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1. Many investigations have been concerned with a squarc
matrix P with non-negative cocfficients (elements). It is remarkable
that many interesting properties of P are determined by the set £ of
index pairs of positive (i.e. non-zero) coefficients of P, the actual
values of these coefficients being irrelevant. Thus, for example, the
number of characteristic roots equal in absolute value to the largest
non-negative characteristic root p depends on X alone, if P is irreduc.
ible. If P is reducible, then X determines the standard forms of P
(cf. §3). The multiplicity of p depends on X, and on the set § of
indices of those submatrices in the diagonal in a standard form of P
which have p as a characteristic root. It has apparently not been
considered before whether £ and § also determine the elementary
divisors associated with p. We shall show that, in general, the
clementary divisors do not depend on these sets alone, but that
necessary and sufficient conditions may be found in terms of £ and S
(a) for the elementary divisors associated with p to be simple, and
(b) that there is only one elementary divissr associated with p.

The square matrix 4 = [a;] is called an M-matrix ' if (1) a;; = 0
for all 4; (2) ;<0 wheni+j; and (3) all non-zero characteristic
roots of A have positive real part. If P =[p;] is a square matrix
with non-negative coefficients and p is its greatest non-negative
characteristic root, then p = p;, for all ¢ (0. Taussky [7]). Hence
pl — P is a singular M-matrix. Conversely, if 4 is a singular
M-matrix and p = my for all 4, then pI — 4 is a matrix with non-
negative elements. Thus it is equivalent, and rather more convenient,
to study the elementary divisors associated with the characteristic
root O of a singular M-matrix.

2. We shall now explain our notation and terminology, which
differ in some respects from the usual ones. We introduce a partial
ordering on a set of conformable matrices with real coefficients by
setting 4 (= B if a;; = b;; for all 4, j, where 4 = [a;;] and B = [b;].
A second partial ordering is introduced by setting A = B, if either

! The term M-determinant was used by A. Ostrowski {4], [5]. It has been proved
[6], p. 19, that our definition is equivalent to Ostrowski's.
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a; > by for all ¢, j, or A = B. Expressions such as 4 (> B,and 4 < B
then have their natural meanings. If 4 >0, we call A ¢ strictly
positive,” if 4 (> 0 we call 4 ‘“ weakly positive ’ or just ** positive.”
We shall similarly call 4 negative if 4 <) 0.

»

The notation used by previous authors (¢f. Frobenius [2], Wielandt
(8], and others) is less convenient and a little less satisfactory logically.
It obscures the fact that we are continually dealing with two partial
orderings. While 4 > B has the same meaning in both notations,
these authors use 4 = B in place of 4 (== B. Where we may write
“4 (>0, they would have to writec “4=0 but 4+ 0.” It is
surely. unfortunate, also, that in their notation *“A4=B" is not
equivalent to ““ either 4 > B or 4 = B.”

We note that if 4 =[a] is 1 x 1, then 4 >0 is equivalent to
A (>0, and if 4 is identified with a then 4 > 0 bas its usual meaning,

Column and row vectors may be regarded as matrices, and the
same notation will be employed there.

3. Our principal results will be enumerated in terms of the numbers
R;; (4, P) defined below. Let 4 be a square matrix! and let P be the
diagonaliy symmetric partition [4;;],¢,j = 1,...,k. Tor4,j=1,...,k
we set

ri;(4, P)=0ifi +jand 4;; =0,

and ri5(d, P)=11if i =j, orif 4;; + 0.
Where no confusion can arise we shall write r; for r;; (4, P). Next
we seb

R; (A, P)=max 74 Ty .. Tnj
the maximum being taken over all sequences (i, h, ..., #,j). Again we
shall generally write R;;for B;; (4, P). Forfuture reference we note that
either B; =O0or RB;; =1;
R;=1fori=1,...., k;

k
Z Ry Ry = Iy = R, By, 1Sisk; (1)
B=1
k . »
z Tin 'R’U = Rij g max 7 th if 1 + 2 (2)
h=1h=i h=i

1 The field of the coefficients of A is here immaterial. But in the remaining
sections we shall assmine that all matrices occurring have real coefficients.
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If Aisa square matrix, then there exists a permutation matrix, T,
for which A*=7T-1 AT can be partitioned [A*‘; 1, %,5=1,..., k such that
(1) A;’; =0 if ¢<j, (2) A% ,i=1,..., k, is irreducible. We shall
call 4% a standard form of 4, and we shall say that 4*is in standard
form. In general, the standard form of A4 is not unique. If A%is a
standard form of 4, and A?i ,2=1,..., 1, are the irreducible matrices

in its diagonal, then ! =k, and A4° =T-14* T; where o is a
% 1}

a(i)o(j)
permutationof (1,...,k)and T, ..., T} are permutation matrices. Thus

there exists a one-one correspondence between the irreducible sub-
matrices in the diagonal of any two standard forms such that corres-
ponding submatrices have the same characteristic roots. In particular,
all standard forms have the same number of singular irreducible sub-
matrices in the diagonal.’

In view of what is to follow we shall examine the connection
between the R;; (4, P) and a standard form of 4.

LeMma 1. Let P be the partition [A;], 3,5 =1,..., k of the square
matriz A such that the A;; in the diagonal are irreducible. Then A is in
standard form if and only if R;; = 0 whenever ¢ <j.

Proof. We must show that ¢ B;; = 0 whenever ¢ < j’is equivalent
to ‘r;; =0 whenever ¢ <j’. Clearly * B;; = 0 whenever ¢ <j’ implies
‘ryi = 0 whenever ¢ <j’. To prove the converse we note that if 7 < j,
then any sequence (¢, &, ..., n, j) contains two consecutive members
I, m such that I <m. "The lemma follows from the definition of R,

THEOREM 1. Let P be the partiiion [4;]),¢,j=1,...,k of A, where
the A;; are irreducible, and lel A be in standard form. Letl< a, B<k.
There exists a permulalion o of (1,..., k) for which A* =[A,4.i5)
5,j=1,..., k, is in slandard form and o(B) <o(a) if and only if
Rp. (A, P) = 0.

Proof. Let P* be the partition [4,4,(;] of 4* and put
R; = R;; (4* P*). WehaveR% =R;= R;(4,P),1,j=1,...,k.
Hence by Lemma 1, if A% is in standard form and o (8) <o (a), then
Rea = R* )00y = 0

Conversely let Rg, = 0. Since by (1) Ry, > Rp; Ry, it follows that
Ry Ry =0 for i=1,..., k. Hence we may partition (1, ..., k) into
three sets E,, E,, E, so that ¢l if Iy =1 and B;, = 0; ic E, if
Ry = R;, =0; and ieE;if Ry = 0and R, =1. Let o be the permu-
tation of (1,..., k) for which o(i) <o(j)if i <j and ickE,, je&,, with
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A < u; while o(2) < o(j) if %, jeE, and i <j, where A =1, 2, 3. Let P*
be the partition [4,y,;1, 1, j=1, ..., k, of A*. Let R; = R;; (4%, P*).
Let icE,, jeE,, and suppose that o(i) <o(j). Then A= p. If A=yp,
then ¢ <j so that by Lemma 1, R:(na(j) = R;=0. If, on the other
hand, X < p, theneither A= lorp =3. If A=1, then Ry =1, whence
R;j=Rg R;; < Ry =0, since p = 2. If p =3, then R;=1, whenco
R;=R;R, =R, = 0,sinceX = 2. Woe conclude that R*;,;=R;=0
whenever o(t) <o(j). Thus, by Lemma 1, A* is in standard form,
We nced now only prove that o(8) <o(a). But Rgp=1, Rg =0,
R,, = 1 imply that BeE,, aeE;, and the result follows.

4. We now turn to the consideration of M-matrices. If the
matrix 4 is partitioned [4,], ¢, j,=1,.. ., k, we shall assume any column
vector z to be conformably partitioned into (x,,..., ).

LemMMA 2. Let A =[A44],%,5=1,...,kbean M-matrixz in standard
Jorm. Letx=(z,,...,x;) and let

2;=0 when R;y= 0 3
z;>0 when R;,, =1, 3
Jori=1, ..., h — 1, where h>a. If
h=0
i—1 (4)
Yi= — 2 Ai,-.vj,‘i=2,...,k
j=1
then =0 ¢ R,, =0
(>0 if Bp=1] (5)

Proof. Clearly y,(= 0; and y, =0 if and only if 4,2, =0 for
j=1,.., h —1,since 4,;2; )0 for j =1,..., h — 1. Hence, by the
assumptions about the z;, y, = 0 if and only if

rthj,,=0,j=l,...,k—l. (6)
h—1 £
Since r,;=0 when h<j we have T r,;R,= X ryR;, and
i=1 j=1,j=h .

max r,; R, = maxr, R, Since %+ a, it can now easily bc shown
i<h i=h

from (2) that (6) holds if and only if R,, =0. The lemma follows.

TaeorEM 2. LetA =[4;),1,j=1,..., kbea singular M-matrizin
standard form. Let S be the se! of indices of singular A;. 1f aeS, and
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Ry, = O whenever BeS, B + a, then there exists a posilive characleristic
column vector z of A associated with 0 satisfying (3) fori=1, ..., k.

Proof. Let z be any column vector, and let y satisfy (4). Then

Az = 0 if and only if
Ayzi =y, (7)

for 72 = 1,...,]6.

Now let z; = 0 when %2 <a. The singular irreducible M-matrix
4,, has a strictly positive characteristic vector z, associated with 0,
<f. [2].[4]). As Aisin standard form, B, = 0 when i < a, R,, = 1, and’
therefore z4, ..., z, satisfy (3).

Let us suppose inductively that z,,..., a3 1, 2 > a, satisfy (3).
If y,, ..., y, satisfy (4), then y, also satisfies (5) by Lemma 2. Thus
if R, = 0 then gy, = 0; and so if z, = 0 then z, satisfies (7) for ¢ = &,
If R, =1, then y,(>0, and by assumption 4;, is non-singular. It
is known that the inverse of a non-singular irreducible M-matrix is
strictly positive ([2], [4]). Hence if x,,=Ah‘hly,,, then x>0, and
.z, satisfies (7). We have thus constructed a vector z, satisfying (3)
and (7), for ¢ = k. The theorem follows by induction.

For the sake of completeness we shall prove the well-known
Corollary 1.

CororLrLary 1. A singular M-matriz has a positive characteristic
vector associated with 0. »

Proof. Let a be the largest member of §. Then R, = 0, when-
ever feS, B + a, and the corollary follows from Theorem 2.
It is also convenient to state Corollary 2 at this point.

CoroLrarY 2. Let y,,..., y, be the members of 8. If Ry, =0
whenever a, BeS, a + B, then A kas s linearly independent characteristic
column veclors z, ..., x® associalel with 0, where 7 satisfies (3) with

a =y;
I'roof. Theorem 2 shows the existence of the characteristic
vectors a7,j =1,...,s, satisfying (3) witha =9; Suppose that

8 8
Z M ax*=0. Then,fori=1,...,% wehave X A,,xf = 0. Let a=y;.
h=1 h=1

Since Rz, =0 when B=y,, h+j, it follows that 22 =0 if & +j.
Hence A;xf = 0; and 29 + 0 now implies\; =0. The linearindepend-

ence of z1,..., z¢* follows.
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5. If z= (x,,.., z;) we shall call z; the ith vector component
of z.

LemMma 3. Let A =[4y], i,j=1,..., k, be a singular M-matrix
tn standard form. Let y,, ..., v,, where y; _; < vy;, be the members of the
set S of tndices of singular Ay. If there exist m linearly independent
characleristic vectors of A associated with 0, then for each integer n, n < m,
there are al least n of these vectors such that the ith veclor component is
non-zero for some i S Va1 s —m

Proof. If y,4+4_m =4k there is nothing to prove. So let
Yni+s-m<k and suppose that z',..., 2™ are linearly independent
characteristic vectors associated with 0, such that x;’ = 0,for¢=1, ...,
Vhies—moandj=mn,..,m. Ifp=y,, ,_,+1,the vectors (xf‘ s @),
j=mn,..,m, form n —m 41 linearly independent characteristic
vectors associated with 0 of the matrix B=[4;], ¢,j=p,..., k.
But the multiplicity of 0 in B equals the number of singular 4;; in B,
and so equals m — n. This yields a contradiction, and the lemma
follows.

LevMma 4. Let A=[A4;],4, j=1,..., k, be a singular M-matriz
tn standard form. Lely,, ..., y, where y; ., < vy;, be the members of S.
If A has s linearly independent characteristic column vectors associated
wilh 0, then there exists a set at,. .., x* of such veclors for which
=0 ifi<y;
but xi +0 ifi =vj ®)
Jorj=1,...,s.

Proof. Letz!,...,2* be linearly independent characteristic vectors
associated with 0. If 27 = 0ifs<3;butz! +0ifs = 3;, then 4,27 =0
for : = §;. Hence §;<S. Thus :g =0if i<y, forj=1,...,s. It
also follows from Lemma 3, with m = s, » =1, that for some j we have
zj + 0, if i=19,., We may therefore assumec inductively that we
havelinearly independent characteristic vectors x1,..., 2% 27 *+1, ..., 2*,
associated with 0, such that (a) (8) holds for j=1, ..., n and
() z£=0 if ¢<yy, for j=n41, ...,s. Let a=1y, Then
A2t =A4,7% =0, j==n-+1,..., s. Since an irreducible singular
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M-matrix has only one linearly independent characteristic column
vector associated with 0, it follows that zJ = AJ. 2t j=n+1,..,s
Letzi =2 — )j2",j=n+1,...,8 Thevectorsz?, ..., z*are linearly
independent characteristic vectors associated with 0, and, for
j=n+4+1 ..., s x:f =0 if ¢<y, Hence by the remark at the
beginning of the proof, x: =0 if i<y,,q for j=n+1,..,s It
follows from Lemma 3 that there is & = n 4 1 such that z-: + 0,
if = 9y,,1. Suppose this j=n -+ 1. Then (a) (8) holds for
j=1....,n+1,and (b) x: =0if t<y, 1, forj=n+42, ..., 5. The
lemma follows by induction.

6. The following lemma is of some interest in itself. It is related

to & theorem of Collatz [1], and other results on positive irreducible
madtrices.

LEMMA 5. Let A be an irreducible singular M-matrix and let
Ax (= 0or 0) = Az. Then Ax = 0.

Proof. Let Az (= 0 or Az <) 0, and let »’ be the strictly positive
characteristic row vector of A4, associated with 0. If either z(> 0
or z <) 0, then either 'z >0 or ’2<0. Hence 4z = 0.

We now come to one of our main theorems.

TeREOREM 3. Let A =[A;]l,1,j=1, ..., k, bea singular M-mairiz
in standard form. Let 8 be the set of indices of singular A;;.. The
elementary divisors associated with the characteristic root 0 are all linear
if and only if Ry, = O whenever a, B &S and a + B.

Proof. Let S have the s members y,, ..., y, where y;_; <y;.
The elementary divisors associated with 0 are all linear if and only
if that characteristic root has s linearly independent characteristic
vectors associated with it.

If R, = 0 whenever a, 8 S and « + 8 then by Corollary 2 to
Theorem 2, 0 has s linearly independent characteristic vectors
associated with it. Suppose, conversely, that 0 has the s linearly
independent characteristic vectors z, ..., 2* associated with it.
By Lemma 3, we may assume that 2!, ..., x* satisfy (S). Let us
assume that for some a, B «S,a + B, we have R, = 1. We shall
obtain a contradiction. We may choose a, 8 so that R;,=1,8>a
and B —a =< B’ — o’ for all o/, B'cS, a’ + B, for which Ry =1. If
a<y=06= Bandy, 85 then R, =Ounless y=a and § = B. Let
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B be the matrix [4;],7,j=a,...,8—1. Let 8,8, ..., o, be the
indices of the singular A4;; of B in ascending order of magnitude.
Thus §, = a = y;, say. We deduce from Corollary 2 to Theorem 2
that B has r linearly independent characteristic vectors (2%, ..., 22—1 )s

h =1, ..., r, associated with 0, where 2! satisfies (3) (provided we

replace a by §, there), for ¢ =a, ..., B— 1. Since the multiplicity
of 0 in B is r, any characteristic vector of B associated with 0
is a linear combination of these. Since a =y;, (7 ,...,27_ )is a

B—1
T

characteristic vector of B associated with 0. Hence 2] = Z A2t
h=1

fori=a, ..., —1. Further, A, + 0 since 27 + 0 but2* =0if b =2,
. r -1

.., r. It follows that Aﬁgx; = X )«,,y;‘ where yz =— X Ap2},

h=1
h=1, ...,7. On putting z? =0 when ¢=1, ..., a — 1, we obtain

from Lemma 2 that yg (>0 if Ry, =1, but yg = 0if R;z, =0, where
v=3§;,. Hence y“? (>0, but Y =0,fork=2,...,7. Thusdg xg =AY'p
and so either A, :r; (>0 o0r0 (>4 x; . But thkis is not possible, by
Lemma 5. It followsthat R, =0 whenever a, BeSand a += 8. The

theorem is proved. .
In view of Theorem 1 we obtain immediately

COROLLARY 1. The elementary divisors associaled with 0 are all
linear if and only if for each acS there exists a permutation o of (1, ..., k)
such that [A,pyap), 3, =1, ..., k, is in standard form, and o(B) < ofa)
Jor any BeS. '

The square matrix A = [a;] is called Minkowskian if (1) a;; = 0

for all ¢, {2) a;< 0, when ¢+j, and (3) £a;=0 for all &, A
j
Minkowskian matrix is an M-matrix: cf. [4], [6].

CoBorLraRY 2. Let 4 be a singular Minkowskian matriz. The
elementary divisors associated with 0 are all linear.

Proof. We may assume that 4 =[4;], 7, j=1,..., k% is in
standard form. ILet S be as above. If C = [¢;] is an irreducible
Minkowskian matrix, then C is singular if and only if Z¢; =0 for

all 7,[4]- Hence if aeS, then 4,; = 0, provided that j + a. JIt’. follows
that R,;=0, if j + a. The corollary now follows from Theorem 2,
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In the case when Za; =0 for all 4, this result has already becn
j

proved by Ledermann [3].

7. Results similar to those we have found for characteristic
column vectors may be stated for characteristic row vectors. Let
A=1[445],%j=1, ..., k, beinstandard form. The transposed matrix
A'=[4"3), %, j,=1, ..., k (where 4’;; = (4;)’) is not necessarily in
standard form. However, if o is the permutation for which
o()=k+1—14, e=1, ...,k then B=[4",45,35), % j=1, ..,k is
in standard form. Let P, P’, and @ be the partition described
above of A, A’ and B respectively. Then R, ;. (B, @)=
R; (A’,P'y=R; (A4, P). Toany characteristic row vector (u"y, ..., %';)
of 4, associated with 0, there corresponds the characteristic column
vector (%, . U.y) of B associated with 0. We may deduce Theorem 2a
and Corollary 2a, from Theorem 2 and Corollary 2.

THEOREM 22. Let A =[4;),4,j=1, ..., k, be a singular M-matriz
in standard form. Let S be the set of indices of singular A;. If aeS and
R.; = 0 whenever BeS and B + a, then there exists a posiltive character-
istic row vector u’ = (u,’, ..., u's) associated with 0, satisfying

u; =0 when Ry =10
]. (9)

‘u; > 0 when R,; =1
for 1= 1, ..., k.

CoROLLARY 2a. Let y,, ..., y, be the members of S. If R,;=0
whenever a, BeS and a + B then A has s linearly independent charac'er-
istic row veclors w't, ..., u’® associaled with 0, where u’ satisfies (9)
with a = y;.

THEOREM 4. Let A bea singular M-matriz. If the elementary
divisors associated with the characteristic root O are all linear, then the
principal idempolent element associaled with 0 is positive.

Proof. Let C be a matrix whose characteristic root w, of multi-
plicity s, has only linear elementary divisors associated with it. There
exist linearly independent characteristic column vectors 21, ..., 2* and
linearly independent characteristic row vectors 'L, ..., »* associated
with w, such that vz = §,;, h,j =1, . .., s, the Kronecker delta. The

L4
principal idempotent element associated with wis the matrix X ztu's,
h=1
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Let P* be the partition 4* = [A; I, ¢4,3=1, ...,k of astandard
form of the singular M-matrix 4 with only linear elementary divisors
associated with 0, and let S = (y,, ..., v,) be the set of indices of
singular A; . By Theorem 3, R; = Ry, (4*, P*) =0, when
a, BeS, a + B. Hence by Corollary 2 to Theorem 2 there exist linearly
independent characteristic column vectors z!, ..., z* associated with 0
such that 27 satisfies (3) with a = y;. Similarly, by Corollary 2a to
Theorem 2a there exist linearly independent characteristic row vectors
u'l, ..., u', associated with 0, such that u'/ satisfies (9) with a = y;.

k
Let a =y;and B =1y, Since u'?2i= X w? ziand u” z} = 0 if and
i=1

only if R:‘, R; = 0 it foillows that w%2z7> 0, and that w'*2i=0 if

k
and only if X I* R* =0. But we may deduce from (1) that

1=1

k
Z Rx Ry =0if and only if R¥ =0. Hence u"a! =0it h+Jj, but

i=1 Fi
wizi>0,for h,j=1, ..., s. Wec may clearly assume that u'}, ..., u"
have been multipled by positive factors so that w*af = 3§,;. Then

s .
the idempotent element of A* associated with 0 is E* = X azfu'
j=1

Thus E*(=0. If F is partitioned conformably with A, then
E; = é

h=1
and x;' = 0, when & + j, it follows that E* =2z} uz >0. Hence E* (> 0.

The principal idempotent element £ of 4 associated with 0 is
obtained from that of 4* by means of o transformation by a per-
mutation matrix. Hence F, too, is positive.

zh u'? ,t=1, ..., k. Since ' > 0,and 2/ > 0, but u'z =0,
13 a a

8. Wo have already remarked that tho clementary divisors of a
matrix A, associated with the characteristic root 0 of multiplicity s,
are all linear if and only if there arc s linearly independent character-
istic vectors associated with 0. In the next two scctions we shall
discuss the other extreme case when thcre is only one elementary
divisor associated with the characteristic root 0 of a singular M-matrix.
Equivalent conditions are (a) that 0 has only one linearly independent
characteristic vector associated with it; or (J) that there exists a set
2%, ..., z* of column vectors such that

Ad =23+, §j=1,...,,8—1; Az*=0,and z* + 0, (10)

where s is again the multiplicity of 0.
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LEMMA 6. Let 4 = [4;],%,3=1, ...,k be a singular M-matriz in
standard form. Let 8 = (y,, . .., v,), where y; _, < y;, be the set of indices
of singular A;. Ifx', ..., z* is a set of column vectors salisfying (10),
then 23, j =1, ..., s, satisfies (8).

Proof. Torj=1, ..., s, let :rf = 0if 1 <§;, but xg +0if £=3§;
Since 4x* =0, it follows, as in the proof of Lemma 4, that S,e8.
Let us assume inductively that (a) &eS forj=h, ..., s; and that (b)
85_1’<8,- for j=h+1, ..., s. These assumptions hold for h =s.
1f y) satisfies (4), when z; = 27, then 427 = 27 +! if and only if

Azl =y + 2]t (11)
for s=1,..,% DLet 8=35,. Then yg = 0; and we may deduce
from (b) that x2+1 = 0. Hence (11) holds for =8 andj=n4

if and only if Aﬂs“’z = 0. Hence either 23>0 or x: < 0. But
Aﬂﬂaz“l = yz -1 :(Z . It follows by Lemma 5 that (a) and (b) imply
that yZ“#O. Thus §, _; < B = §,. We deduce that if a = 3§, _, then
x:'= y"-1=0. Hence by (1I) A,at-1=0, and so §,_,¢8. By

induction we obtain that §;<8, j=1, ..., s, and that §; _,<§;,j=2, ..., 6.
Hence §; =1y;,j =1, ..., s and the lemma is proved.

9. LEMMA 7. Let A bean trreducible M-matriz. Let z and y, where
y (> 0, be column vectors conformable with A. Then there exist a real A
and a column vecltor x such that 4z = ly + z.

Proof. 1f A is non-singular, then there cxists such an z for any A.
Suppose 4 singular. Since 0 is a simple characteristic root of 4,
the nullity of 4 is 1. By Lemma 5, y is linearly independent of the
columns of 4. Hence any column vector is a linear combination of
the columns of 4 and y. The lemma follows.

THEOREM 5. Let 4 =[A,],4,j =1, ..., k, be a singular M-matriz in
standard form. Lct S be the set of indices of singular A;.  There isonly
one elementary divicor assoctated wilh the characteristic root 0 of A if and
only if Ry, =1, whenever a, BeS and B> a.

Proof. Suppose that thereis only onc elementary divisor associated
with 0. Let 2!, ..., 2* be a set of column vectors satisfying (10). By
Lemma 6, 2/ satisfies (8), j=1, ..., 8. Let a=9y,_y1, B=19y; The
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conditions (a) and (b) of the proof of Lemma 6 are clearly satisfied, and

B~1 s-1
soyt-1=— % Aah-1=— T Aur"~140. But (@~ .. -1
[ (=1 i ima i a g-1
is the one linearly independent characteristic column vector associated
with 0 of B =[4,],4, j=qa, ..., B — 1, sincc 2t =0, fori=a, ..., f—1.
It therefore follows from Theorem 2 that xf’ ,i=a, ..., B—1, satisfies (3),
provided that 2!, ..., 2* have been multiplied by —1 if necessary.
Therefore z?,4=1, ..., B—1, satisfy (3). Hence, by Lemma 2, it
follows from yZ“¢ 0 that Ry, =1, when a=y,_1, 8=y, This is
a particular case of the required result. To deduce the general casc,
let a =v;, B =1y, where h>j. Then Ry > By Lo RY; = 1.
Hence Ry, = 1, whenever qa, BeS and 8 > a.
Conversely, let us suppose that Ry, =1 whenever g, BeS and
B> a. By Theorem 2, Corollary 1, there exists a characteristic column
vector z¢, associated with 0, which satisfies (8). Let us suppose that
there exist column vectors 7 satisfying (8), j = &, ..., s, such that
Axi=aitl, j=h,...,s—~1, Aa* =0, 2° + 0. (12)
We shall construct a vector z* —! satisfying (8) and Az? -1 = zh,
Let A= Yp_1 ﬁ-:‘yh. Let x:“1=0, 7:==1, ceey a—1, and let
@, xz :;) be the one linearly independent characteristic vector,

associated with 0, of B = [4,],¢,j=a, ..., B — 1. Then x” =1,
..., B — 1, satisfies (3) provided that the xf —1 have all been multiplied
by — 1, if necessary. If, for¢=1,...,8, y"}*] is chosen to satisfy (4)
with z replaced there by 2*~!', then it follows by Lemma 2 that
yz—1(> 0. Hence by Lemma 7, there esist a A and an x;'—l such
that AﬁﬁrZ’l = /\y’;‘1+ x; . Wenow writez? - for da2~1,i=1, ...,

B—1, Ayt-tHoryil i=1, .., B, and leave z? ~1 unchanged. Since

zh =0, when 1 < B, 2?1, 4=1, .., B satisfies (11) withj =4 — 1.

Let us assume inductively that xf‘ -L4=1,...,1—1,satisfies(11),
where I > B. We must consider two cases: [4S and leS. IfI{S, then (11)
is satisfied when 2}~ = A7 (yp 4 al). TE eS8, say I =v44m (Where
clearly m > 0) then there exist, by Lemma 7, aAand an 2 =1 for which
Ayzh == yy ~ '+ ab 4 dah+m sinee either #*™>0 or 2}*™ <0.
We now replace 27 by 2/ dait™, j=h, ..., s, where, by convention,
2+m =0 if j+m>s. Then 2% ..., 2® again satisfy (12) and since
the original 1?"‘"’ =0 when ¢<l, it follows that x"l‘ LI a:;' -1
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satisfy (11) with j=h — 1. By induction we obtain a vector
zh=1=(2h=1, ..., 2} ~1) satisfying (11) with j=h—1. Thus in
addition to (12) we have Az* —! =z% wherc z* —! satisfies (8). Using
induction again we obtain a set of vectors satisfying (10) and the
theorem is proved.

In virtue of Theorem 1 we obtain the following corollary.

Cororrary. Let y be the largest member of 8. There is only one
elementary divisor associated wilh the characleristic root 0 of A if and
only if for any permutation o of (1, ..., k) for which [A4 ,;y.5] 8, 5=1, ..., &,
is in standard form, we have o(y) = o(a) whenever acS.

An argument along the lines of the second half of the proof of
Theorem 5 would lead to the following result, which we shall enunciate
as a theorem, though we shall omit the proof. First we should have
to generalise Lemma 2.

THEOREM 6. Let 4 =[A4;],1,j=1, ..., k, be a singular M-matriz
tn standard form. Let S = (yq, ..., ys), ¥; —1 < ¥; be the set of indices
of singular A,;. If there is only one elementary divisor associated with 0
then there exist positive column veclors 2%, ..., 2° such thatz!, ..., x* salisfy
(10) if xf = (— 1Y 23,5 =1, ..., s. In fact

8
2» =0 when ¥ R, =0,
i i=h '

8
and 2* >0 when T R, >0.
1 o
i=h 3

The standard forms of 4 depend only on the set Z of index
pairs of non-zero coefficients of A. It is clearly decided by = and S
whether (a) Ep, = 0, whenever a, BeS, and a + 8; or (b) Ry =1,
whenever a, 8¢S and 8>a. Let P be a positive matrix, with
largest characteristic root p. The degrees of the elementary divisors
of P associated with p are the same 2s those of the clementary
divisors, associated with 0, of the M-matrix pI — P. Hence Theorems
3 and 5 fuifil the claims of § 1.

10. Let 4 =[44], ¢, j=1, ..., k, be a singular M-matrix in
standard form. Let S = (y,, ..., y,), ¥j—1 <7v; be as usual, the set
of indices of singular A4;. If =1, then there is clearly only one
elementary divisor, associated with 0, and it is linecar. If s=2,
then therc are two elementary divisors of degree 1, or one of degree 2,
associated with 0, according as Ry, = 0 or Rg, =1, where a = y,, and
B = y,. Supposethat s =3 and let y; = a, y, =B and y; = y. Since
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R, =R, = Rz, =0, and since B,z = Rg, = 1 implies that B, =1, we
may consider seven cases according as R, R, Ry, are 1 or 0. The
cases Ry=R,_ = Rp, =0, and By;= R, = Ry, = 1, are covered by
Theorems 3 and 5. We deduce that in the five other cases 0 must
have associated with it one element'ary divisor of degreec 1 and one of
degree 2. Tuis means that 4 has two linearly independent column
vectors z!, 22 associated with 0, and that there exists a vector =z
satisfying either Az = 2! or Az = 22 By considering each of the
five cases scparately it is possible to demonstrate the existence of
these vectors without any appeal to Theorems 3 and 5.

As an example we shall consider the case R,y =R ,=1, Rg = 0.
Though we shall use the theorems proved previously it would be
possible to use special cases of these results which could be proved
more simply. It follows from Theorem 5, applied to [4;],4,5=8, ..., k,
that A4 has a characteristic vector z3, associated with 0, for which
xf = 0 when <y, and that there exists an 22 satisfying Ax® = 23,
Let (:i » .oy z{l_l),j = 1, 2, be the two linearly independent charac-
teristic column vectors, associated with 0, of [4;],4,j =1, ...,y — L.
The existence of these vectors is shown by Theorem 3. By Theorem 1,
Corollary 2, we may assume that 2/ = 0if R, = 0 and 2 >0 if R{,j =1,

y=—1

forj=1,2. Hence, by Lemma 2, w:(>0,j=1,2,wherc w! =— X Az
h=1 h
By Lemma 7, there exist a A and an z}/ satisfying
QS | 2
way wy-{-/\wy, (13)
Let m“ =zl +27%,4i=1, ..., y—1. Then (2!,...,2!) is non-
i [ 1 Y

zero and, for t=1,..., y, 'v'l satisfies (7) provided y: is chosen to

satisfy (4). Since 4; is non-singularif ¢ > y, it is easy to establish the
existence of a vector z'= (ac;L yeees x: ) where 2} satisfies (7) fori=1, ..., %.

Thus 2! and 23 are characteristic column vectors associated with 0,

which are linearly independent as ! = 2! + A2z?2 = 2! >0, whilez® =0;
a a K a a

and dx? = 23,

It follows from Lemma 5 that A < 0 in (13). Hence x; =z; +)«z§ =
/\z‘ﬂ-’ <0, but x: >0, as already noted. Hence 2'is neither positive

nor negative. Itis easily established that this property is shared by
one of any two linearly independent characteristic vectors, associated
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with 0, of the matrix 4 we have been considering. It is due to this
that § and Z do not necessarily completely determine the elementary
divisors associated with 0 of a singular M-matrix when s > 3. Thus,
in both Band C below, k=4,8=(1,2,3,4),s=4and R;=R,, = 0,
Ry, = R,y = Ry, = By, = 1.

. .. o
-1 -1 . . -1 -1
-1 -1 . . I |

But Bis of rank 1, C of rank 2. Hence the elementary divisors
associated with 0 differ for the two matrices. We also note that the
principal idempotent elecment, associated with 0, of both B and C
is the unit matrix, which is, of course, positive. It follows that the
converse of Theorem 4 does not hold.

Most of the results of this paper are contained in my 1952 Ph.D.
thesis, which was written under the supervision of Professor
A. C. Aitken. My thanks are due to Professor Aitken for his great
encouragement.
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