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Compact Commutators of Rough Singular
Integral Operators

Jiecheng Chen and Guoen Hu

Abstract. Letb € BMO(R") and Ty, be the singular integral operator with kernel 2(x)/|x|", where
is homogeneous of degree zero, integrable, and has mean value zero on the unit sphere $"~!. In this
paper, using Fourier transform estimates and approximation to the operator Tq by integral operators
with smooth kernels, it is proved that if b € CMO(R") and {2 satisfies certain minimal size condition,
then the commutator generated by b and T is a compact operator on L? (R") for appropriate index p.
The associated maximal operator is also considered.

1 Introduction

We will work on R”, n > 2. Let 2 be homogeneous of degree zero, integrable, and
have mean value zero on the unit sphere $"~!. Define the singular integral operator
Tq by

Qx
(L1 Tof(x) = pv. / |( - ) ¢ ()dy.
R»

The maximal operator associated with T, is defined by

Tof(x) = su / (y)d
k€I7/)‘ |x—y|>2k ‘x7y|n f 4

These operators were introduced by Calderén and Zygmund [3], and have been stud-
ied by many authors over the last sixty years. Calderén—Zygmund [4] proved that if
Q € LInL(S"™"), then Ty and T¢, are bounded on LP(R") for p € (1, 0o). Con-
nett [9], Ricci and Weiss [20] improved the Calderén—Zygmund result and showed
that ) € H'(S"~!) guarantees the L? (R"”) boundedness of T, for p € (1, 00). Seeger
[21] showed that Q € LInL(S"') is a sufficient condition that T, is bounded from
LY(R™) to L °°(R"). Duoandikoetxea and Rubio de Francia [11], Duoandikoet-
xea [10], and Watson [23] considered independently the weighted estimates for T
and T, when Q € L1(S"~!) with q € (1, oo]. Grafakos and Stefanov [16] considered
the L? boundedness for Tq and T¢y when (0 satisfies the size condition that

)
(1.2) sup /s 1 |Q(77)|<1n P C|) dn < oo,
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and proved that if @ > 1, then T is bounded on LP(R") for p € ((1+6)/6,1+0).
Equation (1.2) can be regarded as a minimal size condition, since there exists func-
tion Q ¢ H'(S"!), but satisfies (1.2) for any @ € (1, oo) (see [16]). There are many
other works about the mapping properties of T, when {2 satisfies minimal size con-
ditions. Among them, we mention the papers [5, 12, 13] and the references therein.

The commutator generated by T, and BMO(R") functions is also of interest. Let
b € BMO(R"), the space of functions of bounded mean oscillation introduced by
John and Nirenberg. Define the commutator of T, and b by

To,uf(x) = b(x)To f(x) — To(bf)(x),

initially for f € S(R"). As usual, the maximal operator associated with Tq 3 is de-
fined as

Qx—y)
lx — y|"

Coifman, Rochberg, and Weiss [7] proved that if Q € Lipa(S”’l) (a € (0, 1)), then
Tq, is bounded on LP(R") (p € (1, 00)) if and only if b € BMO(R"). Using the
weighted estimates with A,(IR"), weights of Tq, and the relation of A, weights and
BMO(R") functions, Alvarez et al. [1] established the L?(R") boundedness of Tq
when Q € L1(S"~!) for some q € (1, oo]. Hu [17] proved that Q € L(InL)*(S"™!)
is a sufficient condition such that T ; and Ts*z, , are bounded on L* (R") with bound
C||b||smogwn for all p € (1, co). For the case where ) satisfies (1.2) for some 6 >
2, Hu, Sun, and Wang [19] showed that Ty, is bounded on L?(S"~!) with bound
C||b||smoqrr) provided that p € (6/(6 — 1), 6) . Moreover, Hu [18] proved that if 2
satisfies (1.2) for § > 5/2, then T} , is bounded on L?(IR") with bound C||b||smorr)
for p € (40/(40 —5), 40/5).

The compactness of Tq , was first considered by Uchiyama in his remarkable
work [22]. Let CMO(R") be the closure of C3° (R") in the BMO(IR") topology, which
coincide with the space of functions of vanishing mean oscillation; see [2, 8]. For the
case of € Lip,(S""!) (o € (0, 1)), Uchiyama proved that Tg, j, is compact on
LP(R") if and only if b € CMO(RR"). Chen et al. [6] generalized the result in [22]
and considered the compactness of T ;, on Morrey space when {2 satisfies a certain
regularity condition of L9-Dini type. The purpose of this paper is to consider the
compactness on LF(R") for Tq j, and T¢, , when () satisfies (1.2) for some 6 > 2.
Our main results can be stated as follows.

it =sup| [ (509 b0) Fi)dy|.
x—y|>2]

jer

Theorem 1.1  Let Q) be homogeneous of degree zero, integrable, and have mean value
zero on S"~'. Suppose that b € CMO(R") and 2 satisfies (1.2) for some 6 > 2. Then
forp € (9/(9 - 1), 9) , the operator Tq  is compact on LF (R™).

Theorem 1.2  Let Q) be homogeneous of degree zero, integrable, and have mean value
zero on S"~ . Suppose that b € CMO(R") and (2 satisfies (1.2) for some § > 5/2. Then
forp e (49/(46 —5), 49/5) » T§, 1, is compact on LP(R").

We establish some conventions. In what follows, C always denotes a positive con-
stant that is independent of the main parameters involved but whose value may differ
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from line to line. We use the symbol A < B to denote that there exists a positive con-
stant C such that A < CB. For a set E C R", xg denotes its characteristic function.
For p € [1, co], we use p’ to denote the dual exponent of p, namely, p’ = p/(p—1).
For a suitable function f, let ]?denote the Fourier transform of f.

2 Approximation

This section is devoted to approximations to the operators Tq and T by some inte-
gral operators with smooth kernels. We remark that here we are very much motivated
by the work of Watson [23].

For each ] € Z, let K (y) = %X{zkm <oy (). By integrability and the vanish-
ing moment of €2, it is easy to verify that

(2.1) K6(©)] < min{1, |2'€[}.
As proved in [16], if {2 satisfies (1.2) for some 6 > 1, then
(2.2) KL S~ (2+]2')).

Let ¢ € C5°(R") be a nonnegative function such that

px)dx =1, supp¢p C {x:|x| <1/4}.

R
Forl € Z,let ¢y(y) = 27" $(27'y). We then have

(2.3) [61(&) = 1] = [6(2'¢) — 1] S min{1, |2'¢]}.
for ¢ € R". For a positive integer j, let
(24) K(y)= ¥ Ko*oily),

I=—oc0

and let Té be the convolution operator be given by

(2.5) T/ f(x) = pv. / Ki(x — y) f(y)dy.

R"

Set K/'K(y) = ijk Kéz * ¢1_j(y). Define the maximal operator associated with Té
by

)" f(x) = SUP‘ A{ KMo = y)f(y)dy‘.

kez

Lemma 2.1 Let ) be homogeneous of degree zero and belong to L' (S"~'), and let K
be the function defined as in (2.4). Then for any y € R" and R > 0 with R > 4]y,

26 X y | Kb, * di_j(x+ y) — Kb * ¢ j(x)] dx < min{j, 2/|y|/R}.
1€7 J |x|>R

Proof For fixed R > 0 and positive integer j, let [ be the integer such that R <
2h*2 < 2R. Observe that supp K}, * ¢—j C {x: 2!~ < |x| < 2"*?} and

-+ + ) — = j()lpwey S min{1, 277 |y|}.
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It follows that

S li=iC +9) = i (Dl < 27y 3278 S 27|y|/R,
=i i

Sl +y) = b (Dl < j+ > 27y S

I=ly I=ly+j
Therefore,
) | Koy s ¢+ y) — Koy i j(x)| dx
1€z J |x|>R
S lZl: H Kél * ¢l—]’( -+ }’) - Kéz * ¢l—j( . )HLI(]R(N)
=h
S IZI: HK§2||L‘(1R<")H (bl*j(' +y) — ‘él*j( ’ )HLl(W)
=1y
5 ZZZZO H Cbl—j( -+ }’) - ¢l*j( . )HLI(IR(”)
< min{j, 2/|y|/R}.
This establishes (2.6). |

Lemma 2.2 Let §) be homogeneous of degree zero and have mean value zero, and let
Q satisfy (1.2) for some 6 € (1, o). Then for p € (1, 00), both of the operator T}, and

the operator Té’ ° defined by
T =swp| [ K= pf)dy
>0 |x—y|>e

are bounded on L? (R") with bound Cj.

Proof By the estimates (2.1) and (2.2), we see that for £ € R"\{0},

3 Kh©d OIS 3 Kh©l S 1

Thus, by the Plancherel theorem, Tsjl is bounded on L*(R") with bound depending
only on n. This, via Lemma 2.1 and classical singular integral operator theory (see
[15]), tells us that ng is bounded on L?(IR") with bound Cj. To prove the L?(R")
boundedness of Té °, note that for any R > 0,

2.7) / Ky S Y (Kl
R<|y|<2R 1€7:2!~R

1 jllpwn S 1.
Lemma 2.1 tells us that for any y € R” and R > 0 with R > 4|y,
[ Ky ki) 5 .
|x|>R

This, along with the L?(R") boundedness of Té and [14, Theorem 1], shows that
Té’ ¢ is bounded on L?(R") with bound Cj. [ |
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The following result plays an important role in the proofs of our theorems and is
of independent interest.

Theorem 2.3  Let ) be homogeneous of degree zero and have mean value zero, and
let Tq, T}, be the operators defined by (1.1) and (2.5) respectively.

(i)  IfQ satisfies (1.2) for some 6 € (1, c0), then for any p € (20/(20 — 1), 260) and
e € (0, 00),
(2.8) ITaf — T2 fllisey S P/C2mnQ/p /0019 £y .

(i) IfQ satisfies (1.2) for some § € (3/2, 0c), then forany p € (6/(6—1), 0), there
exists a constant ¢ = o, 9 > 0 such that

(2.9) H sup| >8] *f|‘

kezZ =k
where and in the following, forl € Z and j € N,

Slj(}’) = Kq * d1j(y) — Ko (p).

< o \
o4 Ml

Proof For each & € R"\{0} and positive integer j, let I, be the integer such that
211271 < |2b¢| < 2J/2. A trivial computation involving the Fourier transform esti-
mates (2.1)—(2.3) leads to

> K@) - KO S X e T (e S

l=—o00 le7: 1<y leZ: 1>y

This, via the Plancherel theorem, leads to

ITaf = Thllewy S 77 fllzaen

directly. Therefore,

. . »
(2.10) ITHf = T8 fleany S 77" 1z,
and so
2]' x 2m+1 oM
(2.11) To—To =2 (To —T5)
m=j

converges in the L2(R") operator norm. On the other hand, Lemmas 2.1 and 2.2 tell
us that for any positive integer m and q € (1, c0),

(2.12) TG f—T5H f

Interpolation of inequalities (2.10) and (2.12) then shows that if p € (1, co), then
for any € € (0, 00),

|awey S m| f | zagrny.-

TS — To fllipgey S m=20minQ/e /03002 )]

which, along with (2.11), yields (2.8).
We turn our attention to the estimate (2.9). We will employ the ideas used in [11],
with appropriate modifications. Let ¢ € C§° such that

supp C {x € R": |x| < 2721} (x) = 1if x| < 2//2
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For each integer k, let ¥} € S(R") such that @k(f) = (2k¢). For each fixed k € 7,
write

oo . i k—1 .
S8 f(x) = Wy x (TQf—Téf)(X)—‘Ijk* (1 > Sl]*f) (%)
=k e
F306 W) # 8] * fx)
I=k
= 1 f(x) + 1T f(x) + 1L £ (),
with § the Dirac distribution. It is obvious that
[ f ()| < M(Tof — T)f) (),

with M the Hardy-Littlewood Maximal operator, and so by (2.10)

| sup [Gf1| ooy S 1 T0f = Thfllzan < 77 f -
kez
To give the desired estimate for sup, ., \II,{ fl, write
. o0 u—l . 2\ 1/2
sup |1 f(x)| < ( > ’\I/u* > S{*f(x)‘ ) .
ke u=—00 l=—o00
Note that for any £ € R",
u—1 __ ~ . u—1 . .
v ¥ Rh©(6270 - 1)| 5 |veto X e s 2 verlt.
|I=— I=—0
Therefore, we have by the Plancherel theorem that

2

j 2 o0 u—1 i
|| SuP |Ika|H LZ(R”) = Z H \Iju * Z Sl * f
kez U=—00 I=—o0

L2(R")

o] u—1 —~ ~ . —~
o > KL©) (a0 —1)| lwete fePde
u=—00 JR" —=— 00
<2 [ PRl fe)| de.
R" u=—o00

Recalling that supp 1y C {x: |x| < 2//2*1}, we thus get that

H sup |II]£f|HL2(}R(n) 5 z_j/2||f||L2(]R(”)'
kez
As for the term sup, ,, [T f], write

sup [III] £ (x)| < Y- sup | (8 — W) * S, * f(x)]
kEZ 1=0 keZ

(oo}

52( > ](5—\pu,l)*sg;*f(x)‘2)1/2.

U=—00

https://doi.org/10.4153/CMB-2014-042-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2014-042-1

Compact Commutators of Rough Singular Integral Operators 25

An application of (2.2) and (2.3) tells us that

H(u——w‘w Wul)*S]*f&ﬁ )”22

L2(R")

N Y . 2 <
= % [ -velo|Rae(de o - 1)| 7P

u=—o0 JRR"

<[> n-v@loPm (2+ 2%¢)) | fo)| de

R" u=—o00
S+ J')fwﬂHfH%Z(W)v
since for each £ € R"\{0},
Y - TIOPITT (242%) S X I (2+[2%))
U=—00 u:|2u£|221+j/2
S (l+j)729+1.
Thus,
1 sup|III f|||L2 Ry i) fll oy

Combining the estimates for sup,.,, I3 f|, supjc; |11} | and supyc |11} ' #| leads to

< ;—0+3/2 .
v < [ £l

(2.13) H sup | ZS’ % f|

kez

Recall that ||T6fHL“(]R”) s ||f||Lq(1[§n) when q € ((29 — 1)/(29 — 2), 260 — 1), see [ ]
By the estimate

sup | 28]+ ()] S Taf () + T f(0),

kez ! 1=k

we deduce from Lemma 2.2 that

(214) [ supl 57 % 71] S s

ez a(R")
when g € ((29 —1)/(260 — 2), 26 — 1) . Interpolating the inequalities (2.13) and
(2.14) leads to that for p € (1, co) and € > 0,

H sup | ZS]*f”
kez

with dp , = (0—3/2)t—(1—t),and 1/p = t/2+(1—1)/(20—-1)if p € (2, 260—1), 0r
1/p=t/2+(1-1)(20—-2)/(20—-1)if p € (20—1)/(20—2), 2) . A straightforward
computation shows that when p € (6/(6 — 1), ), dg,, > 0. This gives (2.9) and
completes the proof of Theorem 2.3. ]

ST f e e

Lr(R")

3 Proof of Theorems

We only prove Theorem 1.2; the proof of Theorem 1.1 is similar and simpler.
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Proof of Theorem 1.2 At first, we claim that if g € (1, oo0) and b € C§°(R"), then
for each € > 0, there exists a positive constant A independent of f such that

(3.1) [ (Taw ) Xtixi=at | oy S €llbllzoo | fllzacee)-

To see this, let R > 0 be large enough such that supp b C B(0, R). Without loss of
generality, we assume that ||D|| s @n) = 1. It follows from the Holder inequality that
for x € R" with |x| > 4R,

’

TS0l S [

lyl<

q/q
Qx — p)||f(y)|idy Q(x — y)|dy
| 1| (AKJ dy)

On the other hand, a trivial computation shows that

/ Iﬂu—wMyé/ Q()]dy < Rix"".
ly|<R |x| =R<[y|<|x[+R

Our claim (3.1) then follows from

, dx
[ Ams@lasrd [ [ e lfopdy s
[x|>A x|>4 J|y|<R |x[+a/a

, dx

< R1/4 a / Qx)|—+

= ||f||L'1(.R{ ) x|>4/2 [9202)] ‘x|ﬂ+q/ff
R\ g/’

S )" I Mg

Now we prove that if b € C§°(IR") such that ||b|| .o (gn)+|| VB[ Lo wry = 1,60 > 3/2,
and p € ((29 —1)/(20 —2), 26 — 1) , then for each t € R” with |¢| < 1,

(3.2) 17570 = THFC + 0] iy S 212 o,
For each fixed t € R", let A, = 4|¢|'/? and write
| T, £ () = T flx + 1)

SJoen — bl swp| [ K- £
kez |x—y|>A,

+sup / Uji(x, y3 ) (b(y) — blx+1)) f(y)dy‘
kez |x—y|>A;

wsup| [ KIHx= ) (by) - bw) S
lx—y|<A

kez

+ sup / Kj’k(x+tfy)(b(y)fb(x+t)) f()/)dy‘
kez ' J|x—y|<A

= fCx, ) + T, )+ TLf e, £) + Tof (e, 1),
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where U x(x, y; t) = Kf’k(x_y) _Kj,k(x+t—y). By the fact that supp Kf) x¢i_ C
{271 < |x| < 22}, a trivial computation leads to the fact that for any k € 7,

[ ke ]
lx—y|>As
<| / K3 = DX eyt (5= 7))y
[x—y]|>A
+ ‘ / (Kj’k(x — ) = K/ = p)X {2y (x — J’)) f()’)dy‘
lx—y|>A

. k+1
ST f)+ 30 | Ko * 1 j(x = )| 1f(n)]dy
I=k—1J |x—y|>A,

S T5°f(x) + MaM (),
where Mg, is the maximal operator defined by
Mq f(x) = sup r*"/ |Q0x — y)f(y)|dy.
r>0 |x—y|<r

Therefore, A A

01 £ G, O] S Vb ooy (TG ° f(x) + MoM f(x)) .
It is well known that Mg is bounded on L?(IR"). This, together with Lemma 2.2, gives
us

(3.3) 117G, Ol S dlelflleorn)-

We now turn our attention to the terms ]i fork =2, 3, 4. Lemma 2.1 tells us that

| S [ x ors 40 = Khw sy )

|t
SZH (Ké?*(bl*i(' +t)_Kél*qbl*j('))X{\'bAt}(‘)H , ngu.
ez v~ A

L' (R")

Since

Hfwn sy | Khx 61+ = ) = Kby d1-x = )| |7 dy.
€7 J |x—y|>A

we deduce by the Young inequality that
) |t .
(34) I2fC Dl S ZJ%HJ‘HLP(R") S V) fllrcre-
t

To consider the term ]gf(x7 1), let ky € 7 such that 20—1 < A, < 2% As in the
inequality (2.7), we can verify that

ko
> K| * dj@)|xldx S 32 2'IKG e |y S A
ez J |x|<A, I=—o0
Noticing that
IICREDY Kb ¢ j(x = y)|x = yl| f()]dy.

lez J|x—y|<A:
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we then apply the Young inequality and deduce that

(3.5) G, Ol S Al fllzre-
Observe that,
DI K| * o j(x+ £ — p)lx+t — y||f()|dys
1€ J |x+t—y| <A+t

another application of the Young inequality yields

(3.6) 3£ Olleran S A+ 1D Fllzean S 72 Fllze -

Combining the estimates (3.3)—(3.6) leads to (3.2).
We can now conclude the proof of Theorem 1.2. Let § € (3/2, c0) and p €
(0/(0 —1), 0) . For b € C§°(R"), it is easy to see that

| T () = T, f)] S ilélz)‘ 12 |

(bx) — b)) S} = N

R

)

(o] . o0 .
< blloe e sup | 3-8 5 £ +sup | 28]+ (b))
kez ! i=k kez | i=
Thus, by Theorem 2.3
1765 = T, o f ey S 57711Bl 2o ey
For fixed € > 0, we choose an integer j, such that j;” < e. Let o = min{1, 272/o¢e?}.
Then for any t € R” with 0 < |t| < o,
H Tfkl,bf( ) — Tf*l,bf(' + t)H L2 (Rm) < 2” Télob*f o Tfk?bf” L2 (R")
+[| Ty FC) = Ty (- + t)Hu»(]R{“)
< €(IVBllzo ey + 1Bl ey ) I flloqwe-

This, along with (3.1) and the Fréchet—Kolmogorov theorem characterizing the pre-
compactness of a set in LP(R") (see [24, p.275]), implies that Tﬁ) » is compact on

LP(R") when p € (0/(9 - 1), 9) and b € C°(R"). Recall that for b € BMO(R"),
0 > 5/2and p € (46/(46 — 5), 40/5), T, , is bounded on L?(R") with bound
C||b||mogrr)- The conclusion in Theorem 1.2 now follows immediately. [ |

flizoqrny-
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