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Summary

We propose a simple approach, the multiplicative background correction, to solve a perplexing
problem in spotted microarray data analysis: correcting the foreground intensities for the
background noise, especially for spots with genes that are weakly expressed or not at all. The
conventional approach, the additive background correction, directly subtracts the background
intensities from foreground intensities. When the foreground intensities marginally dominate
the background intensities, the additive background correction provides unreliable estimates
of the differential gene expression levels and usually presents M—A plots with ‘fishtails’ or fans.
Unreliable additive background correction makes it preferable to ignore the background noise,
which may increase the number of false positives. Based on the more realistic multiplicative
assumption instead of the conventional additive assumption, we propose to logarithmically
transform the intensity readings before the background correction, with the logarithmic
transformation symmetrizing the skewed intensity readings. This approach not only precludes
the ‘fishtails” and fans in the M—A plots, but provides highly reproducible background-corrected
intensities for both strongly and weakly expressed genes. The superiority of the multiplicative
background correction to the additive one as well as the no background correction is justified

by publicly available self-hybridization datasets.

1. Introduction

With a two-colour competitive hybridization process,
spotted microarrays provide a genome-wide measure
of differential gene expression levels in two samples
as well as controlling for undesirable effects (Schena
et al., 1995; Brown & Botstein, 1999). Analysis of
spotted microarrays starts with quantifying each
cDNA array into image files, and segmenting each
pixel of the images into either the spotted or un-
spotted regions. As shown in Fig. 1a, pixel intensities
of the spotted (or unspotted) region within each spot
are summarized into the median foreground (or
background) intensities for the two channels (tra-
ditionally red and green), say Ry (or Rp) and Gy (or
Gyp). While the foreground intensities Ry and Gy
measure the fluorescence intensities caused by specific
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hybridization of the mRNA samples to the spotted
cDNA, the background intensities Ry, and Gy, measure
the fluorescence intensities of the background noise.
The goal of background correction is to correct the
foreground intensities for the background noise
within the spotted region. With R, and G}, as esti-
mates of the background noise within Ry and Gy, it
is appropriate to correct Ry and Gy with Ry, and Gy,
respectively.

Assuming the foreground intensities are affected
additively by the background noise, the conventional
background correction, the additive background cor-
rection (ABC), proceeds by a direct subtraction of
Ry, and Gy, from Ry and Gy, respectively. Then the
log-ratio M (the logarithm of the ratio between
the background-corrected spot intensities) and /log-
intensity A (the average of the logarithmic back-
ground-corrected spot intensities) are calculated.
The procedure is displayed in the left-hand panel
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Fig. 1. Illustration of the additive background correction (ABC) and the multiplicative background correction (MBC).
(a) ABC directly subtracts the background intensities from the foreground intensities. MBC logarithmically transforms
both background intensities and foreground intensities before the background correction, with the logarithmic
transformation symmetrizing the skewed statistics. (b) The top two histograms are for the original background intensities,
i.e. the intensities of the pixels outside the ellipsoids; the bottom two are for the logarithmic background intensities.

of Fig. la. However, this strategy excludes the non-
positive background-corrected intensities and gives
rise to other problems in the downstream analyses.
First, for genes expressed very weakly (or not at all)
in either channel, the foreground intensities of some
spots are overwhelmed by the background intensities.
Missing log-ratios and missing log-intensities will be
reported for such spots in all downstream analyses.
The differential expression information of these genes
is essentially lost by discarding non-positive back-
ground-corrected spot intensities, even though these
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genes may be highly differentially expressed or their
expression patterns may change significantly across
time. Secondly, spots with small positive background-
corrected intensities are usually unreliable estimates
of M and A4, which manifest as ‘fishtails” or ‘fans’ in
M—A plots. These spots have wildly varying log-ratios
that challenge the downstream analyses, and may
therefore lose differential expression information of
these genes.

Background noise, as the major component of
microarray noise, is not due to specific sticking
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of target molecules to the array surface. Principles
of fluorescence spectroscopy indicate that the feature
readings are proportional to the density of the
fluorescent molecules (Schena, 2003). However, the
multiplicative coefficient may vary locally, affected by
spot-specific factors such as the assay surface and
fluorescence emission from the surrounding spots.
Assuming that the background noise affects the
feature readings multiplicatively, we propose the
multiplicative background correction (MBC), shown
in the right-hand panel for Fig. la, to obtain more
precise background-corrected intensities for both
strongly and weakly expressed genes. This approach
avoids losing differential expression information
for the genes weakly expressed in either channel.
Skewness of the background intensity and symmetry
of the logarithmic background intensity (see Fig. 10)
further confirm that the multiplicative error structure
is a more realistic modelling assumption. Application
to publicly available self-hybridization datasets shows
the excellent performance of MBC.

2. Methods

While empirical observations reveal a non-addictive
relation between the foreground and background
intensities (Brown et al., 2001), the principles of
fluorescence spectroscopy indicate that the back-
ground noise affects the foreground intensities multi-
plicatively. Therefore, instead of subtracting the
background intensities directly from the foreground
intensities as ABC, we propose MBC to subtract the
estimates of the logarithmic background intensities
from the logarithmic foreground intensities (see
Fig. 1). The immediate advantage of MBC is that the
background-corrected log-ratio and log-intensity for
each spot are well defined. Second, the logarithmic
transformation roughly symmetrizes the background
intensities, since background intensities are skewed
to the right (Kim et al, 2002) and are roughly
distributed lognormally (see Fig. 15). Obviously,
for genes expressed weakly or not at all, we have
background-corrected logarithmic spot intensities
fluctuating around zero.

Because the median is invariant to any monotonic
transformation, we suggest summarizing a spot’s
foreground (or background) intensities with the
median of the corresponding spotted (or unspotted)
region for each channel, i.e. R; (or R}) for the tra-
ditional red channel and G¢ (or Gy,) for the traditional
green channel. Define rp=10gy(Ry), rp,=10gs(Ry),
gr=logy(Gy) and g, =logy(Gy). Assume that the log-
arithmic intensity medians r; and gy have additive
noise effects 7, =logy(Rp) and g, =logy(Gy), respect-
ively, where R, and Gy, are the unobservable median
background intensities of the spotted region for
the two distinct channels. It is reasonable to estimate
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7y by r, and g, by g,. The background-corrected
logarithmic spot intensities are calculated as r=
re—r, and g=gr—gy; the background-corrected
spot intensities are then calculated as R=2""" and
G =2%"%_Because fold changes of gene expressions
between two mRNA samples are of interest to
researchers, we can focus on the well-defined r and g
to extract information from the microarray exper-
iment.

With the background-corrected spot intensities
r and g, the log-ratio and log-intensity can be cal-
culated following the conventional definition, i.e.
M =r—g as the log-ratio to measure the differential
gene expression and 4 =(r+g)/2 as the log-intensity
to measure the overall gene expression. Because,
for empty spots, the paired ry and ry, gr and gy, are
assumed to have identical mean values, we expect
both M and A will stay close to zero even before
any normalization of the data. Negative 4 implies
that the corresponding gene is expressed weakly or
not at all in both mRNA samples.

3. Results
(1) The CAGE self-hybridization data

We use two replicate cDNA microarray datasets, all
hybridized using one sample of species Arabidopsis
thaliana, from the Compendium of Arabidopsis Gene
Expression project (CAGE; http://www.ebi.ac.uk/
microarray/Projects/cage/). These self-hybridization
data are publicly available at ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/) with experiment ac-
cession number E-CAGE-2. Each array has 19992
spots in total, including 243 empty spots. With an
ideal background correction, log-intensities of the
empty spots are expected to be identically zero,
and log-ratios of all spots are expected to be zero
because both arrays are from a self-hybridization
experiment; the between-array M-M plot is also
expected to have all points tightly clustering around
zero.

When using ABC, about one-quarter of the
spots (i.e. one array with 4960 spots and the other
with 4807 spots) need to be discarded from each of
the two CAGE self-hybridization arrays owing to the
dominant background noise; more than 60% of the
empty spots are discarded. Furthermore, the M-A4
plots (see the top plots in Fig. 2) have the notorious
‘fishtail’ patterns with the remaining empty spots
scattering within the fishtails. In contrast, MBC
provides M—A plots with tight bands and all empty
spots clustering around the origin (see the bottom
plots in Fig. 2). When employing no background
correction (NBC), the shapes of the corresponding
M—-A plots are similar to those with MBC (see the
central plots in Fig. 2). The empty spots from NBC
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Fig. 2. The M—A plots for the CAGE self-hybridization data. The two plots are from ABC, the two middle plots are from
NBC (i.e. no background correction) and the two bottom plots are from MBC. The empty spots are in red.

are away from the origin and have slightly greater
variability. As shown in a later example, the back-
ground correction is necessary to correct the fore-
ground intensities from the background noise,
especially when the spots are contaminated heavily
by their highly expressed neighbouring spots.

The reproducibilities of different background cor-
rection methods are shown in Fig. 3 by plotting
the estimated differential gene expression levels (i.e.
the normalized M after the background correction)
across replicated arrays. Either before or after an
intensity-dependent normalization (Yang et al.,
2001), the M—M plots of the replicated arrays have
points scattered wildly when employing ABC (see the
top two plots in Fig. 3). In particular, the estimated
differential expression levels for empty spots are in no
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way reproducible as they vary largely from array to
array (see the red points of the top two plots in Fig. 3).
In contrast, when using MBC, the M—M plot of the
normalized M has a very tight cluster around the
origin (see the bottom right plot in Fig. 3), showing
the estimated differential expression levels are highly
reproducible. A linear pattern is shown in the M—M
plot of the non-normalized M (see the bottom left
plot in Fig. 3), which implies that the same systematic
errors lie across different arrays. The disappearance
of the linear pattern from the M—M plot of the
normalized M validates the intensity-dependent
normalization in removing these systematic errors.
More extreme spots and the irregular shape of the
M-M plot for NBC suggest that MBC should be
favoured among the three approaches.
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Fig. 3. The M—M plots for the CAGE self-hybridization data. Shown are the plots of M across the replicated CAGE

self-hybridization arrays. The left-hand plots are before normalizing the data; the right-hand plots are after normalizing
the data. The empty spots are in red.

microarrays incorporated 6371 gene probes for
Saccharomyces cerevisiae with each gene spotted

(i1) The yeast data with spiked controls

The yeast data with spiked controls were collected
to evaluate a design of microarray experiment (see
van de Peppel ef al., 2003). This dataset is available at
ArrayExpress  (http://www.ebi.ac.uk/arrayexpress/)
with experiment accession number E-UMCU-1. It is
a self-hybridization experiment for Saccharomyces
cerevisiae with controls spiked at three different ratios
1:1, 1:2, and 1:10. For each ratio, a pair of dye-
swap microarrays was hybridized. Each of the six
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twice. There were also 864 spots left empty in each
microarray. Each of the 14 controls (nine normal-
ization controls and five ratio controls) was spotted
at least twice onto each subgrid of the microarrays
to generate sufficient data points. The normalization
control RNAs were spiked in the total RNA at con-
centrations varying over three orders of magnitude
to cover a range of mRNA expression levels. The
ratio control RNAs were spiked into paired mixes
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of all other external control RNAs at ratios 1:1,
1:3 and 1:7 before the mixes of the external contol
RNAs were added at ratios of 1:1, 1:2 and 1:10
to paired aliquots of a single yeast total RNA prep-
aration. Therefore, there are three different exper-
iments, i.e a 1:1 experiment with ratio controls
mixed at ratio 1:1, 1:3, 1:7, 3:1, 7:1, but other controls
(including normalization controls) mixed at ratio 1:1;
a 1:2 experiment with ratio controls mixed at ratio
1:2, 1:6, 1:14, 3:2, 7:2, but other controls mixed at
ratio 1:2; and a 1:10 experiment with ratio controls
mixed at ratio 1:10, 1:30, 1:70, 3:10, 7:10, but other
controls mixed at ratio 1:10. We apply different
background correction approaches to all arrays. After
the background correction, each array is normalized
locally with an intensity-dependent normalization
procedure by using only the yeast spots to estimate
the non-linear trends of M versus A, since none of
the yeast spots is differentially expressed and they
have a wide range of concentrations.

The superiority of MBC to ABC is clearly demon-
strated in Fig. 4, where the estimated log-ratio M
from MBC is plotted against that from ABC for each
array (the within-array M—M plots). An obvious
linear relationship exists between the log-ratios M
from two different approaches for the ratio controls,
confirming that, for genes with high log-intensities,
the estimated log-ratio M is comparable between
these two different approaches. For the empty spots,
however, the estimated M stays around zero when
using MBC but varies widely when using ABC, which
is revealed as horizontal lines in the within-array
M-M plots. Therefore, MBC provides reliable esti-
mated log-ratios M for weakly expressed genes, i.e.
genes with low log-intensities, whereas ABC cannot.

The estimated log-ratio M based on MBC is
also more reproducible than that based on ABC,
especially for genes expressed weakly or not at all. As
shown in the M—M plot for each pair of dye-swap
arrays (see Fig. 5), the ratio controls line up away
from the origin when using either approach, indicat-
ing that both approaches have good reproducibility
for genes with high levels of log-intensities. For
those genes with low levels of log-intensities, how-
ever, MBC has superior reproducibility, because the
empty spots and yeast spots cluster tightly around
the origin when using MBC but spread out when
using ABC.

Because of the overwhelming background noise,
M and A for most empty spots are not defined when
using ABC. Furthermore, the remaining empty
spots with well-defined background-corrected M and
A scatter widely to the left of the M—A plots after
normalization (see Fig. 6). The spots with low
log-intensities have inflated variations, which make
downstream analyses rather difficult if not impossible.
In contrast, MBC provides, M—-A plots with all

https://doi.org/10.1017/50016672306008196 Published online by Cambridge University Press

200

the empty spots closely clustering around the origin.
The normalized log-ratio M, when using MBC,
has rather stable variation across different levels of
the long-intensity A4, which makes downstream data
analyses more transparent.

Ideally, the log-ratios of all the normalization spots
should be at the same level for each array because
the normalization controls were spiked at a specific
ratio into the yeast RNAs. As displayed in Fig. 6, the
estimated M of the normalization controls are not
constant within each array after either ABC or
MBC. When using ABC, the estimated M of the
normalization controls merge into other estimated M,
which scatter widely to the left of the M—A plot and
lack reproducibility (shown in Fig. 5). When using
MBC, however, the estimated M of the normalization
controls converges to tight clusters around the origin
formed by the estimated M of empty spots, which is
highly reproducible across arrays (see Fig. 5).

As shown by the plots in Figs 5 and 6, MBC pro-
vides a consistent systematic connection between the
true and our estimated differential expression levels.
Clearly, this systematic connection can be described
by a non-linear function, which also depends on the
total gene expression levels. Let My,o, and Ay, be
the theoretical log-ratio and log-intensity, respect-
ively, for a gene with estimated log-ratio M and its
mean u,. Mathematically, the systematic connection
may be expressed as uy =g(M neo» Aineo)s Where g(., .)
is a smoothing function with g(Meo, 0)=0 and
(M 160, ®°)= M pneo. Consistency of this systematic
connection is supported by Fig. 5, where the normal-
ization controls, after using MBC, lie either in a tight
cluster (with controls spiked 1:1) or on a straight
line (with controls spiked 1:2 or 1:10). In contrast,
ABC cannot establish such a consistent systematic
connection.

4. Discussion
(1) MBC versus NBC

With the empirical observation that ABC is inferior
to NBC in some microarray experiments, many
researchers have proposed discarding the infor-
mation in the background intensities and ignoring
background correction issues (Qin & Kerr, 2004;
Parmigiani et al., 2003). However, as shown by the
M-A plots of yeast spots only (Fig. 7), some yeast
spots have noisy background due to the neighbouring
ratio controls and therefore their estimated M
from NBC are far from zero, which results in false
positives. In contrast, the estimated M from MBC
have been corrected for the effects of neighbouring
spots, whereas ABC provides a plot with an unstable
estimate of M for weakly expressed genes. This
example shows that the background correction is
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Fig. 4. Within-array M—M plots for yeast data with spiked controls. Shown in each plot is the estimated M based on the
MBC (along y-axis) against the estimated M based on ABC (along x-axis) for each array. The yeast RNA spots, empty
spots, ratio controls and normalization spots are plotted in black, blue, green and red, respectively.

necessary to reduce the number of false positives in
identifying differentially expressed genes.

To further address the necessity of background
correction for some microarray data, we applied both
NBC and MBC to the carp microarray data of Gracey
et al. (2004), which are available at ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) with experiment
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accession number E-MAXD-1. Fig. 8 includes the
plot of MBC-based M versus NBC-based M for
the carp microarray B30D4B-Forward data, where
the spots are clustered along two lines, i.e. the line
y=x and the line y=x—1. These two clusters
imply two different backgrounds, one with similar
background noises from the two channels and the
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Fig. 5. The M—M plots for yeast data with spiked controls. Each M—M plot is for a pair of the dye-swap arrays with
controls spiked at the same ratio. The left-hand plots are based on ABC, and the right-hand ones are based on MBC. The
yeast RNA spots, empty spots, ratio controls and normalization spots are plotted in black, blue, green and red,

respectively.

other with different background noises from the two
channels. Therefore, background correction is necess-
ary to complement the normalization because of the
heterogeneous background noises. For the carp
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microarray B30D4B-Reverse data, the background
noises are rather homogeneous and therefore MBC-
based M agrees with NBC-based M except at several
spots (see Fig. 8). A recent simulation study identified
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Fig. 6. The M—A plots for yeast data with spiked controls after normalization. For each array, the upper plot is based on
ABC and the lower one is based on MBC. The yeast RNA spots, empty spots, ratio controls and normalization spots
are plotted in black, blue, green and red, respectively.

factors that are important for determining whether
to dispense with ABC (Scharpf et al., 2004) or not. The
agreement between NBC-based M and MBC-based
M in the case of homogeneous backgrounds implies
that one can improve microarray data analysis with
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MBC and reduce false positives caused by hetero-
geneous backgrounds.

MBC’s outperformance of other background-
correction approaches does not rely on the combi-
nation of scanner and feature-extraction software,
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yeast data with controls spiked at 1:1. The top plot is
based on ABC, the middle one is based on NBC and the
bottom one is based on MBC.

although some scanners and softwares may have
certain advantages over others. Both experiments
E-CAGE-2 and E-UMCU-1 wused the scanner
ScanArray (PerkinElmer) and the software ImaGene
(Biodiscovery), but the experiment E-MAXD-1 used
a GenePix 4000A Scanner and GenePix 3.0 software
(Axon Instruments). It may be of further interest to
compare the performance of different scanners and
feature-extraction softwares when using MBC.

(1) A statistical perspective of MBC

Decomposing rp=p,+ 7, and gr=us+ gy, where u,
and u, are logarithmic spot intensities corresponding
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Fig. 8. The M—M plots for the carp microarray B30D4B-
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the plots are the estimated M based on the MBC (along
y-axis) against the estimated M based NBC (along x-axis)
with lines y=x (unbroken) and y=x—1 (dashed).

to specific hybridizations. Here 7, and g}, are logar-
ithmic spot intensities of the fluorescences not due
to specific hybridizations and may have spot-specific
non-zero means which are the primary interest in
the background correction. Usually it is assumed that
ry, and gy, have identical non-zero means to 77, and gy,
respectively. Replacing /4, with r, and g, with g, we
expect to remove spot-specific undesirable mean shifts
from ryand gy, that is,

r=rp—r,=u,+¢&.,
8=8r—8b =My tEg,

where e,=7,—rp, and e,=g,—g, distribute sym-
metrically with zero means. Then, r and g are used to
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estimate x4, and u, but with symmetric mean-zero
errors ¢, and g, respectively. The log-ratio uy=
U — g and log-intensity u,=3(u,+u,) are estimated
by the background-corrected log-ratio M and the
background-corrected log-intensity A4, that is,

M=r—g=u,+( —¢,),
A=(r+9)/2=tt,+(+2,)/2.

Ideally u,, indicates the differential expression of one
gene under two distinct conditions and should not
depend on u,. However, systematic errors usually
result in a non-linear relation between observed M
and A, which has to be removed from M before using
it to estimate the differential gene expression level.
As shown by Zhang et al. (2005), a rigorous statistical
normalization of M has to consider measurement
errors in both M and 4, although the measurement
error in A is usually smaller than that in M. The
measurement error in A, however, is usually ignored
in conventional data normalization, which may inflate
the number of false positives.

Because the variance of &, equals the sum of the
variance 77, and rp, minus twice the covariance between
7 and 1y, it follows that as the correlation of 77, and ry,
increases, the variance of r decreases (similarly for g).
When ry, (or gy) is so closely related to 7, (or g;,) that
the correlation coefficient is over 0-5, the variance of
g, (or &) is then smaller than that of ry, (or gp). In this
case, using ry, (or gp) to estimate 7, or (¢},) not only
removes spot-specific undesirable drifts from u, (or
t) but reduces the variation of the measurement
error. Therefore, the measurement-error issue should
be considered when developing the image analysis
approach. Furthermore, MBC provides another
advantage, even if the logarithmic background inten-
sities ry, 7, gp and g, are non-symmetric, the dis-
turbance errors in r and g, i.e. & and &, are still
symmetric; hence we have symmetric measurement
errors in the background-corrected log-ratio M and
log-intensity 4.

(iii) Fishtails in using ABC

In the case that there are many genes expressed either
weakly or not at all, ‘fishtail” patterns will inevitably
appear in the M—A plot when using ABC. Let R and
G be the spot intensities from ABC. For all spots with
R at a specific level, say R=2°, we have

— =2%(RG)™", or equivalently,

Q ”)

R 1 -
log, g =2c—2x 3 log, (RG).

This implies that the spots with R at a specific level
line up in the M—A plot under the x-axis with the slope
equal to —2. Similarly, the spots with G at a specific
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level line up in the M—A plot above the x-axis with
the slope equal to +2. When ABC generates many
spots with either R or G at each low level, the corre-
sponding M—A plot is shown with many lines on its
left and therefore has a “fishtail” pattern. In contrast,
MBC provides a M—A plot with spots clustered
around the origin on its left by avoiding the unstable
calculation of R and G.

(iv) Negative background-corrected intensities

To avoid the negative background-corrected inten-
sities for the spots with dominant background noise
in either channel, different approaches have been
proposed to modify ABC. For example, Smyth (2004)
suggested replacing with small positive values, and
Edwards (2003) proposed using log-linear inter-
polation. Based on the conventional assumption that
background noise affects the foreground intensities in
either channel additively, a Bayesian approach was
proposed to avoid negative intensities (Kooperberg
et al., 2002). This Bayesian approach is computation-
intensive, however, and still needs to exclude some
spots with dominant background noise.

In practice, unbiased estimates are always pursued
and used to identify differentially expressed genes.
Therefore, the negative background-corrected logar-
ithmic intensities form MBC are reasonable and
expected for some of the genes expressed either
weakly or not at all. Accordingly, the corresponding
log-ratios and log-intensities from MBC may also be
negative. With the necessity of background correction
and the excellent performance of this simple strategy,
it is unnecessary to pursue sophisticated strategies
to overcome the problem. Instead, a strict statistical
normalization of the data is necessary to consider
measurement errors in both M and A4 since, as shown
in a recent study (Zhang et al., 2005), ignoring the
measurement errors in 4 may increase the number of
false positives.

We thank Frank C. Holstege and Jeroen van de Peppel for
providing detailed description of the microarray exper-
iments for the yeast data with spiked controls. We also
thank Andrew G. Clark for suggestions that improved this
manuscript.
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