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Abstract
Background: Advances in high-throughput molecular biology, genomics and epigenetics, coupled with exponential
increases in computing power and data storage, have led to a new era in biological research and information.
Bioinformatics, the discipline devoted to storing, analysing and interpreting large volumes of biological data,
has become a crucial component of modern biomedical research. Research in otolaryngology has evolved along
with these advances.

Objectives: This review highlights several modern high-throughput research methods, and focuses on the
bioinformatics principles necessary to carry out such studies. Several examples from recent literature pertinent to
otolaryngology are provided. The review is divided into two parts; this first part discusses the bioinformatics

approaches applied in nucleotide sequencing and gene expression analysis.

Conclusion: This paper demonstrates how high-throughput nucleotide sequencing and transcriptomics are
changing biology and medicine, and describes how these changes are affecting otorhinolaryngology. Sound
bioinformatics approaches are required to obtain useful information from the vast new sources of data.

Key words: Bioinformatics; Otolaryngology; Sequencing Analysis, DNA; High-Throughput Nucleotide
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Introduction

The twenty-first century is proving to be an era driven
by information. The increase in computing power and
speed, the overwhelming impact of the internet, and
the abundance of data available during the last two
decades has changed nearly every aspect of life. The
staggering amount of readily available information
has led to the establishment of ‘informatics’, a discip-
line that focuses on the storage, retrieval and processing
of data.

The biological sciences have been greatly impacted
by the ‘information age’, which has led to the develop-
ment of the field of bioinformatics. Advances in genet-
ics and molecular biology have been driven recently by
methodologies that generate massive amounts of data
in a short time. For example, next-generation sequen-
cing techniques can provide the base pair sequence of
an entire human genome in a matter of weeks.
Microarray technology can assess the gene expression
or methylation status of tens of thousands of genes,
probe a million single nucleotide polymorphisms, or

capture DNA fragments composing the entire human
exome on a single array chip.

These advances have led to an equivalent explosion
in published scientific information that is readily
accessible to the medical and scientific community
worldwide. Bioinformatics is a multidisciplinary field
that integrates a vast array of subjects, including com-
puter science, mathematics, statistics and biology,
with the goal of optimising the acquisition, storage,
analysis, interpretation and application of biological
data. An important goal of translational research in
medicine today is to utilise and interpret this massive
amount of data to yield information that is applicable
to patient care, ultimately resulting in improved strat-
egies for diagnosis, prognostication and treatment.

The advances highlighted above have already had a
great impact on medical practice and the field of
otolaryngology. Otolaryngology is a subspecialty that
focuses on several congenital, inflammatory, immuno-
logical, infectious and neoplastic disorders, and discov-
eries in biology gleaned from modern bioinformatics
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approaches will have an impact on the way several of
these disorders are diagnosed and treated in the near
future. This review highlights several of the most
relevant applications of bioinformatics in otolaryngol-
ogy. The goal of this review is to provide a basic
understanding of bioinformatics to the clinical oto-
laryngologist. This paper briefly explains common
modern molecular biology techniques, describes bio-
informatics approaches for data analysis and interpret-
ation, and provides several contemporary references
as examples of these applications in otolaryngology.
The review has been divided into two parts. The first
instalment details bioinformatics approaches to high-
throughput nucleotide sequencing and gene expression
analysis. Many principles involved in the bioinformatic
approaches to these two types of data can be applied to
other high-throughput molecular biology techniques.
The second part of this review summarises several
other modern genomic, epigenetic and molecular
biology platforms, highlighting the considerations in
bioinformatics for each. A glossary of terms specific
to molecular biology, genomics and bioinformatics is
provided as a reference for the reader (Table I).

Common bioinformatics applications in ENT
Bioinformatics is an immense field, and a full descrip-
tion of the breadth of applications that fall under the
discipline of bioinformatics is well beyond the scope
of this article. The first part of this review will focus
on next-generation sequencing data and gene expres-
sion analysis, as several principles from these two plat-
forms can be applied to other modern high-throughput
systems. In the second part of the review, other import-
ant methodologies are summarised. The series con-
cludes with a discussion of recent approaches used
for integration of these data, and developments antici-
pated in the near future.

Bioinformatics in DNA sequencing

Over the course of approximately 50 years, our under-
standing of the human genome has grown exponential-
ly. In 1953, Watson and Crick first reported their
discovery of the double-helix structure of DNA, and
proposed a mechanism for how heritable information
was passed on from generation to generation.' It was
not until Frederick Sanger developed the chain-termin-
ation method of DNA sequencing in 1977 that a rapid
and reliable method of DNA sequencing became feas-
ible.? Sanger sequencing techniques were used to carry
out the Human Genome Project,”* which was com-
pleted at the turn of this century after more than a
decade of work across several institutions.

As the Human Genome Project neared completion,
the demand for high-throughput sequencing that
required less time and cost to produce large amounts
of DNA sequence increased dramatically. During the
last decade, modern ‘next-generation’ sequencing tech-
niques have evolved. These techniques ‘parallelise’
sequencing reactions on an enormous scale, such that
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several sequences from smaller fragments of the
DNA of interest are sequenced simultaneously and
then computationally aligned in order to arrive at the
final sequence result.”® These techniques have now
made it possible to sequence an entire human
genome in a matter of weeks at a cost that is several
orders of magnitude less than that of the Human
Genome Project. Details of the methodology of next-
generation sequencing are not discussed here, but for
the purposes of this review it is important to emphasise
that it has become affordable and efficient to produce
large amounts of genomic sequencing data in a short
time. Analysis and interpretation of these data requires
distinct bioinformatics approaches.

Analysis of DNA sequences

Whether one wants to sequence a single fragment of
DNA, hundreds of genes at a time, or sequence the
entire human exome or genome, the data generated
must undergo specific processing and analysis in
order to be interpretable and to ultimately produce
useful information. Single, small fragments of DNA
(of the order of tens to hundreds of base pairs) can be
aligned to a specific reference sequence. Several tools
exist for this process.

Perhaps the most frequently utilised tool is the Basic
Local Alignment Search Tool (‘BLAST”’), publically
available via the National Center for Biotechnology
Information.” This alignment tool was created in
1990, and remains one of the most highly utilised bio-
informatics applications. Using this tool, one can enter
a DNA sequence or protein sequence, which is then
compared, using a heuristic algorithm, against several
databases to create a library of sequence matches.
The Basic Local Alignment Search Tool has numerous
applications, but one particularly useful function is to
align and map a DNA sequence to the reference data-
base for the human genome.

While the Basic Local Alignment Search Tool is
useful to evaluate single or small numbers of DNA
sequences of short length, more complex sequencing
projects, such as those applying next-generation
sequencing platforms, require alignment tools that are
much more complex and efficient. When analysing
large amounts of DNA sequence, the goals are general-
ly two-fold: (1) to obtain the sequence itself, and (2) to
identify the position of the examined sequences in a
reference genome (e.g. the human genome). Next-gen-
eration sequencing techniques typically provide mil-
lions of copies of relatively short lengths of sequence
reads, which must be assembled into the final target
sequence. Sequence assembly can follow a de novo
process, or it can be accomplished via alignment to a
reference.” Figure 1 presents a simplified model of
these two methods of sequence assembly.

Traditional alignment programs are interfaced with
tools such as the Basic Local Alignment Search Tool.
They operate in a manner similar to that described
above, but on a much larger scale, using an automated
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TABLE I
GLOSSARY OF TERMS

Term

Description

Chain-termination (Sanger) sequencing

Chromosomal translocations

Deletion

Differentially expressed genes
DNA alignment

DNA copy number variation

DNA sequence library
DNA sequence reads
DNA structural variants
Exome

Gene expression

Gene expression signature

Genome
Genome-wide association analysis

Genomic variants
Heuristic algorithm

High-throughput
Hybridisation

Indels
Insertion
Linkage analysis

Mendelian pattern

Microarray
Microarray chip
Microarray probes

Missense mutation
Next-generation sequencing

Non-parametric statistics
Nonsense mutations
Non-synonymous mutation

DNA sequencing methods that copy a DNA sequence of interest using randomly inserted nucleotides which halt the copying process when they are
incorporated. This produces fragments of DNA that represent each nucleotide along the ultimate sequence. Serial evaluation of each fragment allows one
to build the entire sequence

A rearrangement of parts between non-homologous chromosomes. Translocations can be balanced (an equal exchange of material, with no loss of genetic
information) or unbalanced (an unequal exchange, where material is lost or gained in excess)

A mutation that results from loss of nucleotides from the DNA sequence

Genes that are expressed at different levels between 2 groups (consistently increased or decreased)

The process of matching a DNA sequence to a reference that is complementary to the sequence of interest

The human genome often carries 2 copies of each gene within each cell. A deletion of 1 or both copies, or a duplication (amplification) creating more than 2
copies of a specific region of the genome, is called a copy number variation (CNV)

In next-generation sequencing, the DNA sequence library refers to the small regions of the experimental DNA that are sequenced in parallel. All of these
smaller sequences in the library are then assembled to generate the final complete sequence

The term ‘reads’ is often used to refer to the DNA sequences obtained from next-generation sequencing

Alterations in the genome that result in the loss or gain of chromosomes (deletions or amplifications), or chromosomal translocations

All regions of the genome that are eventually transcribed into mRNA (exons) & code for expressed genes

The process by which a coding DNA is ultimately expressed as a functional product (usually protein). Gene expression studies often examine the abundance
of specific mRNA

In gene expression studies, this is a list of genes that are consistently expressed at different levels between experimental groups, as determined after statistical
evaluation of all gene expression data across the groups. The ‘signature’ can then be used to identify a particular group based strictly on gene expression
information

All of an organism’s hereditary information. In humans, this includes DNA that codes for genes & non-coding DNA

Studies that examine many common genetic variants in large samples of subjects that either do or do not possess the phenotype of interest (e.g. disease), in
order to determine if the phenotype can be linked to a specific heritable trait

The term ‘variant’ is used to refer to elements in a DNA sequence that differ from the reference sequence. These can be single nucleotide differences,
deletions or amplifications (copy number variants), or structural changes (e.g. translocations)

Methods that trade accuracy & completeness for speed using approximations to problem solve; beneficial when an exhaustive approach would be highly
inefficient

A term used to describe scientific methods that make large numbers of observations or collect several data points simultaneously

The process of joining DNA fragments to their complementary sequences. Microarray research (e.g. gene expression microarray, DNA methylation array,
comparative genome hybridisation array) often utilises hybridisation as a means to ‘capture’ the DNA of interest onto the array

A term in genetics & genomics commonly used to refer to both insertions & deletions collectively

A mutation that results from extra nucleotides placed within the DNA sequencing

A method in genetics where one determines the location of a gene of interest by associating a phenotype with a genetic region of interest that is already
known. For example, with a large enough cohort (e.g. a family with multiple members afflicted with a disorder passed along in a Mendelian fashion), a
disease of interest can be associated with specific SNPs (defined below) that are known & always found in the individuals who are afflicted, thus mapping
the region where the disease-related gene can be found

Phenotypes (e.g. diseases or disorders) that are inherited in a pattern similar to classic Mendelian genetics, i.e. a single gene associated with the phenotype
that carries 2 different alleles, 1 of which has a dominant influence over the other

Any 2D substrate (usually glass or silicon) that allows evaluation of several analytes simultaneously

The term ‘chip’ is often used to refer to a single microarray slide

Most often, these are short specific nucleotide sequences that are spotted on the array & designed to pair with an analyte of interest (e.g. a cDNA reverse
transcribed from a specific mRNA)

A single nucleotide change that results in an alteration in a codon which is translated into a different amino acid

Modern methods of DNA sequencing that parallelise sequencing, i.e. several small & overlapping sections of the longer segment of DNA of interest are
sequenced simultaneously, greatly increasing the speed of arriving at the ultimate sequence

Statistical methods that assume data do not follow a particular distribution. Often refers to statistics that examine categorical data, e.g. the chi-square statistic

Missense mutations that change a codon coding for an amino acid into a stop codon, terminating the protein sequence

Mutation that results in an alteration in the amino acid sequence that is translated
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Parametric statistics
Polymerase chain reaction (PCR)

Reverse-transcription
Reverse-transcription PCR (RT-PCR)

Ribosomal RNA
RNA transcript
Single nucleotide polymorphism (SNP)

Synonymous mutation
Translational research
Type 1 error

Variant annotation

Variant call format (‘VCF’) file
Variant calling

A set of statistical methods that assume data come from a probability distribution, e.g. #-tests (common parametric statistics which assume that data follow a
Student’s #-distribution)

A molecular biology technique that uses DNA polymerase (an enzyme that copies DNA) to amplify a specific region of interest of DNA by several orders of
magnitude (thousands to millions more copies)

The process of synthesising DNA from an RNA template

RNA is transcribed to DNA, creating a complementary DNA sequence with several orders of magnitude more copies. RT-PCR can be done quantitatively, &
can be used to measure the relative abundance of mRNA present for a given transcript, thus estimating the level of expression of a specific gene

RNA that forms the structural component of the ribosome. Ribosomal RNA is not translated into protein

RNA sequence that has been transcribed from a DNA coding region

Variations at a single nucleotide in the genome observed within a population. Millions of these variations occur in the human genome, the majority of which
are not associated with disease. SNPs can occur within non-coding DNA (the majority) or coding DNA, & they can have either no functional impact or
significant impact

Mutation that results in a different nucleotide sequence which causes no alteration in the translated amino acid sequence

Research that endeavours to apply information gleaned from basic science research to improve clinical medicine & human health

Generally speaking, this is an experimental ‘false-positive’, where the null hypothesis is rejected in error

In the analysis of high-throughput next-generation sequencing results, this is the process of characterising variants identified between the sequence derived &
the reference; for instance, an annotation tool may determine the location of variants (e.g. exonic, intronic, splice site) & predict functional impact (e.g.
synonymous, non-synonymous)

In next-generation sequencing, VCF format is the standard text format used to report variations between the sequence result & the reference sequence

The process of identifying differences between sequence results & the reference in next-generation sequencing

MRNA = messenger RNA; 2D = two-dimensional; cDNA = complementary DNA
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G
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Simplified schematic of (a) de novo versus (b) alignment sequence assembly.

and iterative process. A significant amount of comput-
ing power and time is required to accomplish the ultim-
ate alignment.' Newer programs, such as Magq or
Bowtie, use highly efficient algorithms to perform
sequence alignment. A summary of these methods as
well as other common open-source alignment tools
are discussed in a review by Trapnell and Salzberg.'’

The alignment method for sequence assembly, rather
than a de novo process, is the most commonly used
approach for next-generation sequencing applications
in medicine. De novo sequencing assembly is a
process by which reads are aligned based on overlap-
ping regions of the analysed fragments. Sequences gen-
erated with overlapping common regions are ‘aligned’
to piece together the ultimate read for the complete
sequence of interest. These methods obviously
require assembly programs that perform different algo-
rithms than the alignment tools. De novo assembly is
commonly applied to smaller genomes, such as those
of bacteria. De novo sequencing of a large target
sequence, such as that of the human genome, is still a
major challenge.” De novo sequencing methods and
tools are further discussed in a review by Nagarajan
and Pop.'!

For most DNA sequencing applications in otolaryn-
gology, and medicine in general, the goal is to identify
abnormalities in the DNA sequence, namely germline
or somatic mutations. Once sequence data are aligned
to a reference (for example, the latest build of the
human genome), one can generate a catalogue of any
differences between the DNA sequences and the refer-
ence. These are often referred to as ‘variants’; this
generic term is used because these differences can be
due to either mutation or known polymorphisms (i.e.
normal differences in the DNA sequence that occur
with a defined frequency in the population). When
localised to one nucleotide, these polymorphisms are
referred to as single nucleotide polymorphisms. The
term ‘variants’ can also be used to describe changes
in the copy number of genomic elements (known as
copy number variations) or other structural changes,
such as chromosomal translocations.
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Variant calling (the process of identifying differ-
ences between the experimental sequence and the refer-
ence to which the sequence is aligned) might seem
simple in principle, but there are several barriers
to accurate variant calling when analysing a large
volume of sequence reads (for example, when examin-
ing an exome or a genome). Differences between the
DNA sequence and the reference can be secondary to
error or misalignment, which can be influenced by
several factors. For example, false variant calls are
common when: insertion/deletion mutations (indels)
are present; regions of DNA containing a high
volume of repeated guanine/cytosine nucleotides
(guanine-cytosine rich regions) are evaluated; or there
are errors due to polymerase chain reaction artefacts
in library construction or poor sequence signal, which
is common at the ends of each sequence read.'?

Variant calling for next-generation sequencing
data requires alignment, adjustments for quality
control and probability algorithms to define the con-
fidence with which a variant is ‘called’. Several
software tools exist for this process, such as the
Genome Analysis Toolkit,"> VarScan or VarScan2,'*
SOAPsnp (a member of the Short Oligonucleotide
Analysis Package),'” and Atlas 2.'® The outputs from
these analyses are commonly presented in a ‘variant
call format’, or ‘“VCF’ file, which is a text format that
has been developed in order to standardise these data
for use in large-scale projects, such as the 1000
Genomes Project. A description of the variant call
format can be found on the 1000 Genomes website."’
Another step in analysing these data, particularly for
whole genome or whole exome sequencing, is the
determination of regions of minor or major structural
variation (e.g. insertions, deletions or break points of
translocations), which is much more complicated than
the identification of single nucleotide variants.
Programs that carry out these processes include
Pindel,'® Dindel'® and some features in the Genome
Analysis Toolkit.

The subsequent steps after variant calling are filter-
ing and annotation steps. The goal of this part of the
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process is to identify sequence variants of interest. In
otolaryngology research, these would be variants that
are likely to cause functional alteration in a protein or
phenotypic changes at the cellular level, and those
that ultimately contribute to disease.

There are several methods of filtering and character-
ising genomic variants, and the process is tied to the
specific scientific question. For example, if the goal
is to identify significant mutations in a tumour
sample, one might compare the variants called in the
tumour DNA with the DNA from a sample of normal
tissue (e.g. blood or adjacent mucosa) from the
patient. This would improve the identification of
acquired mutations in the tumour sample as opposed
to variants that were normal polymorphisms harboured
by the genome of the individual. Variants can be refer-
enced to large single nucleotide polymorphism data-
bases, such as the Single Nucleotide Polymorphism
Database (‘dbSNP’) on the National Center for
Biotechnology Information website®® or the 1000
Genomes Project*'*? database, in order to filter out
normal polymorphisms known to exist in the popula-
tion from novel mutations.

The functional consequences of variants identified
can be evaluated in a high-throughput fashion using
variant annotation tools. These programs rapidly scan
all reported variants in a project in order to determine
if they occur in coding regions and if the variants
cause significant alteration of the amino acid sequence
in the translated protein (e.g. synonymous vs non-
synonymous mutations). Again, several programs
are available to annotate variants, including SIFT
(Sorting Intolerant from Tolerant),”* PolyPhen® and
Annovar,”® though there are many others.

A review by Dolled-Filhart and colleagues sum-
marises the process for analysing next-generation
sequencing data, and highlights several additional
tools available for alignment, variant calling and anno-
tation.'? Table II provides a list and brief description of
several analysis tools that the authors have found useful
for the processing and analysis of next-generation
sequencing data.

To date, next-generation sequencing in otolaryngol-
ogy has arguably had the largest impact in the fields of
cancer biology and congenital deafness. In 2011, two
articles reported results from whole exome sequencing
of head and neck squamous cell carcinoma (SCC),
and each independently discovered that mutations
in the gene NOTCHI frequently occurred in these
tumours.”’® Sequence details from both studies
showed frequent missense and nonsense mutation,
generally occurring upstream of the transmembrane
domain of the protein. These studies also confirmed
several mutations in genes known to be frequently
altered in head and neck SCC (e.g. TP53,
CDKN24),"*® and identified other mutations in
novel genes (e.g. CASPS, FATI).*® Since these results
were published, results from whole exome sequencing
have been reported for both medullary thyroid
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carcinoma®’ and adenoid cystic carcinoma.’ Each of
these studies used next-generation sequencing to evalu-
ate the whole exome of matched tumour—normal pairs,
and used similar bioinformatics approaches to arrive at
variant calls unique to these cancer types.

Research has also led to significant discoveries in the
genetics of hearing loss. A number of genetic factors
have been linked to both syndromic and non-syndromic
deafness. Several of these factors are summarised in a
recent review by Shearer and Smith.?' Next-generation
sequencing techniques have been utilised to identify
novel mutations associated with hearing loss. For
example, a recent study using whole exome sequencing
identified a novel mutation in COCH in a Chinese
family with progressive autosomal dominant hearing
loss.*> Another study, which evaluated 13 Korean
families with autosomal recessive non-syndromic
hearing loss, identified frequent variants in the gene
MYOI54.% Along with discovery research, next-gen-
eration sequencing is also being advocated as a
diagnostic tool. These methods have been proposed
as means to: identify patients that carry mutations
known to be associated with hearing loss, and discover
novel variants in known genetic loci that have pre-
viously been shown to be critical for hearing.>*

New discoveries and applications using next-gener-
ation sequencing are changing our understanding of
human disease, and improving approaches to diagnosis
and treatment. Applications in otolaryngology are in
their infancy. The methods in bioinformatics described
above are crucial for the advancement of translational
genomics.

Bioinformatics for analysis of high-
throughput gene expression data

The ability to evaluate the global expression of thou-
sands of genes in one experiment has been available
for approximately two decades, since the advent of
microarray technology.'®*> The standard method for
high-throughput gene expression has been via micro-
array analysis. In these techniques, RNA, usually mes-
senger RNA (mRNA), is either copied or converted to
complementary DNA using reverse transcription.
These are then fluorescently labelled and hybridised
to an array carrying thousands of probes corresponding
to specific genes. The arrays are scanned with a laser
that causes the hybridised samples to fluoresce; the
relative intensity at each probe corresponds to the rela-
tive abundance of each transcript. These data can then
be used to compare the relative expression of genes that
are represented by the probes on the array.

RNA-Seq is a new technology that utilises next-gen-
eration sequencing to evaluate RNA expression using a
different approach.’® With RNA-Seq, RNA is har-
vested, and the RNA of interest is isolated (e.g. riboso-
mal RNA is often discarded, or perhaps only mRNA is
isolated). The RNA is then reverse transcribed, and the
transcripts are sequenced using next-generation techni-
ques. Once the reads are assembled, the ‘transcriptome’
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TABLE I

SELECTED ANALYSIS TOOLS FOR EVALUATION OF DNA SEQUENCING DATA

Tool type

Description

Sequence alignment
Database search
— BLAST

— FASTA
Pairwise alignment
— Bioconductor Biostrings: pairwise alignment

— BioPerl dpAlign

— JAligner

Multiple sequence alignment

— Clustal W

— Sequence Alignment/Map (‘SAM’)

Short read sequence alignment

— Bowtie

— Burroughs—Wheeler Alignment (‘BWA”) tool

— Maq
Variant calling
— Genome Analysis Toolkit (‘GATK”)

— VarScan

— SNVer
— SAMtool

— CRISP

Variant annotation
— SIFT

— PolyPhen-2

— Annovar

Tools that align a short sequence to a reference database

BLAST (Basic Local Alignment Search Tool) allows alignment of shorter sequence reads to a reference using a local search with a fast k-tuple
heuristic

For alignment of shorter sequences. Involves a local search with a fast k-tuple heuristic; slower but more sensitive than BLAST

Tools that compare 2 sequences to each other

Bioconductor is managed by the Fred Hutchinson Cancer Center, which uses R programming language to provide several bioinformatics tools,
including this tool for pairwise sequence alignment

BioPerl offers several open-source bioinformatics tools written using various versions of Perl programming language, including this pairwise
alignment tool

Open-source program written in Java programming language that utilises the Smith—Waterman algorithm for alignment

Tools that align multiple sequences concurrently

Uses a progressive alignment algorithm to align multiple sequences (aligns sequences in a hierarchical manner)

Uses a hidden Markov method (probabilistic algorithm) to align multiple sequences

Tools used to align vast numbers of short sequence reads, applicable for next-generation sequencing

Uses the Burroughs—Wheeler transform to index the human genome, & provides rapid & efficient alignment of sequences to the reference

Also uses the Burroughs—Wheeler transform to index the human genome. Slower than Bowtie but allows for insertions & deletions in the
alignment

Alignment tool used for Illumina® & ABI SOLiD™ (Sequencing by Oligonucleotide Ligation and Detection) platforms of next-generation
sequencing (not compatible with 454 or capillary sequencing). Used for ungapped sequences (cannot align sequences with insertions or
deletions). Provides a probability score for each alignment

Tools that identify sequences which differ from a reference sequence

Offers a wide variety of tools, with a primary focus on variant discovery & genotyping. Also strongly considers data quality

Platform-independent, technology-independent software tool for identifying SNPs & indels in massively parallel sequencing of individual &
pooled samples

A statistical tool for calling common & rare variants in the analysis of pooled or individual next-generation sequencing data

Provides short DNA sequence read alignments, supporting complex tasks like variant calling & alignment viewing, as well as sorting, indexing,
data extraction & format conversion

CRISP (Comprehensive Read analysis for Identification of SNPs from Pooled sequencing) can be used to identify both rare & common variants

Evaluates variants for position (e.g. exonic region, intronic region, splice site) & probable effect (e.g. amino acid change)

SIFT (Sorting Intolerant From Tolerant) predicts whether an amino acid substitution affects protein function based on the degree of amino acid
conservation in related sequences noted against the position-specific iterated BLAST (PSI-BLAST) database

Similar to SIFT, PolyPhen-2 assesses the functional impact resulting from an amino acid change in a protein, & uses several algorithms to evaluate
sequence, structure & predicted function against several databases

It can be used to: annotate genetic variants and predict whether SNPs or indels cause protein coding changes; compare variants against the dbSNP
(Single Nucleotide Polymorphism Database) & 1000 genomes database to determine if a variant is a reported polymorphism; & evaluate
functional impact based on SIFT score

SNP = single nucleotide polymorphism
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sequences can be aligned to the reference genome, and
relative expression can be estimated from the coverage
depth of each read.’® Subsequent analysis of gene
expression microarray data and RNA-Seq transcrip-
tome data requires distinct bioinformatics approaches
to glean useful information.

The first step in analysing microarray data is to
normalise the data, in order to eliminate measurement
noise that is systemic to the platform being utilised
for the study. With tens of thousands of signals from
each chip analysed, there are several sources of
variation: there is normal variation between signals
on an individual chip, between data gathered from
different chips and between experimental batches.’’
Methodologies and programs used to normalise array
data are a subject for an entire article. In general, nor-
malisation processes employ several strategies, includ-
ing methods that use internal controls built into each
array (e.g. duplicate probes placed in different locations
of an array) and approaches that measure ‘housekeeper’
probes that generally show low variability between
samples. Normalisation also considers variation due
to batch effect. Several statistical methods (e.g. global
normalisation (which equalises the mean or median
values for each array in the experiment), parametric
linear regression methods and non-parametric
methods) aim to adjust the array output values so that
differences identified are not due to inherent or experi-
mental variation.”® There are many approaches and
methods that can be employed to normalise microarray
data. Reviews by Fan and Ren,>” and Gusnanto and
colleagues,® provide further details of some standard
methods.

Along with normalisation, a filtering process is often
employed. The goal of filtering is to disregard any
probes that may not provide meaningful data and
would thus add ‘noise’ that could dilute the data of
interest.>® For example, if a fraction of probes show
very low expression across all of the samples in the
experiment, one may wish to eliminate these from the
analysis. Conversely, one may want to eliminate
probes that show extreme variation between samples.
The filtering process depends on the goals of the
experiment; if conducted appropriately, the filtering
process can improve the signal-to-noise ratio, which
is an inherent problem in microarray research.

After normalisation and filtering, data can be ana-
lysed to seek an answer to the experimental question.
The methodology for interpreting microarray data is
diverse, and largely depends on the goals of the experi-
mental design. The following are some basic principles
and approaches.

One starting point is to determine if a supervised or an
unsupervised approach would be best. Unsupervised
approaches are methods that examine inherent patterns
within the entire dataset without outside bias.
Unsupervised methods include feature determination
(a common technique is called a principle component
analysis), cluster determination and network
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determination.®” Supervised analyses are methods that
are used to determine which genes or groups of genes
on the array can best differentiate between pre-deter-
mined groups (e.g. tumour tissue vs normal tissue,
treated vs untreated). Statistical methods to perform a
supervised analysis range from approaches that are
fairly simple, such as basic parametric or non-paramet-
ric comparisons between the mean or median values of
each probe between each group, to extremely complex,
such as the use of support vector machines or Bayesian
methods to segregate groups.’’ The authors point the
reader to the concise review by Butte,’” who highlights
some common supervised and unsupervised methods
for gene expression array analysis.

One concept that is important to discuss is that of the
“false discovery rate’. This is a measure of error, which
was developed approximately two decades ago coin-
ciding with the increased application of microarray
technology.”® In brief, when one performs multiple
statistical tests in an iterative fashion, there exists an
inherent error with each test performed (generating a
p-value for each individual test, which describes the
level of confidence that the result was not due to a
type 1 error). As more tests are performed, the
chances of ‘discovering’ a positive result simply by
chance increases with each additional test. Therefore,
the stringency for calling ‘true positives’ over ‘false
positives’ should increase as the number of tests
increases. Traditional methods for adjusting the
accepted error rate (namely, the family-wise error
rate, the most common method of which is the
Bonferroni correction) are very stringent. When
applied to the thousands of data points generated
with microarray data, these methods have a high likeli-
hood of dismissing pertinent results. The false discov-
ery rate is a less stringent correction than family-wise
error rate methods, and is commonly reported as a
g-value, which can be interpreted as similar to a
p-value generated in statistics and used for single-
hypothesis testing.

The steps highlighted above involve complex bio-
informatics approaches to arrive at the end result in
microarray analysis; namely, a list of genes correspond-
ing to array probes that appear to be associated with the
experimental condition of interest. These could be
genes that cluster together in an unsupervised analysis,
forming what appear to be biologically distinct entities,
or genes that are differentially expressed between pre-
defined categories (i.e. in a supervised analysis,
groups are predetermined and genes that are expressed
differently between the different categories are then
identified). An example of a signature generated from
a supervised analysis would be a list of genes which
are differentially expressed in a set of tumours that
respond to a specific therapy versus a set of tumours
that do not respond.

Whether attained via unsupervised or supervised
analyses, the results of these studies generate a list of
genes of interest, which must subsequently be validated
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both internally and externally. Internal validation
examines the expression of individual genes in the ori-
ginal test samples (with reverse-transcription polymer-
ase chain reaction, for example). This is done in order
to verify that what was seen on the array was truly from
gene expression levels in the samples, as opposed to
artefacts on the array or artefacts secondary to experi-
mental methods. Additionally, the results should be
validated externally; findings in the test set must
often be verified on an additional sample set (e.g. a
‘repeated’ experiment on an independent cohort) in
order to deem the results generalisable.

One important concept to mention is the problem of
‘overfitting’ when developing a gene expression signa-
ture. Because multiple variables are tested while devel-
oping these signatures (i.e. comparisons between
thousands of probes), there is a relatively high likeli-
hood that a statistical model generated from the
dataset to describe a given cohort will only be applic-
able to the experimental cohort; the model is therefore
‘overfitted’ internally. This is the main reason why
external validation is a required part of the process in
generating gene expression signatures. The difficulty
in replicating and validating results generated from
gene expression microarray experiments is arguably
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one of the greatest barriers to the progress of these
research endeavours.

Gene expression analysis has been applied in several
areas of otolaryngology. By far the widest application
has been in the field of head and neck cancer
biology. A number of interesting bioinformatics
approaches have been implemented in these studies.
For example, in an early study by Chung et al., 60
tumour samples were examined using complementary
DNA gene expression arrays.*! First, a pooled subset
of 30 randomly selected samples from the test set
was used as the reference (early generation gene
expression arrays used a two-colour fluorescence
system to compare a test sample to a reference
sample). The gene expression data were normalised
and filtered in an interesting manner. As part of the fil-
tering process, in a subset of 10 samples, RNA was
extracted from 2 different regions of the same
tumour. When these paired samples were examined,
genes that showed little intrinsic variance (i.e. variance
between matched pairs) but high variance across
unmatched samples were selected for further evalu-
ation. An unsupervised hierarchical clustering analysis
identified four distinct subtypes of tumours, which
appeared to have distinct molecular characteristics.

Gene expression data

Normalisation

SAS® & SPSS®: statistical software packages that enable normalisation,
filtration and clustering

Filtering

ﬂded software for analysis of gene expression data:

MeV (MultiExperiment Viewer suite*®): normalisation, filtration,
| clustering, supervised or unsupervised analyses

SNOMAD (Standardization and NOrmalization of MicroArray Data®):
normalisation and standardisation methods

R, using Bioconductor: normalisation, filtration, clusteringand PCA

Affymetrix® Expression Console™ software & Affymetrix Transcriptome

Qalysis Console software: normalisation, filtration and clustering /

~

Unsupervised analysis

e Feature determination (e.g. PCA)
» Clusterdetermination

* Network determination

Supervised analysis

¢ Parametricor non-parametriccomparison
* Supportvector machines

¢ Bayesian learning

FIG. 2

Steps for processing gene expression data, and list of selected tools for normalisation, filtering and analysis. PCA = principle component
analysis
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A supervised analysis using two specific statistical
methods (k-nearest neighbour method and prediction
analysis of microarrays) was carried out to develop a
model that was 80 per cent accurate at predicting patho-
logical lymph node status.*’

In another early study, Belbin and colleagues exam-
ined 17 head and neck SCC samples.*> A gene expres-
sion profile derived using an unsupervised analysis was
predictive for overall survival within the patient set.

In more recent examples of gene expression studies
in head and neck SCC, Schlecht and colleagues used
a supervised analysis of gene expression microarray
data to demonstrate that human papilloma virus
(HPV) positive and HPV-negative head and neck
SCC have distinct gene expression profiles.*> Two
studies examining HPV-negative oral cavity SCC
demonstrated that a gene signature could be a
better predictor of survival than clinicopathological
factors.**** In the latter study, the authors notably
developed a predictive gene expression signature
using an iterative supervised method on a 97-patient
training set, and validated the result on an external
dataset.*> These examples highlight how the bioinfor-
matics principles described in this review have been
employed in head and neck cancer research.

Gene expression has not been limited to cancer
biology alone. A study by Klenke and colleagues com-
pared gene expression in cholesteatoma with that in ear
canal skin, which demonstrated expression patterns
consistent with chronic inflammation and character-
istics similar to those of invasive tumours.*® A study
by Stankovic et al. reported a distinct transcriptional
signature in nasal polyps associated with chronic sinus-
itis, compared with those in patients with aspirin-sensi-
tive asthma.*” Another interesting study, by Vambutas
and colleagues, used gene expression arrays to evaluate
peripheral blood mononuclear cells extracted and cul-
tured from patients with autoimmune hearing loss.**
That study revealed that stimulation of cultured periph-
eral blood mononuclear cells with perilymph extracted
at the time of cochlear implantation led to differential
expression of interleukin 1 receptor type IL.** These
studies demonstrate the wide potential applications of
gene expression in otolaryngology, and these studies
exemplify both the creative approaches and the bio-
informatics challenges in analysing and applying
these data.

The bioinformatics approaches to analysing gene
expression data are complex. Figure 2 summarises the
basic approaches to gene expression analysis and lists
some tools that the authors have found useful.

Conclusion

As evidenced by this review, high-throughput nucleo-
tide sequencing and transcriptomics are changing
biology and medicine. Gleaning useful information
from these vast data sources requires sound bioinfor-
matics approaches. Several of the bioinformatics prin-
ciples described for next-generation sequencing and
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gene expression analysis are applicable to other high-
throughput molecular biology techniques. The next
part of this review highlights several other high-
throughput platforms, and discusses recent approaches
that seek to integrate data from multi-platform projects.
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