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Preliminaries

1.1 Littlewood’s Three Principles

We shall be dealing extensively with measurable sets and functions, and begin
by recalling Littlewood’s three principles (J.E. Littlewood (1885–1977) from
1944; see Lit1944, §4), according to which a general situation is ‘nearly’ an
easy situation:

(i) any measurable set is nearly a finite union of intervals;
(ii) any measurable function is nearly continuous;
(iii) any convergent sequence of measurable functions is nearly uniformly con-

vergent.

These statements can be made precise, as follows.
Littlewood’s first principle is essentially the regularity of Lebesgue measure.

That is, with |. | denoting Lebesgue measure, for A (Lebesgue) measurable |A|
is the infimum of |U | over open sets U ⊇ A (open supersets of A) and the
supremum of |K | over compact subsets K of A. So one can approximate to
within any ε > 0 from without by open sets and from within by compact sets;
taking ε = 1/n (with n = 1, 2, . . .), one can find a Gδ set G ⊇ A and a Fσ set
F ⊆ A with |G \ A| = 0 and |A \ F | = 0. (For the place of Gδ and Fσ sets
in the Borel hierarchy, see pages 32 and 51.) As each open set on the line is a
countable disjoint union of open intervals, for each ε > 0 one can find a finite
(disjoint) union U of open intervals whose symmetric difference with A has
measure |U∆A| < ε . See, e.g., Bog2007a, §1.5 or Roy1988, §3.3.
Littlewood’s second principle is essentially Lusin’s Theorem (N.N. Lusin, or

Luzin (1883–1950), in 1912; see, e.g., Bog2007a, Th. 2.2.10 or Hal1950, §55).

Theorem 1.1.1 (Lusin’s Continuity Theorem, or Almost-Continuity Theorem)
Given a regular measure and a finite measure space (e.g. Lebesgue measure on
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1.2 Topology: Preliminaries and Notation 25

a compact interval), for f measurable and a.e. finite, f is almost continuous:
for ε > 0, there exists a closed set F on which f is continuous and whose
complement has measure |Fc | < ε .

This property of almost continuity in fact characterizes measurability.
Littlewood’s third principle is essentially Egorov’s Theorem (D.F. Egorov

(1869–1931) in 1911; see, e.g., Bog2007a, Th. 2.2.1; Hal1950, Th. 21A).

Theorem 1.1.2 (Egorov’s Theorem) For A measurable of finite measure, and
fn a sequence of measurable functions convergent a.e. to f on A, fn converges
almost uniformly: for each ε > 0 there exists B ⊆ A with |A \ B | < ε and
fn → f uniformly on B.

Thus almost everywhere convergence (in particular, pointwise convergence)
implies almost uniform convergence.

For textbook accounts of Littlewood’s three principles, see SteS2005, §4.3;
Roy1988, §3.6.
Our standard reference texts formeasure theorywill beBogachev (Bog2007a;

Bog2007b) and Fremlin (Fre2000b; Fre2001; Fre2002; Fre2003; Fre2008).

1.2 Topology: Preliminaries and Notation

We gather here a variety of results which we will need later. These are all
known to the experts; others may prefer to return to this for reference as may
be needed.
Our standard references for general topology, as already mentioned in the

Preface, will be Engelking (Eng1989) and also the Handbook of Set-Theoretic
Topology (KunV1984).

In the earlier parts of the book we will, for the most part, work in met-
ric spaces. But we may need to use alternative metrics, for instance to take
advantage of completeness. So it will be convenient to work from the start with
topological spaces (Hausdorff, by assumption), and these may often turn out
to be metrizable. Under such circumstances there may also often be a second
stronger, or as we shall say finer, topology in play (i.e. one with more open sets)
– which we call submetrizable. A helpful analogy is the interplay of weak and
strong topologies in function spaces.
In general we develop topological machinery when needed. But here we

briefly review basic concepts to establish conventions and notation – for details
and proofs of results mentioned below we refer to Eng1989. So below we are
concerned with:
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26 Preliminaries

(i) separation properties (regular, completely regular, normal, etc.);
(ii) covering and refinement properties (compactness, countable compactness,

local finiteness and paracompactness, etc.);
(iii) base properties (second countability and σ-local finiteness, etc.);
(iv) neighbourhood base properties (first countability, regular bases).

Notation. Inclusion will be denoted by A ⊆ B, proper inclusion by A ⊂ B,
complement by Ac, symmetric difference by A∆B := (A \ B) ∪ (B \ A). By Ā
we will denote the closure of A when there is only one topology in play. Oth-
erwise the closure will be written clT (A) or just clT A to imply the relevant
topology T .
By ω := N ∪ {0} we denote the set of finite ordinals.
A subset A of natural numbers ω will often be identified with a real number

in (0,1). Indeed, A is identified uniquely by its indicator function (on the natural
numbers) with 1A(n) = 1 or 0, according as n ∈ A or not. In turn, 1A, as a
binary sequence, determines a real number in (0,1) with binary expansion of
that sequence.

Separation Properties. A topological space X is regular if for each neigh-
bourhood U of any point x there is a neighbourhood V with x ∈ V ⊆ V̄ ⊆ U.
Further X is completely regular (or Tychonoff) if for each neighbourhood U of
any point x there is a continuous function f with f (x) = 1 and f = 0 outside
U and it is normal (or Urysohn) if for any disjoint pair of closed sets A, B there
is a continuous function f with f = 1 on A and f = 0 on B.
A space is pseudonormal if matters are as in the last definition but one of the

two closed sets is countable (e.g. a convergent sequence). Thus a pseudonormal
space is completely regular.

Covering and Refinement Properties. A space X is compact if every open
covering, i.e. open family U covering X (family of open sets with union X),
contains a finite subcovering (finite subfamily U ′ covering X). The space is
countably compact if any countable open covering has a finite subcovering.
This is to be contrasted with sequential compactness, which demands that
every sequence 〈xn〉 must have a convergent subsequence; such a space is
countably compact (see Eng1989, Th. 3.10.30). A space X is pseudocompact
if every real-valued continuous function is bounded. A countably compact
completely regular space is pseudocompact. Every normal pseudocompact
space is countably compact. In a metrizable space these three concepts are
equivalent.
A space is Lindelöf if any open covering contains (has) a countable subcov-

ering.
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1.2 Topology: Preliminaries and Notation 27

A family F is locally finite if each point x has a neighbourhood U meeting
(intersecting) only finitely many members of F . If each x has a neighbourhood
U meeting at most one member of F , then F is discrete.

The family is σ-locally finite (or σ-discrete) if F =
⋃

i∈ω Fi and each Fi is
locally finite (resp. discrete). Any open σ-locally finite covering has a locally
finite refinement (by sets not necessarily open) – see, e.g., Eng1989, Lemma
5.1.10.
A family V refines the family U if each member of V is included in a

member ofU .
A space is paracompact if every open covering U has a locally finite open

refinement. Examples are Lindelöf (and in particular compact) spaces and
metrizable spaces. By Stone’s Theorem (Eng1989, Th. 4.4.1) every open cover
of a metrizable space has an open refinement that is both locally finite and
σ-discrete.
Every paracompact space is normal. A regular space is paracompact if and

only if every open cover has an open σ-locally finite refinement (Eng1989, Th.
5.1.11).
By analogy with countable compactness, X is countably paracompact if

every countable open coveringU has a locally finite open refinement.
Dowker’s Theorem (Eng1989, Th. 5.2.8) asserts that X is normal and count-

ably paracompact if and only if X × [0, 1] is normal. This links normal spaces
to Borsuk’s Homotopy Extension Theorem (see, e.g., Eng1989, §5.5.21 and
note in particular Starbird’s Theorem).

Base Properties. The simplest base property is its countability: a topology is
called second countable (i.e. satisfies the second axiom of countability) if it has
a countable base. The topology of a metric space is second countable if and
only if the space is separable (has a countable dense subset). Generalizations of
this simplest of all topological countability properties include σ-discrete bases
and σ-locally finite bases.
For instance, the Nagata–Smirnov Theorem (Eng1989, Th. 4.4.7) asserts

that a space is metrizable if and only if it is regular and has a σ-locally finite
base. In the same spirit is Bing’s Theorem (Eng1989, Th. 4.4.8) that a space is
metrizable if and only if it is regular and has a σ-discrete base.
A further generalization is provided through regular neighbourhood bases

below.

Neighbourhood Base Properties. A neighbourhood base is an assignment
to each point x in space of a family B(x) of neighbourhoods of x such that
for every neighbourhood U of any point x there is a smaller neighbourhood
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28 Preliminaries

B in B(x). The simplest neighbourhood base property is again countability
(for each x): a topology is called first countable (i.e. satisfies the first axiom
of countability) if it has a neighbourhood base assigning to each point x a
countable family B(x) as above.
One obtains a neighbourhood base from a base B by setting B(x) := {B ∈

B : x ∈ B}. This leads to the notion of a base B that is point-regular by
requiring that every point x has a neighbourhood U such that all but finitely
many members of B(x) lie in U (i.e. all but finitely many of those members B
of B that contain x lie in U). This notion motivates a ‘localized’ version.
A base B is regular if for every neighbourhood U of any point x there is

a smaller neighbourhood V such that all but finitely many members B of B
meeting V lie in U. Arhangelskii’s Theorem (Eng1989, Th. 5.4.6) asserts in
particular that a Hausdorff space is metrizable if and only if it has a regular
base.

1.3 Convergence Properties

We shall need various modes of convergence, which we now discuss briefly.
Let 〈Ω,S,m〉 be a measure space. For Φ a property of subsets of Ω we write
m{Φ} as an abbreviation for m({ω ∈ Ω : Φ(ω)}). In particular, if m is finite
we can divide by m(Ω) to make m a probability, so without loss of generality
m is a probability if finite. For 〈X,T 〉 a topological space, recall that in this
latter context a random variable with values in X is an S-measurable map
Y : Ω→ X ; we write L0(Ω, X ) for the set of random variables.
Modes of Convergence. For 〈X, d〉 ametric space and 〈Yn : n ∈ ω〉, a sequence
of random variables with values in X the sequence converges to Y0:

(i) m-a.e. or almost surely (a.s.) if Yn(ω) → Y0(ω) almost everywhere;
(ii) in measure/in probability if, for every ε > 0, m{d(Yn,Y0) > ε } → 0 as

n → ∞.

Convergence a.e. implies convergence in measure/in probability (Bog2007a,
2.2.3), but not conversely. The standard example here is constructed from the
subintervals Ij := [ j/2n−1 − 1, ( j + 1)/2n−1 − 1] for 2n−1 ≤ j < 2n of [0, 1]. As
these have lengths shrinking to zero, their indicator functions f j (ω) regarded
as random variables on Ω = [0, 1], equipped with Lebesgue measure, converge
to zero in probability. They do not converge almost surely: for any irrational
ω there is an infinite sequence n j (ω) where the n j th function is 1 and an
infinite sequence m j (ω) where the n j th function is 0. So we do not have a.e.
convergence, but do have a.e. convergence along a subsequence. This example
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1.3 Convergence Properties 29

is canonical, as a result below (the ‘subsequence theorem’, due to F. Riesz in
1909) shows.
Thus convergence a.e. (or a.s. in the probability case) is a strong mode of

convergence and convergence in measure (or in probability) a weaker one. This
is reflected in the terminology of the basic limit theorems of probability theory,
the strong law of large numbers (SLLN) and the weak law of large numbers
(WLLN) (see, e.g., Dud1989, Ch. 8). Other strong modes of convergence are
convergence in Lp (or in pth mean; we shall only need p = 1 – convergence in
mean – and p = 2 – convergence in mean square). These are not comparable
to convergence a.e. At the other extreme is convergence in distribution, or in
law, as in the central limit theorem (CLT) of probability theory; this is implied
by convergence in measure/probability, but not conversely unless the limit is
constant. See, e.g., Dud1989, Ch. 9.
Convergence in pth mean is metric and generated by the norm of Lp . Conver-

gence in measure/probability is metric and generated by the Ky Fan metric, α
say. Convergence in distribution is metric and generated by the Prohorov met-
ric, ρ say. That convergence in probability implies convergence in distribution
follows from ρ ≤ α; see, e.g., Dud1989, Th. 11.3.5. These results also show
that convergence a.e. is metrizable only when it coincides with convergence
in measure. This does not happen in general, as the example below shows –
indeed, in general convergence a.e. is not even topological (see, e.g., Dud1989,
Problem 9.2.2). But it does happen if the measure space is purely atomic, as
then there are no non-trivial null sets; examples such as the one above, which
take place on [0, 1] under the Lebesgue-measurable sets and Lebesguemeasure,
do not then apply.

Say that the sequence 〈Yn : n ∈ ω〉 has the sub-subsequence property relative
to the null sets if for every subsequence 〈Yn(k)〉 there is a sub-subsequence
〈Yn(k ( j))〉 converging a.e. to Y0.

Theorem 1.3.1 (Subsequence Theorem; Dud1989, Th. 9.2.1; Bog2007a,
2.2.5(i)) For 〈Yn : n ∈ ω〉 a sequence of random variables with values in
a separable metric space 〈X, d〉, the sequence 〈Yn : n ∈ ω〉 converges to Y0
in probability if and only if 〈Yn : n ∈ ω〉 has the sub-subsequence property
relative to the null sets.

Proof Suppose that 〈Yn : n ∈ ω〉 does not converge to Y0 in probability. Then
for some ε > 0 there is a subsequence n(k) such that

P{d(Yn(k),Y0) > ε} > ε, for all k .
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30 Preliminaries

Thus for any sub-subsequence 〈Yn(k ( j))〉 we have also

P{d(Yn(k ( j)),Y0) > ε} > ε, for all j,

and so Yn(k ( j)) (ω) does not converge to Y0(ω) for a non-null set of ω, i.e.
〈Yn : n ∈ ω〉 does not have the sub-subsequence property.
Now suppose that 〈Yn : n ∈ ω〉 converges in probability to Y0. Then so does

〈Yn(k) : k ∈ ω〉 for any given subsequence n(k). Choose for each j an integer
k ( j) > j such that

P{d(Yn(k ( j)),Y0) > 1/ j} < 1/ j2.

Hence, by summability of 1/ j2, the set⋂
k

⋃
j>k
{ω : d(Yn(k ( j)) (ω),Y0(ω)) > 1/ j}

has P-measure 0, i.e.⋃
k

⋂
j>k
{ω : d(Yn(k ( j)) (ω),Y0(ω)) ≤ 1/ j}

has P-measure 1. So forω in this latter set and any ε > 0 there is some k = k (ω)
such that for j > max{k (ω), 1/ε}

d(Yn(k ( j)) (ω),Y0(ω)) ≤ 1/ j < ε.

That is, 〈Yn(k ( j))〉 converges almost surely to Y0. �

Definition The sequence 〈Yn〉 is Cauchy or fundamental in measure if

P{sup
k≥n

d(Yn,Yk ) ≥ ε} → 0 as n → ∞.

Lemma 1.3.2 (Almost Sure Convergence Criterion; Dud1989, 9.2.4; cf.
Bog2007a, 2.2.5 (ii)) If 〈Yn〉 is a Cauchy/fundamental sequence, then Yn
a.s. converges to some Y0 a.s. (and so also in measure).

Remark Wagner and Wilczyński (WagW2000) proved that the category ver-
sion also holds.

1.4 Miscellaneous

We will use F , G for the families of closed and open sets (‘f for fermé, g for
geöffnet’),H as our usual letter for a family of sets in general,K for the family
of compact sets (‘k for kompakt’). A family H is multiplicative if it is closed
under finite intersection, and so analogously a set-valued map F : H → H is
multiplicative if F (A ∩ B) = F (A) ∩ F (B). Dually, say that the family H is
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1.4 Miscellaneous 31

additive if it is closed under finite unions, and so also a set-valued map F is
additive if F (A ∪ B) = F (A) ∪ F (B). A family H is maximally additive if
whenever A ∪ B is inH , then at least one of A or B is inH ; this is motivated
by a context in which a family H with some property P may be extended to a
maximal such family, and the extension process permits the inclusion for each
A ∪ B one of A or B, without violating P. We write σ(H ) for the σ-algebra
generated by (the smallestσ-algebra containing)H . Given aσ-algebra, wewill
often need to consider a sub-σ-algebra of ‘small sets’ (prototypical examples:
null sets or meagre sets). Such a sub-σ-algebra will be closed under intersection
with any set in the σ-algebra, and so will have the structure of an ideal (using
the viewpoint of Boolean algebra, with intersection as product). We will use
I to denote an ideal generically, qualifying this to distinguish one ideal from
another; we writeM for the ideal of meagre sets (see Chapter 2), andN for the
ideal of null sets. Here the measure µwill be Lebesgue measure, n-dimensional
Lebesgue or Haar measure. Given a sequence σ := 〈σ1, σ2, . . .〉, write σ | n
for the first n terms. ForH a family of sets, write S(H ) for the class of sets of
the form ⋃

σ
H (σ), where H (σ) :=

⋂∞

n=1
H (σ | n),

with each H (σ | n) ∈ H . Here S is the Souslin operation (M. Ya. Souslin, or
Suslin (1894–1919), in 1917), and the sets in S(H ) are the Souslin-H sets (the
term analytic and notation A are also used; see, e.g., Bog2007a, §1.10). The
Souslin operation is important in descriptive set theory, and we shall return to
it later in §3.1. Meanwhile we note the following:

(i) The Souslin operation is idempotent: S(S(H )) = S(H ).
(ii) The class of measurable sets is closed under the Souslin operation (Lusin

and Sierpiński in 1918, Nikodym in 1925, Marczewski (as Szpilrajn) in
1929 and 1933 – see, e.g., RogJ1980, Cor. 2.9.3). We will meet the sets
with the Baire property in Chapter 2; for them we have the dual result,
also due to Marczewski (see, e.g., RogJ1980, Cor. 2.9.4):

(iii) the class of sets with the Baire property is closed under the Souslin
operation.

EvidentlyS(H ) includes the family of all countable intersections ofmembers
of H , i.e. S(H ) ⊇ Hδ ; with Hausdorff’s δ for Durchschnitt notation, writing
i | n = (i1, . . . , in), and noting that⋃

i∈NN

⋂
n

H (i1, . . . , in) =
⋃∞

ii=1

(⋃
i∈NN

⋂∞

n=2
H (i2, . . . , in)

)
,
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32 Preliminaries

we see also the inclusion of countable unions, i.e. S(H ) ⊇ Hσ, so that

Hσ ⊆ Hσδ ⊆ Hσδσ ⊆ · · · ⊆ S(H ).

Beyond the initial levels displayed, the Borelian-H hierarchy is thus obtained,
by transfinite induction through the countable ordinals, by alternating the σ
and δ operations at successor ordinals and at limit ordinals ‘coalescing’ (taking
unions of) the preceding families. The hierarchy is thus included in S(H ). We
shall refer to the caseH = K whereK = K (X ) denotes the family of compact
sets in X .
TakingH = G, the open sets of a space (recall ‘G for geöffnet’), andH = F ,

the closed sets (‘F for fermé’), we see that the Borelian-H and Borelian-F
hierarchies are also included in the corresponding S(H ):

Gσ = G ⊆ Gδσ ⊆ Gδσδ ⊆ · · · ⊆ S(G),

Fσ ⊆ Fσδ ⊆ Fσδσ ⊆ · · · ⊆ S(F ) .

Evidently, in a metric space G ⊆ F σ , and similarly F ⊆ Gδ . Continuing in
this way, Fσ⊆ Gδσ, Gδ⊆ F σδ and so on. So taking the union the two hi-
erarchies amalgamate, creating the Borel hierarchy, which is closed under
complementarity. We note, for future comparison, the capitalized Greek nota-
tion, a compromise between the two languages, emanating from mathematical
logic using bold-face Σ for sum and Π for product:

Π0
0 ⊆ Π0

1 ⊆ Π0
2 ⊆ · · ·

Σ0
0 ⊆ Σ0

1 ⊆ Σ0
2 ⊆ · · ·

with Π0
0 for F and Σ0

0 for G and later levels beyond these initial ones indexed by
ordinals. The notation stresses the implied reference to the existential quantifier
∃n use of the integers (0-level objects) in the countable union operation over a
sequence of sets and the complementary universal quantifier∀n in the countable
intersection. The bold-face signals the implied coding of the sequences involved
which are in general unconstructively enumerated. When constructive (more
accurately ‘effectively enumerated’) one drops down to light-face notation.
The sets in S(F ) are the Souslin-F sets; in the context of the closed subsets

of a complete metric space, these are called absolutely analytic (subsets) since
such subsets when embedded in any ‘enveloping’ metric space are Souslin-F
in any enveloping metric space. We address their properties in later chapters.

We use ‘measure’ to mean ‘countably additive measure’. If a measure is
defined on the power set ℘(X ) of all subsets of a countable set X , and van-
ishes on singletons, it vanishes identically by countable additivity (note that a
finitely additivemeasuremay verywell vanish on singletons but not identically).
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1.4 Miscellaneous 33

The same statement holds for X of cardinality that of the first uncountable
ordinal (Ulam’s Theorem of 1930 – see Bog2007a, Th. 1.12.40).
A cardinal κ is called non-measurable if whenever a measure is defined on

all subsets of a set of cardinality κ, and vanishes on singletons, it vanishes
identically. Other cardinals are called measurable. Whereas one thinks of mea-
surable sets as being ‘nice’, here it is non-measurable cardinals that are ‘nice’.
For background, see, e.g., Bog2007a; Bog2007b; Fre2008. We will meet non-
measurable cardinality in connection with results of Pol, 2.1.6 and §12.5*, and
in §16.3.
We will study category–measure duality in Chapter 9, and a certain non-

metric topology, the density topology D, in Chapter 7. This is convenient
for our purposes because using it one can bring the category and measure
aspects together. We note here that this can only happen because the topology
is non-metric. For decompositions of metric measure spaces into two parts, one
meagre (small in category) and one null (small in measure), see MarS1949.
See also Oxt1980, Ch. 16.
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