 (Termination)

The normalization procedure for CCA given in Figure 9 terminates for all CCAs.

Proof: By structural induction over all possible definitions of a CCA program. The

rules NORM1, NORM2, and INIT are the base case, and SEQ, FIRST, and LOOP

cover the inductive case, where the sub arrows (such as e1 and e2 in e1 � e2, and

f in first f and loop f ) are normalized inductively. It also explains why there are

exactly eight reduction rules for 	→, because the premises of SEQ, FIRST, and LOOP

require four, two, and two reduction rules, respectively. �

Theorem 4.1 (CCNF )

For any CCA term e :: ArrowInit a ⇒ a b c satisfying Definition 4.1, there exists a

normal form enorm , called the causal commutative normal form, which is either of the

form arr f , or loopD i f for some i and f, such that enorm :: ArrowInit a ⇒ a b c,

and e ⇓ enorm . In unsugared form, the second form is equivalent to loop (arr f �
second (init i )).

Proof

Follows from Lemmas 4.1 and 4.2. It is easy to see that when the normalization

algorithm (Figure 9) terminates, the result is a CCNF. �

Since we have presented a normal form and proved the soundness of its reduction

rules, a natural question to ask is whether the result leads to completeness.

Unfortunately, this is not the case. For example, the following two arrows f and g

are already in CCNF, and they are both equivalent to init 0 � init 1 with respect

to the CCA laws:

f = loopD (0, 1) (λ(x , (y , z ))→ (z , (y , x )))

g = loopD (1, 0) (λ(x , (y , z ))→ (y , (z , x )))

With some tricks of tuple reshuffling, we can easily convert f to g or vice versa in a

sound way respecting the CCA laws, but still, they are both normal forms, and yet

different.

Moreover, due to the introduction of general recursion at value level through the

loop combinator, it is hard to reason about equivalence relationship when there

is nontermination. For example, the following two arrows should both reduce to
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nonterminating traces that are bottom, but this equivalence is not derivable from

the laws:

p = loop (arr (λ( , x )→ (x , x + 1)))

q = loop (arr (λ( , x )→ (x , x + 2)))

After all, the lack of completeness does not necessarily undermine the importance

or the usefulness of our technique, as will be shown in the next section.

5 Optimization

In this section, we describe a simple sequence of optimizations that ultimately leads

to a single imperative loop that can be implemented extremely efficiently.

SF Arrow One observation is that instead of defining loopD as syntactic sugar, we

can implement it directly for a given arrow instance. For instance, using the SF data

type shown in Figure 5, loopD can be defined as

loopD i f = SF (g i ) where g i x = let (y , i ′) = f (x , i ) in (y , SF (g i ′))

As a more concrete example, a special case of runsf (defined in Section 3) often used

in practice is computing the nth element of the output stream when the input is a

constant unit stream. This gives the following function that avoids constructing the

output stream using the list data structure:

nthsf :: Int → SF () b → b

nthsf n (SF f ) = x ‘seq ‘ if n ≡ 0 then x else nthsf (n − 1) f ′ where (x , f ′) = f ()

Notice the use of seq in order to force strict evaluation in each iteration because

we want the computation of each iteration to finish before next iteration, instead of

being postponed until the very end due to laziness.

CCNF Tuple Given the fact that a CCNF is no more than a tuple of a state and

a pure function, we can drop the SF data structure altogether by simply using the

tuple instead of an arrow written in loopD form. Correspondingly, we can define the

stream transformer runccnf and the nth element evaluator nthccnf for CCNF tuples:

runccnf :: (d , ((b, d )→ (c, d )))→ [b ]→ [c ]

runccnf (i , f ) = g i where g i (x : xs) = let (y , i ′) = f (x , i ) in y : g i ′ xs

nthccnf :: Int → (d , ((), d )→ (c, d ))→ c

nthccnf n (i , f ) = aux n i where aux n i = x ‘seq ‘ if n ≡ 0 then x else aux (n − 1) i ′

where (x , i ′) = f ((), i )

Instead of taking an arrow, the above two functions just take a CCNF tuple and

use the pure function to update the state in a loop computation. In doing so, we

have successfully transformed away all arrow instances, including the data structure

used to implement them!
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In-lining As we have mentioned in Section 4, the normalization of CCA only acts

on fully in-lined arrow terms. For example, in order to normalize the exp arrow,

we need to in-line integral . After the in-lining, we then normalize it to the CCNF

below:

exp = loopD expi expf
expi = 0

expf = trace (juggle . ((dup . snd )× id ) . (swap × id ) . juggle . ((((+1)× id ) .

trace (juggle . (dup × id ) . swap . ((λ(x , i )→ i + dt ∗ x )× id ) . juggle))× id ) .

juggle . (swap × id ) . juggle)

The CCNF tuple for the exp arrow is just (expi, expf). Notice the sequence of

function compositions in expf is the result of our CCA normalization procedure.

To take the in-lining one step further, we can simplify the pure function from

a CCNF tuple, such as expf given above. The default optimization and in-lining

techniques supported by GHC can already do this without any user intervention.

We demonstrate this step with the above CCNF for exp, though the technique is

equally applicable to any CCNF.

For example, to compute the nth element of the exponential sequence, we can just

apply runccnf to the CCNF tuple (expi, expf) like this:

nthexp :: Int → Double

nthexp n = nthccnf n (expi, expf)

When given proper optimization flags, GHC is able to agressively optimize the

above code and fully in-line all functions in the definition of expf and nthexp. The

following is the equivalent intermediate representation extracted from GHC after

optimization:

nthexp n = case n of {I# m → go 0.0 m }
go :: Double#→ Int#→ Double

go i n = case n of

DEFAULT → go (i + (dt ∗ (i + 1.0))) (n − 1)

0 → D# (i + 1.0)

As we can see, GHC has successfully in-lined not only the function nthccnf but also

expi and expf , and transformed everything into a tight loop using only strict and

unboxed types (those marked by #). This kind of aggressive optimization essentially

results in compiling a CCA program directly to a tight loop that is free of any

memory allocation of intermediate data structures.

6 Implementation

6.1 Template Haskell-based implementation

We implement CCA normalizations in Haskell with help from Template Haskell

(Sheard & Peyton Jones, 2002), an extension to Haskell that allows type-safe compile-

time meta-programming. Our compilation process consists of three steps:
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1. The source arrow program is translated to an abstract syntax tree (AST).

2. The AST is then normalized to CCNF.

3. The result is spliced back into the original program before the Haskell compiler

finishes the rest of compilation.

The first step requires in-lining of all arrow terms in preparation for the second

step that does the actual normalization. So merely grabbing the AST of a single

CCA definition is not enough since it may contain references to other definitions.

Our solution here is to allow a generic ArrowInit instance to be instantiated as an

AST directly from within Haskell, so that when we evaluate such a term, we get a

full AST. This is performed by the Haskell compiler at the meta level and can help

achieving similar effects of in-lining or substitutions. The following code snippet

demonstrates this approach:

data AExp = Arr ExpQ

| First AExp

| AExp :� AExp

| Loop AExp

| Init ExpQ

| LoopD ExpQ ExpQ

newtype ASyn b c = AExp AExp

The AExp data type represents an AST for CCA, and ASyn b c employs phantom

types so that we can declare ASyn to be an instance of the Arrow , ArrowLoop,

and ArrowInit type classes. The ExpQ type used here is the internal syntactic

representation of a Haskell expression provided by Template Haskell.

For example, the Arrow instance of Asyn can be declared as follows:

instance Arrow ASyn where

arr f = error "use arr’ instead"

AExp f � AExp g = AExp (f :� g)

first (AExp f ) = AExp (First f )

As we can see here, the usual arrow combinators are just syntactic operations over

the AExp data type. The problem, however, is in defining the arr combinator. For

instance, consider the following program:

f :: Arrow a ⇒ a b c

g :: Arrow a ⇒ a b ′ c′

h :: Arrow a ⇒ a (b, b ′) (c, c′)

h = first f � arr swap � first g � arr swap

We can obtain the AST for h by instantiating the generic arrow type a to Asyn . This

step is automatic because any function over type ASyn u v can be applied to any

generic arrow of type Arrow a ⇒ a u v . Simply, evaluating h :: ASyn (b, b ′) (c, c′) in

a Haskell interpreter such as GHCi shall return its AST as something like below:

AExp (((First f ′ :� Arr swap) :� First g ′) :� Arr swap)
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where f ′ and g ′ stand for the AST for f and g , respectively. The instantiation of

f and g is automatic because the concrete arrow types for f and g are inferred

to be ASyn too. Another way to look at this is that AExp f ′ :: ASyn b c and

AExp g ′ :: ASyn b ′ c′ are instances of the generic arrow f and g .

The real issue here, however, is that we cannot automatically reify a Haskell

function such as swap to the meta level, so the above AST for h has a type error,

because Arr swap will not type check.

Template Haskell can reify certain expressions to the meta level, and this step is

called quotation. But it cannot do so for all values, and requires explicit quotation

using a special syntax [|...|] for certain things, such as references to global definitions.

To work around this problem, we ask the programmer to always state the

quotation explicitly, and disallow direct usage of arr as indicated in the arrow

instance delcaration for ASyn . Instead of arr , we provide an arr ′ function that

additionally takes a quoted expression, for example:

arr ′ [ | λx → (x , x ) |] (λx → (x , x ))

The above would give us the needed AST for the pure function λx → (x , x ) in

addition to the function itself, where the [|...|] operation is a special Template Haskell

syntax for quoting (“quotable”) Haskell expression into an ExpQ representation.

We provide arr ′ (as well as init ′, since init faces a similar problem) in the ArrowInit

class defined below:

class (Arrow a ,ArrowLoop a)⇒ ArrowInit a where

init :: b → a b b

arr ′ :: ExpQ → (b → c)→ a b c

init ′ :: ExpQ → b → a b b

loopD :: e → ((b, e)→ (c, e))→ a b c

Since asking the programmer to write in arr ′ gets tedious over time, we provide a

modified arrow syntax translator that directly outputs combinator programs written

in arr ′ and init ′ instead of arr and init .

The actual normalization of an AExp can be straightforwardly implemented as a

traversal using the algorithms given in Figures 8 and 9. We omit the details here by

just saying the CCNF of an AExp is eventually represented by either the Arr or the

LoopD constructors.

We provide the normalization function as a Template Haskell splice operation:

norm :: ArrowInit a ⇒ a b c → ExpQ

So if we evaluate $(norm e) for any generic arrow e :: ArrowInit a ⇒ a b c, what

happens in the background is that it will first instantiate e to an ASyn arrow which is

internally represented by the AExp data type, then normalized to a LoopD (or Arr)

form, and finally spliced back as an Haskell expression loopD i f (or arr f ) for some

i and f . The $(...) operation is a special Template Haskell syntax for splicing. Since

GHC has native support for Template Haskell, the entire process happens without

any user intervention during either the compilation of a Haskell source program

using GHC, or an intepretive session using the interactive Haskell evaluator GHCi .
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6.2 Technical limiations

The use of Template Haskell allows a very simple implementation of the meta-

operations required for CCA normalization, and its integration with GHC gives

a seamless user experience. The most significant advantage, however, is that all

normalizations are done at compile-time, so that GHC may further optimize the

result through strictness analysis, unboxing, in-lining, and various other techniques.

An immediate restriction of this approach is that a full AST has to be made avail-

able at compile-time, which is only applicable to a subset of all ArrowInit instances.

Alternative implementations may lift this restriction by allowing normalization at

runtime or even utilizing a JIT compiler, and we leave this to the future work.

Besides the compile-time restriction, one caveat to this approach has to do with

a limitation of Template Haskell. For example, suppose we define a constant arrow

like this:

constant :: ArrowInit a ⇒ c → a b c

constant x = proc → returnA−≺ x

When we try to instantiate the above arrow type a to ASyn , the compiler will

complain that the type for constant is wrong, and insist that type c must be a

member of the Lift class, which is how Template Haskell reifies a Haskell value to

the meta level. To see exactly where is the problem, we translate the above from

arrow syntax to combinators using arr ′:

constant x = arr ′ [ | λ → x |] (λ → x )

The quotation of the lambda expression \ → x above has a reference to x , a

parameter of the function constant , and Template Haskell cannot quote it unless it

knows how to reify the value of x to the meta level, and hence requires that the

type for x is an instance of the Lift class.

On the other hand, our goal in the first step of in-lining CCA definitions is not to

lift arbitrary Haskell values, but to generate top-level code that could somehow still

relate the occurrence of variable x in a quotation to the actual parameter of constant

symbolically, so that we know how to handle substitution without evaluating the act-

ual value of x . In order to do so in Template Haskell would require quoting the

entire definition of constant and restricting variable x to be of the ExpQ type, the

type for quoted expressions. This will prevent us from reusing the same unmodified

code without CCA normalization, and hence compromise one of our initial goals of

making the implementation nonintrusive.

A more effective solution is to perform in-linings and substitutions at the meta

level, for example, using a heavily customized arrow syntax preprocessor, which will

no longer rely on the evaluation of Haskell terms, and hence bypass the whole

reification issue. Unfortunately, this is beyond what Template Haskell does, and we

leave it to future work.
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Table 1. Performance ratio (greater is better)

Name GHC arrowp CCNFsf CCNF tuple

exp 1.0 3.58 30.84 672.79

sine 1.0 2.81 18.89 442.48

oscSine 1.0 2.91 14.28 29.53

50’s sci-fi 1.0 3.15 18.72 21.37

robotSim 1.0 2.84 24.67 34.93

7 Benchmarks

We ran a set of benchmarks to measure the performance of several programs written

in arrow syntax, but compiled and optimized in different ways. For each program,

we

1. Compiled with GHC, which has a built-in translator for arrow syntax, and

ran nthsf on the resulting arrow. (GHC )

2. Translated using Paterson’s arrowp preprocessor to arrow combinators, com-

piled with GHC, and ran nthsf on the resulting arrow. (arrowp)

3. Normalized to CCNF, compiled with GHC and ran nthsf on the normalized

arrow. (CCNFsf )

4. Normalized to CCNF, compiled with GHC and ran nthccnf on the CCNF

tuple. (CCNFtuple)

The five benchmarks we used are the exponential function given earlier, a sine

wave with fixed frequency using Goertzel’s method (Goertzel, 1958), a sine wave with

variable frequency, “50’s sci-fi” sound synthesis program taken from Giorgidge &

Nilsson (2008), and a robot simulator taken from Hudak et al. (2003). The programs

were compiled and run on an Intel Atom N270 1.6GHz machine with GHC

version 6.10.4, using compilation options -O2 -fvia-C -fno-method-sharing

-fexcess-precision. We measured the CPU time used to run a program through

106 samples. The results are shown in Table 1, where the numbers represent

normalized speedup ratios, and we include the source program for all benchmarks

in Appendix A.

The results show dramatic performance improvements using normalized arrows.

We note that

1. Based on the same arrow implementation, the performance gain of CCNF

over the first two approaches is entirely due to program transformations at

the source level. This means that the runtime overhead of arrows is significant,

and cannot be neglected for real applications.

2. With help from GHC’s optimization technique, the CCNF tuple produces

high-performance code that is completely free of dynamic memory allocation

and intermediate data structures, and can be orders of magnitude faster than

its arrow-based predecessors.

3. GHC’s arrow syntax translator does not do as well as Paterson’s original

translator for the sample programs we chose, though both are significantly

outperformed by our normalization techniques.
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class Arrow a ⇒ ArrowChoice a where
left :: a b c → a (Either b d) (Either c d)

extension left (arr f ) = arr (f ⊕ id)
functor left (f ≫ g) = left f ≫ left g
exchange left f ≫ arr (id⊕g) = arr (id⊕g) ≫ left f
unit arr left ≫ left f = f ≫ arr left
association left (left f ) ≫ arr assocsum = arr assocsum ≫ left f

f ⊕g (Left x) = Left (f x) assocsum (Left (Left x)) = Left x
f ⊕g (Right y) = Right (g y) assocsum (Left (Right x)) = Right (Left x)

assocsum (Right x) = Right (Right x)

Fig. 11. ArrowChoice class and its laws.

8 Expressiveness and extensions

The CCA language remains highly abstract due to the use of the arrow laws. Even

though in Functional Reactive Programming (FRP) or dataflow programming, we

tend to think very operationally of init as a unit delay, there is no reason to confine

CCA only to this application domain. For instance, CCA also forms the basis of

a DSL for ordinary differential equations (ODEs), and arrows are indeed a better

choice in implementation DSL level let-expressions in comparison to tagged AST,

or higher-order abstract syntax (HOAS), because they help maintain the sharing of

computation and avoid space leaks (Liu & Hudak, 2010).

Many dataflow and stream programming languages provide conditionals, such as

if -then-else, as part of the language (Wadge & Ashcroft, 1985; Caspi et al., 1987).

Conditionals at the arrow level are captured by the ArrowChoice class together

with a set of the ArrowChoice laws shown in Figure 11. We can easily extend the

reduction rules in Figure 8 to handle ArrowChoice as follows:

extension left (arr f ) 	→ arr (f ⊕ id )

superposition left (loopD i f ) 	→ loopD i (tag−1 . (f ⊕ id ) . tag)

tag (Left x , y) = Left (x , y) tag−1 (Left (x , y)) = (Left x , y)

tag (Right x , y) = Right (x , y) tag−1 (Right (x , y)) = (Right x , y)

The soundness of the above extension to the reduction rules can be easily proved

with respect to the arrow choice laws shown in Figure 11, and we omit the details

here.

We also need a new inference rule for the normalization procedure shown in

Figure 9, which is given below:

(LEFT)

f ⇓ f′ left f′ 	→ p

left f ⇓ p

Similarly, termination can be proved for the above extension. It can also be easily

shown that the above extensions requires no modification to CCNF, and Theorem 4.1
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still holds. In other words, CCA extended with ArrowChoice can still be normalized

to the same normal form as in the original CCA.

On the other hand, there are also things not representable in CCA. For example,

the switch combinator introduced in Yampa is able to dynamically replace a running

arrow with a new one depending on an input event, and hence to switch the system

behavior completely. With CCA, there is no way to change the compositional

structure of the arrow program itself at run time.

It should also be noted that the local state introduced by init is one of the minimal

side effects one can introduce to arrow programs. The commutativity law for CCA

ensures that the effect of one arrow cannot interfere with another when composed

together, and it is no longer satisfiable when such ordering becomes important, for

example, when arrows are used to model parsers and printers (Jansson & Jeuring,

1999).

9 Related work

9.1 Alternative formalisms

Apart from arrows, other formalisms such as monads, comonads, and applicative

functors have been used to model computations over data streams (Bjesse et al., 1998;

Uustalu & Vene, 2005; McBride & Paterson, 2008). Central to many of these ap-

proaches are the representation of streams and computations about them. However,

notably missing are the connections between stream computation and the related

laws. For example, Uustalu and Vene (2005) concluded that comonad is a suitable

model for dataflow computation, but it lacks the discussion on comonadic laws.

In contrast, it is the very idea of making sense out of arrow and arrow loop laws

that motivated our work. We argue that arrows are a suitable abstract model for

stream computation not only because we can implement stream functions as arrows,

but also because abstract properties such as the arrow laws help to bring more

insights to our target application domain.

Besides having to satisfy respective laws for these formalisms, each abstraction

has to introduce domain-specific operators, otherwise it would be too general to be

useful. With respect to causal streams, many have introduced init (also known as

delay) as a primitive to enable stateful computation, but few seem to have made the

connection of its properties to program optimizations.

Lindley et al. (2010) give a more explicit explanation of the arrow laws by

constructing an arrow calculus and turning the nine arrow laws into five laws for the

calculus, and discover a redundancy in the original nine arrow laws. Unfortunately,

arrow loop is not included in their formulation.

The loop combinator and its arrow loop laws play a key role in CCA normalization

because multiple loops can be fused together, and nested loops can be collapsed into

just one. This is actually very close to yet another instantiation of the Folk Theorem

(Harel, 1980) that all computer programs can be simulated by a single while-loop, if

not for the fact that arrows and arrow loop only model a specific subset of but not

all computations. We are interested in both the generality and the discipline brought

forward by the laws.
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On the topic of program optimization under an FRP or arrow setting, Burchett

et al. (2007) introduce a concept called “lowering” that helps fuse pure functions

in FrTime, a strict FRP language embedded in Scheme, but unfortunately it does

not handle stateful computation such as the single unit delay; Nilsson (2005)

makes use of several arrow laws and generalized algebraic types to optimize Yampa

implementation, and, in particular, some stateful computations and event processing;

Sculthorpe and Nilsson (2008) consider change propagation as a means to optimize

Yampa programs with a dynamic structure.

9.2 Coalgebraic streams and synchronous languages

The coalgebraic property of streams is well known, and most relevant to our work

is Caspi and Pouzet’s representation of stream and stream functions in a functional

language setting (Caspi & Pouzet, 1998), which also uses a primitive similar to the

trace operator (and hence the arrow loop combinator) to model recursion. Their

compilation technique, however, lacks a systematic approach to optimize nested

recursions. We consider our technique more effective and more abstract.

Most synchronous languages, including the one introduced by Caspi and Pouzet

(1998), are able to compile stream programs into a form called single loop code

by performing a causality analysis to break the feedback loop of recursively

defined values. Many efforts have been made to generate efficient single loop code

(Halbwachs et al., 1991; Amagbegnon et al., 1995), usually by a compilation from a

high-level dataflow source language to a target language that is usually imperative

and low level, but few express the transformation at the source level to reach a

normal form with strong characterization. Our discovery of CCNF is original, and

the optimization by normalization approach is targeting a lazy functional language,

namely Haskell, and making use of an advanced Haskell compiler to further optimize

and produce low-level code.

Traditional compilation techniques for synchronous dataflow also had a modu-

larity problem: they either require in-lining of all definitions in order to properly

analyze feedback loops and thus lose modularity, or impose too strong a causality

constraint that every feedback loop must cross an explicit delay even for submodules.

Recently, a range of solutions aim to address this problem (Lublinerman & Tripakis,

2008; Lublinerman et al., 2009; Pouzet & Raymond, 2009) using techniques centered

around the decomposition mechanism first proposed by Raymond (1988). However,

such a problem simply ceases to exist when we adopt a lazy functional language

as an intermediate or even the target language, for instance, as in our staged

compilation for CCA. This is because the ability to represent immediate loopbacks,

or recursions at value level, is a coherent feature of lazy languages. Also as a side

note, CCA by itself does not preclude modular compilation, even though its current

implementation through Template Haskell requires full in-lining of arrow terms and

hence is not modular.

Also relevant is the work by Rutten (2006) on high-order functional stream

derivatives. We believe that arrows are a more general abstraction than functional

stream derivatives, because the latter still exposes the structure of a stream. Moreover,
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arrows give rise to a high-level language with richer algebraic properties than the

2-adic calculus considered by Rutten (2006).

9.3 Stream fusion

Stream fusion (Coutts et al., 2007) can help fuse zips, left folds, and nested lists into

efficient loops. But on its own, it does not optimize recursively and lazily defined

streams effectively.

Consider a stream generating the Fibonacci sequence. It is one of the simplest

classic examples that characterizes stateful stream computation. One way of writing

it in Haskell is to exploit laziness and zip the stream with itself:

fibs :: [Int ]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

While the code is concise and elegant, such programming style relies too much on

the definition of an inductively defined structure. The explicit sharing of the stream

fibs in the definition is a blessing and a curse. On one hand, it runs in linear time

and constant space. On the other hand, the presence of the stream structure gets in

the way of optimization. None of the current fusion or deforestation techniques are

able to effectively eliminate cons cell allocations in this example. Real-world stream

programs are usually much more complex and involve more feedback, and the time

spent in allocating intermediate structure and by the garbage collector could degrade

performance significantly.

We can certainly write a stream in stepper style that generates the Fibonacci

sequence:

data Stream a = forall s . Stream (s → Step a s) s

data Step a s = Yield a s

fib stream :: Stream Int

fib stream = Stream next (0, 1) where next (a , b) = Yield r (b, r) where r = a + b

f1 :: Int

f1 = nth 5 fib stream -- 13

Stream fusion will fuse nth and fib stream to produce an efficient loop. For a

comparison, with our technique the arrow version of the Fibonacci sequence shown

below compiles to the same efficient loop as f1 above, and yet retains the benefit of

being abstract and concise.

fibA = proc → do

rec let r = d2 + d1

d1 ← init 0−≺ d2

d2 ← init 1−≺ r

returnA−≺ r

We must stress that writing stepper functions is not always as easy as in trivial

examples such as fib and exp. Most nontrivial stream programs that we are concerned

with contain many recursive parts, and expressing them in terms of combinators in
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a nonrecursive way can get unwieldy. Moreover, this kind of coding style exposes

a lot of operational details which are arguably unnecessary for representing the

underlying algorithm. In contrast, arrow syntax relieves the burden of coding in

combinator form and allows recursion via the rec keyword. It also completely hides

the actual implementation of the underlying stream structure and is therefore more

abstract.

10 Conclusion

Our key contribution is the discovery of a normal form for core Yampa, or CCA,

programs: any CCA program can be transformed into a single loop with just one

pure (and strongly normalizing) function and a set of initial states. This discovery

has practical implications in implementing not just Yampa, but a broader class

of synchronous dataflow languages and stream computations. Any CCA program

can be reliably and predictably optimized into an efficient machine-friendly loop.

The process can be fully automated, allowing programmers to program at an

abstract level while getting performance competitive to programs written in low-

level imperative languages.
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Appendix A Benchmark programs

sr = 44100 :: Int

dt = 1 / (fromIntegral sr)

exp :: ArrowInit a ⇒ a () Double

exp = proc ()→ do

rec let e = 1 + i

i ← integral−≺ e

returnA−≺ e

integral :: ArrowInit a ⇒ a Double Double

integral = proc x → do

rec let i ′ = i + x ∗ dt

i ← init 0−≺ i ′

returnA−≺ i

sine :: ArrowInit a ⇒ Double → a () Double

sine freq = proc → do

rec x ← init i−≺ r

y ← init 0−≺ x

let r = c ∗ x − y

returnA−≺ r

where

omh = 2 ∗ pi / (fromIntegral sr) ∗ freq

i = sin omh

c = 2 ∗ cos omh

oscSine :: ArrowInit a ⇒ Double → a Double Double

oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv )

phi ← integral−≺ 2 ∗ pi ∗ f

returnA−≺ sin phi

testOsc :: ArrowInit a ⇒ (Double → a Double Double)→ a () Double

testOsc f = constant 1 � f 440
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sciFi :: ArrowInit a ⇒ a () Double

sciFi = proc ()→ do

und ← oscSine 3.0−≺ 0

swp ← integral−≺ −0.25

audio ← oscSine 440−≺ und ∗ 0.2 + swp + 1

returnA−≺ audio

robot :: ArrowInit a ⇒ a (Double,Double) Double

robot = proc inp → do

let vr = snd inp

vl = fst inp

vz = vr + vl

t ← integral−≺ vr − vl

let t ′ = t / 10

x ← integral−≺ vz ∗ cos t ′

y ← integral−≺ vz ∗ sin t ′

returnA−≺ x / 2 + y / 2

testRobot :: ArrowInit a ⇒ a (Double,Double) Double → a () Double

testRobot bot = proc ()→ do

u ← sine 2−≺ ()

robot−≺ (u , 1− u)

Appendix B Proof for the sequencing rule of loopD

The sequencing rule from Figure 8 is directly derivable from the following equation:

loopD i f � loopD j g = loopD (i , j ) (assoc′ (juggle′ (g × id ) . (f × id )))

In order to show the above is true, we first prove three lemmas.

Lemma 10.1

Given a function definition revjuggle (a , (b, c)) = (b, (a , c)), we show that for all f :

second (second f ) = arr revjuggle � second (second f ) � arr revjuggle

Proof

We start from the left-hand side by equational reasoning.

lhs

= second (second f )

definition of second

= arr swap � first (arr swap � first f � arr swap) � arr swap

functor of first , extension of first

= arr swap � arr (swap × id ) � first (first f ) � arr (swap × id ) � arr swap

identity of arr , id = assoc−1 . assoc, and composition of arr

= arr swap � arr (swap × id ) � first (first f ) � arr assoc � arr assoc−1

� arr (swap × id ) � arr swap

association of first

https://doi.org/10.1017/S0956796811000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000153


Causal commutative arrows 493

= arr swap � arr (swap × id ) � arr assoc � first f � arr assoc−1

� arr (swap × id ) � arr swap

composition of arr

= arr (assoc . (swap × id ) . swap) � first f � arr (swap . swap × id . assoc−1)

unfold function definition and beta reduce

= arr (λ(a , (b, c))→ (c, (a , b))) � first f � arr (λ(c, (a , b))→ (a , (b, c)))

Then from the right-hand side:

rhs

= arr revjuggle � second (second f ) � arr revjuggle

definition of second

= arr revjuggle � arr swap � first (arr swap � first f � arr swap)

� arr swap � arr revjuggle

functor of first , extension of first

= arr revjuggle � arr swap � arr (swap × id ) � first (first f )

� arr (swap × id ) � arr swap � arr revjuggle

identity of arr , id = assoc−1 . assoc, and composition of arr

= arr revjuggle � arr swap � arr (swap × id ) � first (first f )

� arr assoc � arr assoc−1 � arr (swap × id ) � arr swap � arr revjuggle

association of first

= arr revjuggle � arr swap � arr (swap × id ) � arr assoc � first f

� arr assoc−1 � arr (swap × id ) � arr swap � arr revjuggle

composition of arr

= arr (assoc . swap × id . swap . revjuggle) � first f

� arr (revjuggle . swap . swap × id . assoc−1)

unfold function definition and beta reduce

= arr (λ(a , (b, c))→ (c, (a , b))) � first f � arr (λ(c, (a , b))→ (a , (b, c)))

Therefore, lhs = rhs. �

Lemma 10.2

We show that for all f and g:

second (first f ) � arr (assoc . swap) = arr (assoc . swap) � first f

Proof

We start from the left-hand side by equational reasoning:

lhs

= second (first f ) � arr (assoc . swap)

definition of second

= arr swap � first (first f ) � arr swap � arr (assoc . swap)

identity of arr , id = assoc−1 . assoc, and composition of arr

= arr swap � first (first f ) � arr assoc � arr assoc−1 � arr swap

� arr (assoc . swap)

association of first

= arr swap � arr assoc � first f � arr assoc−1 � arr swap
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� arr (assoc . swap)

composition of arr

= arr (assoc . swap) � first f � arr (assoc . swap . swap . assoc−1)

identity of arr , id = assoc . swap . swap . assoc−1

= arr (assoc . swap) � first f �

Lemma 10.3

We show that for all f :

first f = arr revjuggle � second (first f ) � arr revjuggle

Proof

We start from the right-hand side by equational reasoning:

rhs

= arr revjuggle � second (first f ) � arr revjuggle

definition of second

= arr revjuggle � arr swap >> first (first f ) � arr swap � arr revjuggle

identity of arr , id = assoc−1 . assoc, and composition of arr

= arr revjuggle � arr swap >> first (first f ) � arr assoc � arr assoc−1

� arr swap � arr revjuggle

association of first

= arr revjuggle � arr swap >> arr assoc � first f � arr assoc−1

� arr swap � arr revjuggle

identity of arr , id = id × swap . id × swap, and composition of arr

= arr revjuggle � arr swap >> arr assoc � arr (id × swap) � arr (id × swap)

� first f � arr assoc−1

exchange of first

= arr revjuggle � arr swap >> arr assoc � arr (id × swap) � first f

� arr (id × swap) � arr assoc−1

composition of arr

= arr (id × swap . assoc . swap . revjuggle) � first f

� arr (revjuggle . swap . assoc−1 . id × swap)

identity of arr , id = id × swap . assoc . swap . revjuggle

and id = revjuggle . swap . assoc−1 . id × swap

= first f �

We then show that

loopD i f � loopD j g = loopD (i , j ) (assoc′ (juggle′ (g × id ) . (f × id )))

holds by equational reasoning, starting from the left-hand side:

loopD i f � loopD j g

definition of loopD

= loop (arr f � second (init i )) � loop (arr g � second (init j ))

left tightening of loop

= loop (first (loop (arr f � second (init i ))) � (arr g � second (init j )))
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definition of second

= loop (arr swap � second (loop (arr f � second (init i ))) � arr swap

� (arr g � second (init j )))

superposing of loop

= loop (arr swap � loop (arr assoc � second (arr f � second (init i ))

� arr assoc−1) � arr swap � (arr g � second (init j )))

left tightening of loop

= loop (loop (first (arr swap) � arr assoc � second (arr f � second (init i ))

� arr assoc−1) � arr swap � (arr g � second (init j )))

extension of first

= loop (loop (arr (swap × id ) � arr assoc � second (arr f � second (init i ))

� arr assoc−1) � arr swap � (arr g � second (init j )))

associativity of �
= loop (loop (arr (swap × id ) � arr assoc � second (arr f � second (init i ))

� arr assoc−1) � (arr swap � arr g � second (init j )))

right tightening of loop

= loop (loop (arr (swap × id ) � arr assoc � second (arr f � second (init i ))

� arr assoc−1 � first (arr swap � arr g � second (init j ))))

vanishing of loop

= loop (arr assoc−1 � arr (swap × id ) � arr assoc � second (arr f

� second (init i )) � arr assoc−1 � first (arr swap � arr g � second (init j ))

� arr assoc)

identity of arr , id = id × swap . id × swap, composition of arr

= loop (arr (id × swap) � arr (id × swap) � arr assoc−1 � arr (swap × id )

� arr assoc � second (arr f � second (init i )) � arr assoc−1

� first (arr swap � arr g � second (init j )) � arr assoc)

sliding of loop

= loop (arr (id × swap) � arr assoc−1 � arr (swap × id ) � arr assoc

� second (arr f � second (init i )) � arr assoc−1 � first (arr swap

� arr g � second (init j )) � arr assoc � arr (id × swap))

composition of arr , swap . assoc−1 = assoc . (swap × id ) . assoc−1 . (id × swap)

= loop (arr (swap . assoc−1) � second (arr f � second (init i )) � arr assoc−1

� first (arr swap � arr g � second (init j )) � arr assoc � arr (id × swap))

definition of second

= loop (arr (swap . assoc−1) � second (arr f � arr swap � first (init i )

� arr swap) � arr assoc−1 � first (arr swap � arr g � second (init j ))

� arr assoc � arr (id × swap))

definition of first

= loop (arr (swap . assoc−1) � second (arr f � arr swap � first (init i )

� arr swap) � arr assoc−1 � arr swap � second (arr swap � arr g

� second (init j )) � arr swap � arr assoc � arr (id × swap))

functor and extension of second

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � second (first (init i ))

� arr (id × swap) � arr assoc−1 � arr swap � arr (id × swap)
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� second (arr g) � second (second (init j )) � arr swap � arr assoc

� arr (id × swap))

Lemma 10.1

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � second (first (init i ))

� arr (id × swap) � arr assoc−1 � arr swap � arr (id × swap)

� second (arr g) � arr revjuggle � second (second (init j ))

� arr revjuggle � arr swap � arr assoc � arr (id × swap))

composition of arr , id = (id × swap) . assoc . swap . revjuggle, identity of arr

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � second (first (init i ))

� arr (id × swap) � arr assoc−1 � arr swap � arr (id × swap)

� second (arr g) � arr revjuggle � second (second (init j )))

composition of arr , assoc . swap = (id × swap) . swap . assoc−1 . (id × swap)

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � second (first (init i ))

� arr (assoc . swap) � second (arr g) � arr revjuggle

� second (second (init j )))

Lemma 10.2

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � arr (assoc . swap)

� first (init i ) � second (arr g) � arr revjuggle � second (second (init j )))

commutativity

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � arr (assoc . swap)

� second (arr g) � first (init i ) � arr revjuggle � second (second (init j )))

Lemma 10.3

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � arr (assoc . swap)

� second (arr g) � arr revjuggle � second (first (init i )) � arr revjuggle

� arr revjuggle � second (second (init j )))

composition of arr , id = revjuggle . revjuggle, identity of arr

= loop (arr (swap . assoc−1) � second (arr (swap . f )) � arr (assoc . swap)

� second (arr g) � arr revjuggle � second (first (init i ))

� second (second (init j )))

extension of second , composition of arr

= loop (arr (revjuggle . (id × g) . assoc . swap . id × (swap . f ) . swap . assoc−1)

� second (first (init i )) � second (second (init j )))

assoc′ (juggle′ (g × id ) . (f × id )) = revjuggle . (id × g) .

assoc . swap . id × (swap . f ) . swap . assoc−1

= loop (arr (assoc′ (juggle′ (g × id ) . (f × id ))) � second (first (init i ))

� second (second (init j )))

functor of second

= loop (arr (assoc′ (juggle′ (g × id ) . (f × id ))) � second (first (init i )

� second (init j )))

product of init

= loop (arr (assoc′ (juggle′ (g × id ) . (f × id ))) � second (init (i , j )))

�
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