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Abstract

With social network analysis, group structures of animals can be studied. However, underlying
behavioural observations face problems of missing events or deviations between observers.
The current study analysed the robustness of node-level network parameters based on tail-
biting observations in pigs affected by missed events. Real observations of one observer
were used as a gold standard to build true networks and to compare two sets of erroneous
networks to them. The first set consisted of networks from different observers of the same
data basis. The second set consisted of networks with a fixed error rate (random samples
of the gold standard). The stability of the ranking order was used as an indication of accuracy
(range 0–1; ≥0.49 good accuracy; ≥0.81 very good accuracy). Comparing observers with true
networks yielded overall bad accuracy scores. Generally, outgoing network parameters (active:
biting) provided better accuracy scores than ingoing network parameters (passive: being
bitten). The results of sampled networks showed decreasing accuracy scores with increasing
error rates. At the same error rate, longer observation periods yielded better accuracy scores.
For sampled networks, differences between outgoing and ingoing network parameters were
more distinct and local parameters (direct contacts) provided better accuracy scores than
global parameters (direct and indirect contacts). Overall, sampled networks with 3/10 missed
events yielded good to very good accuracy. As networks with more observations handle missed
events better, studies of behavioural observations always need to evaluate the required accur-
acy and feasible workload. The current study gives insights in the accurate estimation of
behavioural observations.

Introduction

Social network analysis is a method to investigate relations and interactions between actors in
groups (Wasserman and Faust, 1994; Newman, 2010). This is not limited to studies on
humans and has been increasingly applied to animal behaviour in recent years (Lusseau
and Newman, 2004; Croft et al., 2005; McCowan et al., 2008; Drewe et al., 2009; Hinton
et al., 2013; Büttner et al., 2019), as the behaviour of group-housed animals is affected by
the behaviour of other pen mates as well (Makagon et al., 2012). Thus, the group structure
is important for the understanding of the individual’s behaviour and social network analysis
is a useful method to analyse it (Krause et al., 2007). In a network, the animals are represented
by nodes that are connected by edges that represent the interactions between the animals
(Asher et al., 2009). These interactions can be undirected, for example sharing the same sleep-
ing place, or directed, if there is a definite initiator and receiver, for example grooming or fight-
ing. The resulting edges are either bidirectional connecting both nodes with each other or
unidirectional connecting only the initiator with the receiver but not inversely. The edges
can be either unweighted, i.e. present or absent, or they can be weighted, if for example the
frequency of the interaction is important for the further analysis (Wasserman and Faust,
1994; Wey et al., 2008; Croft et al., 2011). Several network parameters at network and node-
level have been developed, providing a standardized way to describe the group structure or the
node’s position within this group (Wasserman and Faust, 1994; Newman, 2010). Using these
parameters, studies of the changing group structure after the removal of animals or the add-
ition of animals to the group (Williams and Lusseau, 2006) or at different age levels (Büttner
et al., 2015) are possible. However, social network analysis faces problems of extensive data
acquisition, thus different studies investigated the influence of missing data or adding false
data on real networks or theoretical networks (Zemljič and Hlebec, 2005; Borgatti et al.,
2006; Kim and Jeong, 2007; Frantz et al., 2009; Voelkl et al., 2011; Wang et al., 2012;
Büttner et al., 2018). In the case of network analysis on animals, they often rely on behavioural
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observations to obtain the requested information on the animals.
During these observations, different problems may cause errors in
the datasets altering the resulting networks. For example, different
interpretations of the ethogram or distraction and weariness due
to extensive workload can lead to missed events.

Thus, the aim of the current study was to analyse the effect of
missed events on the robustness of animal networks. Therefore, a
model data set of networks based on real tail-biting behaviour
observations in pigs was used as a gold standard and two datasets
were compared to it, one dataset of real networks and one dataset
of simulated networks. The first dataset consisted of the observa-
tions of the same pigs but analysed by three other observers. The
second dataset consisted of random samples of the gold standard
dataset to simulate missed events at fixed error rates. It was inves-
tigated whether deviations of real observers are comparable to
missing events at random and whether the robustness of sampled
networks is affected by other factors apart from the error rate.
With this knowledge, it is possible to choose appropriate observa-
tion periods and to acquire valid data.

Materials and methods

Animals and experimental design

The video footage used in the current study was recorded on the
agricultural research farm ‘Futterkamp’ of the Chamber of
Agriculture of Schleswig-Holstein in Germany from November
2016 until April 2017. There, 144 crossbreed piglets (Pietrain ×
(Large White × Landrace)) were housed together in six conven-
tional pens with 24 individually marked piglets per pen after an
average suckling period of 28 days. For 40 days, the pens were
each video recorded by one AXIS M3024-LVE Network Camera
produced by Axis Communications. The tail lesions of the piglets
were scored twice a week according to the ‘German Pig Scoring
Key’ (German designation: Deutscher Schweine Boniturschlüssel)
(Anonymus, 2016). When at least one large tail lesion (larger
than the diameter of the tail) had been documented on a scoring
day, the video footage of the previous 4 days was analysed for
the tail-biting behaviour of the piglets. This was analysed using
continuous event sampling during the light hours (6:00–18:00 h)
resulting in 288 h of video observation. Because of the fixed camera
angle, the chewing movement of the biting pig could not be seen
for every tail-directed behaviour on the video footage. Therefore,
tail-biting behaviour was defined as manipulating, sucking or chew-
ing on a pen mate’s tail (Zonderland et al., 2011). The initiator,
receiver and the time of each tail-biting behaviour event was
recorded.

Video analysis

The video analysis was carried out by four trained observers.
Beforehand, every observer had to analyse the tail-biting behav-
iour in a test video to determine the interobserver reliability
using Cohen’s κ (Cohen, 1960). This video consisted of short
clips showing a group of pigs in which one pig may or may not
have performed tail-biting behaviour. If the interobserver reliabil-
ity was too low (Cohen’s κ < 0.7), the observers had to resume the
training. The test video analysis was repeated throughout the
study to check for changes in the interobserver reliability and to
test the intraobserver reliability. For this purpose, a fixed number
of clips remained in the test video, the remaining clips were
exchanged and all clips were put in a random order. Again, if

the inter- or intraobserver reliability was too low, the observer
had to resume the training.

True v. observer – comparison of different observers

The reliability of the test videos proved to be good (Cohen’s κ: 0.9
± 0.08 (Mean ± standard deviation)), but still differences between
the observers in the actual video analysis became obvious at some
point. The intraobserver reliability of the test videos was calcu-
lated and observations were scanned for mistakes by the super-
visor who was responsible for the training. The observer with
the highest intraobserver reliability (Cohen’s κ: 0.8 ± 0.10) and
least missed events was chosen as a reference and was assigned
to complete the video observations. Therefore, the video observa-
tion of the whole observation period was done by one observer.
For the current study, it was assumed that all events actually hap-
pened and no events were missed by this observer. Thus, these
tail-biting behaviour observations formed the true dataset. The
other three observers analysed only some days of the observation
period and their tail-biting behaviour observations formed the
observer datasets, which were later compared to the true dataset.

True v. sampled – comparison of different error rates

For a better understanding of the extent of deviations between
observers and its consequences, the true dataset was used to
simulate missing observations with a fixed error rate. Therefore,
random samples were drawn from the true dataset containing
1/10–9/10 of the tail-biting behaviour events. Thus, a sample
containing 1/10 of the initial events had 9/10 of missing observa-
tions. All samples were drawn evenly throughout the observation
period and all six pens. At each sampling rate, the sampling was
iterated 1000 times. Therefore, there were 9000 samples which
formed the sampled datasets which were later compared to the
true dataset, as well.

Network analysis

Networks consist of nodes and edges, where an edge connects the
initiating node with the receiving node. The current study used
tail-biting behaviour observations as a basis for the networks.
Since tail-biting behaviour has a clear initiator and receiver and
the frequency of the interaction between the pigs is known, the
edges are directed and weighted to represent the tail-biting behav-
iour. To build networks out of the true, observer and sampled
datasets, the four analysed days of each pen were divided into
time windows and the tail-biting behaviour was summed up
within these time windows. An example is illustrated in Fig. 1.
To analyse the effect of different lengths of observation periods,
time windows of lengths 0.5, 1, 3, 6 and 12 h were chosen. To
do this, the 12 h of observation per day were evenly divided
into subsets without overlapping for each length. This resulted
in 43 time windows (24 × 0.5, 12 × 1, 4 × 3, 2 × 6, 1 × 12 h) per
day and the tail-biting behaviour was summed up within each
time window separately to generate independent networks. All
networks contained 24 nodes but differed in their density, i.e.
the number of present edges divided by the number of possible
edges in the network, depending on the time window or sampling
rate.

There are several node-level centrality parameters that can be
calculated for each node in the resulting networks individually
(Wasserman and Faust, 1994; Newman, 2010). The centrality
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parameters weighted in-degree, weighted out-degree, weighted
ingoing closeness centrality, weighted outgoing closeness central-
ity and the weighted betweenness centrality were used in the cur-
rent study. The degree of a node is the number of nodes that have
a connection to this node. If a pig was not involved in tail-biting
behaviour at all, i.e. had no connections to other nodes within a
given time window, it was considered an isolated node. In a direc-
ted network, the degree is divided into the in-degree, i.e. the num-
ber of nodes with a connection to this node, and the out-degree,
i.e. the number of nodes this node has a connection to. The
weighted in-degree and the weighted out-degree of a node are
the sum of all ingoing edges or outgoing edges, respectively. In
the context of tail-biting behaviour, it is the number of initiated
or received tail-biting behaviour events. Two nodes can also be
connected in an indirect way, if they are both connected to a
third node or if there is a path over several other nodes. The close-
ness centrality of a node is the reciprocal mean path length
needed to reach all connected nodes in this network. Similar to
the degree, it is divided into the ingoing closeness and the out-
going closeness, if the network is directed. There, the ingoing
closeness of a node is the reciprocal mean path length of all con-
nected nodes to reach this node and the outgoing closeness cen-
trality of a node is the reciprocal mean path length of this node to
reach all other connected nodes. In an unweighted network, the
path length of every edge is one. If the edges in a network are
weighted, a high edge weight represents a frequent interaction
between the nodes. Therefore, if an edge with a high weight con-
nects two nodes, they are considered to be closer together and the
edge is ‘easier’ to pass. In order to retain this relation for the cal-
culation of the centrality parameters, the inverse edge weight is
used as the path length. It is also possible for two nodes to be

connected by more than one path as well. Then, the shortest
path is the path including the fewest edges. The betweenness cen-
trality is the number of shortest paths between all other nodes
going through this node divided by the number of all shortest
path between the other nodes. In a directed network, the between-
ness centrality considers the direction of the edges. If the edges are
weighted, the path length of an edge is the inverse edge weight, as
it is for the weighted closeness centrality.

For each time window in all datasets (true, observer and
sampled), the tail-biting behaviour was used to build a network
and the centrality parameters were calculated for each node indi-
vidually. The calculation of the network parameters were carried
out using the Python module NetworkX (Hagberg et al., 2008)
and the network graph was created using yEd (yWorks GmbH
2021).

Statistical analysis

To analyse the robustness of the centrality parameters, all five
centrality parameters of the erroneous networks (observer and
sampled) were compared to the centrality parameters of the
respective true network using different measurements of accuracy.
Comparisons were only carried out between networks of the same
pen, day and time window. For example, a sampled network of
pen 2 on day 1 using the tail-biting behaviour of the time window
12:00 to 13:00 was compared to the true network of pen 2 on day
1 using the tail-biting behaviour of the time window 12:00 to
13:00. The current work was oriented towards the study of
Borgatti et al. (2006), in which they used the stability of the rank-
ing order as a criteria of accuracy. However, because of tied ranks
in all three sorts of our networks, the measurements of accuracy

Fig. 1. (a) Example of 12 h of observation of one pen. Each I represents a tail-biting observation. Illustrated are the tail-biting observations that are included in a 12
h time window (TW) (06:00–18:00), in a 6 h TW (06:00–12:00) and an 1 h TW (09:00–10:00). (b) Graphs of the resulting tail-biting networks of the 12 h TW, 6 h TW and
1 h TW. The pigs display the nodes and the arrows display the edges pointing from the initiating to the receiving node, representing tail-biting observations. The
thickness of the arrows displays the weight, i.e. the frequency, of an edge. The more frequent an edge was present, the thicker this edge is displayed.
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had to be modified. The first measure ‘Overlap Top 1’ is the
accuracy to choose the animal(s) in the highest rank based on
an erroneous network correctly. It was defined as the overlap
between the set of nodes in the highest rank of the true network
and the set of nodes in the highest rank of the erroneous network.
It is computed as [U > V]/[U < V], whereU is the set of nodes in
the highest rank of the true network and V is the set of nodes in the
highest rank of the erroneous network. The second measure
‘Overlap Top 3’ is the accuracy to choose the animals in the top
three ranks based on an erroneous network correctly. It was defined
as the overlap between the set of nodes in the top three ranks of the
true network and the set of nodes in the top three ranks of the erro-
neous network independent of the order within these ranks. It is
computed equivalent to ‘Overlap Top 1’. The last measure ‘R2’ is
the square of the Spearman correlation coefficient between the
true and erroneous networks to analyse the changing of the ranking
order, i.e. the group structure, in thewhole pen. It can be interpreted
as the proportion of variance in the ranking order of the true net-
work accounted for by the ranks of the erroneous network. Apart
from tied ranks, there was another problem, especially with less
dense networks. The number of isolated nodes in a network
increased with a decreasing number of edges. However, if a node
has no edges, it cannot be affected by random edge removal and
therefore the centrality parameters of isolated nodes cannot change.
This could falsely alter the accuracy measurements in a positive
direction. To prevent this, nodes, which were isolated in the true
networks, were not included in the calculation of the accurate mea-
surements. Furthermore, sparse networks were excluded, in which
all nodes were in the top three ranks of the sampled network, from
the calculation of ‘Overlap Top 3’, because this could falsely alter the
accuracy scores as well. The three accuracymeasurements were used
to compare the centrality parameters of the observer and sampled
networks with their respective true network. ‘Overlap Top 1’ mea-
sures the proportion of correctly chosen animals in the first rank,
‘Overlap Top 3’ measures the proportion of correctly chosen
animals in the first three ranks and ‘R2’ measures the stability of
the ranking order in the whole pen. The statistical software package
SAS 9.4 (SAS® Institute Inc., 2013) was used for the analysis.

For the interpretation of the accuracy scores of a centrality param-
eter, it was tried to give a rough estimate of what is good accuracy.
Assuming a stable ranking order indicates that there are only few
changes in network structure, high accuracy scores indicate robust
centrality parameters. However, there are no established thresholds
to distinguish between a good,moderate or bad accuracy for themea-
surements of accuracy used in the current study. In a more general
context, Martin and Bateson (2012) stated that a Spearman correl-
ation coefficient of 0.7 and greater is a marked relationship and a
Spearman correlation coefficient of 0.9 and greater is a very depend-
able relationship.Applying these thresholds to the squaredSpearman
correlation coefficient, ‘R2’ accuracy scores of 0.49 and greater can be
interpreted as good results and ‘R2’ accuracyscoresof 0.81 andgreater
can be interpreted as very good results regarding the group structure.
Because the accuracy scores of the ‘Overlap Top 1’ and ‘Overlap Top
3’measurements tend tobe in the same range as the accuracyscoresof
‘R2’, the thresholds of ‘R2’were applied as well to interpret the accur-
acyof correctly choosing the animal in the highest rankor the highest
three ranks respectively.

Results

During the observation period, there were 217 ± 68.0 (mean ±
standard deviation) tail-biting behaviour events per day and pen

in the true dataset. All networks consisted of 24 nodes but varied
in their number of edges depending on the tail-biting activity and
time window used. In case of the sampled networks, the sampling
rate affected the number of edges as well. The mean and standard
deviation of the network density, number of isolated nodes and
the centrality parameters of the true networks and the sampled
networks (exemplary at a sampling rate of 5/10) can be seen in
Table 1. For the accurate measurements of ‘Overlap Top 1’ and
‘Overlap Top 3’, all animals were ranked in the first rank or in
the first three ranks in 3 ± 10.2% or 23 ± 29.3%, respectively, of
the sampled networks. Thus, these networks were excluded
from the calculation.

True v. observer – comparison of different observers

The first step of the current study was to compare the observer
datasets with the true dataset. Comparing the number of docu-
mented tail-biting behaviour events, the observers documented
68 ± 20.3% (mean ± standard deviation) fewer events than the ref-
erence (observer 2: 30 ± 5.3%, observer 3: 77 ± 9.7%, observer 4:
75.1 ± 0.52%). The accuracy scores of the three observers com-
pared with the true dataset are shown in Table 2. Most of the
accuracy scores were smaller than the thresholds of 0.49 or 0.81
mentioned. The accuracy scores differed according to the time
window used, the accurate measurement and the analysed central-
ity parameter, but did not always show a clear trend. For the
accuracy measurement ‘R2’, larger time windows yielded higher
accuracy scores and for the ‘Overlap Top 1’, this was also true
for most cases but was not the case for the ‘Overlap Top 3’.
Especially the ‘Overlap Top 1’ and ‘Overlap Top 3’ accuracy scores
for the 30 min time window showed contrary behaviour, as they
yielded higher scores in some cases compared to larger time win-
dows. Comparing the measurements of accuracy, ‘Overlap Top 1’
yielded the highest accuracy scores most of time, but there was
variability depending on the other parameters as well. For the dif-
ferent centrality parameters, in most cases, the outgoing centrality
parameters (weighted out-degree, weighted outgoing closeness
centrality) yielded higher accuracy scores compared to ingoing
centrality parameters (weighted in-degree, weighted ingoing cen-
trality parameters), whereas the betweenness centrality yielded the
lowest accuracy scores. Overall, observer 2 provided the highest
accuracy scores and exceeded the mentioned thresholds more
often than the other two observers.

True v. sampled – comparison of different error rates

The second step of the current study was to compare the sampled
datasets with different error rates with the true dataset. The results
of the accurate measurements for all centrality parameters, time
windows and sampling rates are shown in Fig. 2. It presents
plots of the results of all used centrality parameters of the sampled
networks as a function of sampling rate for all used time windows
and accuracy measurements. In Fig. 2a, the mean accuracy scores
for the ‘Overlap Top 1’ of the weighted in-degree of all time win-
dows start around 0.3 at a sampling rate of 1/10 and increase
more or less linearly to 1.0 at a sampling rate of 10/10. There
were small differences between the time windows with larger
time windows having better accuracy scores, but these differences
became smaller for higher sampling rates. This is similar for the
‘Overlap Top 3’, but here, the overall differences between the
time windows were smaller. On the other hand, the curves of
the accuracy scores of ‘R2’ varied between the time windows.
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The curve of the 30 min time window starts at 0.14 with a linear
increase until 1.0 at a sampling rate of 10/10. However, the curve
of the 12 h time window starts at 0.46 with a steep increase for the
lower sampling rates and a slow increase for the higher sampling
rates until it reaches 1.0 at a sampling rate of 10/10 as well. The
other time windows ranged in between relatively to their size.

Generally, all accuracy scores increased with increasing sam-
pling rate independent of used centrality parameter, time window
or accuracy measurement with only one exception (‘Overlap Top
3’ of the weighted out-degree using 0.5 h time window: accuracy
score of 0.51 at a sampling rate 1/10 v. 0.49 at a sampling rate
of 2/10). But with regard to the mentioned thresholds of accuracy,
in most cases there were differences between the centrality para-
meters, time windows or accuracy measurement. If there were dif-
ferences between the time windows, larger time windows resulted
in greater accuracy scores compared to smaller time windows. The
only exceptions were the ‘Overlap Top 3’ measurement of very
sparse networks (due to small time window and/or small sam-
pling rate), for which sparser networks yielded greater accuracy
scores. Mostly, the accuracy scores measured with the squared
Spearman correlation coefficient were greater than the accuracy
scores of ‘Overlap Top 1’ or ‘Overlap Top 3’. The exception was
again the ‘Overlap Top 3’ measurement for sparse networks,
which differed as mentioned before. For the outgoing centrality
parameters (weighted out-degree and weighted outgoing close-
ness), the accuracy scores of ‘Overlap Top 1’ were greater than
‘Overlap Top 3’. These differences were greater for larger time
windows. For the ingoing centrality parameters (weighted
in-degree and weighted ingoing closeness), larger sampling rates
yielded greater accuracy scores for ‘Overlap Top 1’, while smaller
sampling rates yielded greater accuracy scores for ‘Overlap Top 3’,
but these differences were smaller compared to the outgoing cen-
trality parameters. Overall, the results demonstrate that outgoing
centrality parameters had higher accuracy scores compared to
ingoing centrality parameters. Moreover, ‘local’ centrality para-
meters (weighted in-degree and out-degree) had higher accuracy
scores compared to ‘global’ centrality parameters (weighted
ingoing and outgoing closeness, weighted betweenness), with
the weighted betweenness centrality yielding the lowest accuracy
scores.

Discussion

The current study analysed the robustness of centrality para-
meters by comparing a true dataset of tail-biting behaviour with
erroneous datasets using three different measurements of accur-
acy. In the first step, the true dataset was compared to the datasets
of three real observers, which analysed the same video footage. In
the second step, random samples of the true dataset were drawn
to analyse the robustness at a fixed error rate. The accuracy scores
differed considering the time window, accuracy measurement,
centrality parameter and, in case of the sampled datasets, sam-
pling rate.

Accuracy scores

The thresholds for interpreting the accuracy scores mentioned
were proposed as rough estimations of what is good accuracy.
However, as there are no standard thresholds for ‘Overlap Top
1’ and ‘Overlap Top 3’, it is always important to consider the con-
text of the requested information and to choose an appropriate
threshold for it. For example, selecting one animal with theTa
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Table 2. Mean (standard deviation) (Overlap Top 1 and Overlap Top 3) or median (standard deviation) (R2), respectively, of accuracy scores of observer networks compared to the true networks regarding the weighted
centrality parameters and time window (TW)

Centrality Observer

Overlap Top 1 Overlap Top 3 R2

0.5 h TW 1 h TW 3 h TW 6 h TW 12 h TW 0.5 h TW 1 h TW 3 h TW 6 h TW 12 h TW 0.5 h TW 1 h TW 3 h TW 6 h TW 12 h TW

In-degree

1 0.4 (0.37) 0.5 (0.46) 0.5 (0.43) 0.7 (0.41) 0.7 (0.58) 0.6 (0.35) 0.4 (0.24) 0.5 (0.23) 0.6 (0.23) 0.4 (0.10) 0.4 (0.21) 0.4 (0.21) 0.4 (0.19) 0.6 (0.20) 0.6 (0.07)

2 0.2 (0.31) 0.2 (0.31) 0.2 (0.37) 0.4 (0.43) 0.5 (0.47) 0.3 (0.33) 0.2 (0.23) 0.3 (0.25) 0.4 (0.21) 0.3 (0.16) 0.1 (0.15) 0.1 (0.14) 0.2 (0.15) 0.2 (0.18) 0.2 (0.17)

3 0.2 (0.35) 0.2 (0.26) 0.3 (0.36) 0.1 (0.17) 0.5 (0.71) 0.3 (0.23) 0.3 (0.21) 0.3 (0.13) 0.3 (0.31) 0.2 (0) 0.1 (0.13) 0.2 (0.15) 0.1 (0.21) 0.3 (0.16) 0.4 (0.11)

Out-degree

1 0.5 (0.39) 0.6 (0.41) 0.6 (0.43) 0.6 (0.45) 1 (0) 0.6 (0.34) 0.5 (0.25) 0.5 (0.23) 0.5 (0.21) 0.6 (0.13) 0.5 (0.24) 0.6 (0.21) 0.6 (0.19) 0.7 (0.11) 0.8 (0.03)

2 0.3 (0.37) 0.3 (0.39) 0.3 (0.39) 0.2 (0.43) 0.4 (0.49) 0.3 (0.33) 0.3 (0.28) 0.3 (0.28) 0.4 (0.27) 0.4 (0.22) 0.2 (0.16) 0.2 (0.15) 0.3 (0.19) 0.3 (0.17) 0.4 (0.19)

3 0.4 (0.48) 0.4 (0.46) 0.4 (0.50) 0.5 (0.58) 0.5 (0.71) 0.3 (0.21) 0.3 (0.18) 0.4 (0.27) 0.4 (0.19) 0.5 (0) 0.2 (0.14) 0.2 (0.12) 0.4 (0.12) 0.5 (0.12) 0.4 (0.04)

Ingoing Closeness

1 0.4 (0.43) 0.5 (0.49) 0.5 (0.50) 0.8 (0.41) 1 (0) 0.5 (0.32) 0.4 (0.27) 0.5 (0.32) 0.4 (0.14) 0.4 (0.17) 0.4 (0.2) 0.4 (0.20) 0.3 (0.17) 0.4 (0.23) 0.5 (0.14)

2 0.2 (0.33) 0.2 (0.34) 0.2 (0.41) 0.3 (0.45) 0.5 (0.52) 0.2 (0.26) 0.2 (0.19) 0.2 (0.23) 0.3 (0.19) 0.2 (0.31) 0.1 (0.14) 0.1 (0.12) 0.1 (0.13) 0.2 (0.15) 0.2 (0.17)

3 0.2 (0.35) 0.2 (0.39) 0 (0) 0 (0) 0 (0) 0.2 (0.13) 0.2 (0.23) 0.3 (0.34) 0.3 (0.10) 0.1 (0.14) 0.1 (0.11) 0.1 (0.10) 0.1 (0.19) 0.2 (0.12) 0.2 (0.12)

Outgoing Closeness

1 0.4 (0.45) 0.6 (0.47) 0.6 (0.48) 0.6 (0.49) 1 (0) 0.5 (0.33) 0.4 (0.30) 0.4 (0.24) 0.5 (0.41) 0.6 (0.40) 0.5 (0.24) 0.5 (0.19) 0.5 (0.15) 0.7 (0.22) 0.8 (0.07)

2 0.2 (0.38) 0.3 (0.41) 0.3 (0.44) 0.3 (0.45) 0.5 (0.52) 0.2 (0.28) 0.2 (0.22) 0.3 (0.29) 0.3 (0.28) 0.3 (0.27) 0.2 (0.15) 0.2 (0.13) 0.2 (0.17) 0.2 (0.17) 0.4 (0.22)

3 0.4 (0.49) 0.4 (0.51) 0.8 (0.46) 0.5 (0.58) 0.5 (0.71) 0.2 (0.17) 0.3 (0.25) 0.3 (0.23) 0.4 (0.17) 0.5 (0) 0.2 (0.14) 0.2 (0.11) 0.3 (0.14) 0.4 (0.22) 0.4 (0.19)

Betweenness

1 0.3 (0.42) 0.2 (0.35) 0.4 (0.48) 0.4 (0.49) 0.7 (0.58) 0.7 (0.40) 0.4 (0.36) 0.3 (0.29) 0.3 (0.21) 0.4 (0.15) 0.3 (0.27) 0.3 (0.21) 0.3 (0.18) 0.2 (0.25) 0.4 (0.10)

2 0.2 (0.32) 0.1 (0.22) 0.1 (0.27) 0.1 (0.31) 0.3 (0.47) 0.3 (0.42) 0.2 (0.31) 0.2 (0.22) 0.3 (0.24) 0.3 (0.16) 0.1 (0.24) 0.1 (0.17) 0.1 (0.09) 0.1 (0.11) 0.1 (0.16)

3 0.1 (0.28) 0.1 (0.29) 0.1 (0.35) 0.3 (0.50) 0.5 (0.71) 0.4 (0.39) 0.2 (0.22) 0.3 (0.19) 0.2 (0.24) 0.3 (0.35) 0.2 (0.13) 0.2 (0.12) 0.2 (0.18) 0.2 (0.2) 0.2 (0.16)

112
T.

W
ilder

et
al.

https://doi.org/10.1017/S0021859622000090 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0021859622000090


Fig. 2. Sampled networks compared to the true networks; accuracy scores of (a) the weighted in-degree, (b) the weighted out-degree, (c) the weighted ingoing
closeness centrality, (d ) the weighted outgoing closeness centrality and (e) the weighted betweenness centrality according to the sampling rate and measured
by ‘Overlap Top 1’, ‘Overlap Top 3’ and ‘R2’ regarding the different time windows.
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highest number of contacts for further observations may be able
to handle a low accuracy without any problems, as the animal
with the second or third highest number of contacts may be suit-
able for the observations just as well if it is chosen by mistake.
However, selecting and removing the most central animals
between two subgroups to contain the spread of an infection
may be a situation in which it would be crucial to guarantee
high accuracy, otherwise the measure would fail (Borgatti et al.,
2006).

True v. observer – comparison of different observers

Although all the observers achieved good to very good interobser-
ver reliability results in the training video analysis before and dur-
ing the actual analysis, the comparison of the resulting networks
between the other observers and the true dataset yielded mostly
poor results. Assuming the observers missed events at random,
as in the ‘True v. Sampled’ comparison, the mean sampling rate
would have been about 23/100 (observer 2: 40/100, observer 3:
13/100, observer 4: 18/100), thus they would have missed 77/
100 of the actual events (observer 2: 60/100, observer 3: 87/100,
observer 4: 82/100). This is more than the actual difference of
documented events because the events were probably not missed
at random. Since there were 24 pigs per pen, events could have
happened at the same time, which could have resulted in system-
atic mistakes. For example, the observers could have focused on
the fast movements in the foreground, while overseeing tail-biting
events in the lying area in the background. Or they could have
focused on individual pigs which had performed tail-biting
behaviour before. These biased observations might have led to
worse accuracy scores than missing events at random. Thus,
only one observer achieved very good results for larger time inter-
vals for some centrality parameters.

The observers were only allowed to start or continue the video
analysis if they had achieved good results in the training.
Therefore, they were probably focused during the test situation,
but during the actual video analysis weariness and distraction
were more likely to increase over time, leading to missed events.
To detect these deviations caused by distraction, parts of the
actual video footage could be used as a testing sequence and allo-
cated to all observers without labelling them as testing videos.
This way, the observers would analyse it in the same situation
and with the same focus as the actual analysis.

The results illustrate problems of carrying out observations
with multiple observers, which is often done to speed up data
acquisition. Although the observers in the current study were all
trained and tested in the same way, the comparison of the obser-
ver datasets to the true datasets produced poor results. Having
only one observer to analyse the video footage takes more time
to complete observations, but it ensures a dataset without the
potential deviation of different observers. However, this alone
does not guarantee the correctness of a dataset. For the current
study, the true dataset was only accepted for further investigation,
after screening and confirming the observed events on a random
basis and validating the intraobserver reliability. A validation of
comparability of different observers is recommended for future
studies as well, at least on a random basis, to ensure valid results.

True v. sampled – comparison of different error rates

The random edge removal used in the current study simulates
observers missing events during the video analysis. But missing

events does not necessarily happen at random. For example, the
observers could be focused during most of the analysis, but in
the last 20 min before a break they become unfocused and start
to miss events. Or they recognize a pig performing a lot of tail-
biting behaviour and monitor this pig closely, while overlooking
less active pigs. The edge removal of random sampling is evenly
distributed throughout the day and between the pigs. Thus, the
ranking order does not change that much on average as the cen-
trality parameters are altered more or less evenly as well.
Comparing the results of the observer datasets with the sampled
datasets shows that the observer datasets yielded worse accuracy
scores at the same percentage of missed events. Therefore, bias
in sampling or observation leads to worse accuracy.
Furthermore, missing events is not the only error possible in
video analysis. Misidentification of the involved pigs or misclassi-
fication of the behaviour do happen as well but these were not
simulated in the current study. The study of Wang et al. (2012)
studied both false negative and false positive edges (misclassifica-
tion) in networks and found that false-negative edges affect the
accuracy more than false-positive edges.

Time window
The effect of the different length of time windows can be
explained with the number of observations underlying the
respective time window of the true network as in general the
number of observations increased with larger time windows.
With more observations, there can be more redundant observa-
tions between the same pigs. If one of the redundant observations
between two animals is missing in the erroneous network, the
effect on the accuracy is smaller than missing the only existing
observation between two pigs. In the first case, only the edge
weight is reduced by one, but in the second case the entire edge
is missing. Thus, larger time windows provide more redundancy
that can compensate for missing observations. This corresponds
to the study of Voelkl et al. (2011), who found generally more
stable results for datasets with more than 100 observations, and
Zemljič and Hlebec (2005), in which denser networks yielded
more stable measures of centrality. In the study of Borgatti
et al. (2006), increasing the network density, thus the number
of edges, reduced the accuracy. But they resampled unweighted
edges without any redundancy. Therefore, the edges in the
observed network could only be present or absent. Thus, denser
networks provided for more edges being removed at the same
sampling rate thereby making greater changes in the network as
a whole and reducing the accuracy of the centrality parameters.

There were some exceptions for the ‘Overlap Top 3’ measure-
ment, in which the time window of 0.5 h yielded better accuracy
scores than larger time windows. Because these networks were
quite sparse, i.e. having only few observations, there were a lot
of tied ranks in the first three ranks of the sampled network.
Therefore, there was a high probability that the set of nodes in
the first three ranks of the true network were part of the set of
nodes in the first three ranks of the sampled network, providing
higher accuracy scores. However, these accuracy scores were still
below or just above the lower limit of the threshold to be inter-
preted as good and the information value of these sparse networks
is limited. Too sparse networks, in which all animals were ranked
in the first three ranks, had already been excluded from the ana-
lysis, but still the accuracy scores of the ‘Overlap Top 3’ measure-
ment were altered in a positive direction. It might be useful to
further exclude sparse networks to ensure that there are enough
observations in each network for a proper estimation of accuracy.
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Possibilities could be, for example, to exclude all time windows of
0.5 h or to restrict the analysis of these time windows to the activ-
ity period of the animals.

Measurements of accuracy
Random edge removal has a higher probability to affect high-
degree nodes (Wang et al., 2012), because they are connected
by more edges which can be removed. And since high-degree
nodes are more likely to be among the top-ranked nodes for all
five centrality parameters, changes in the ranking order are
more likely to occur in the higher ranks. Thus, the measurements
‘Overlap Top 1’ and ‘Overlap Top 3’ have smaller accuracy scores
compared to ‘R2’. Since all measurements use the ranking order of
the pigs for calculation, it depends on the differences in centrality
parameters between the pigs and how many edges can be removed
before a change in ranking order occurs. In the dataset used, there
were only a few pigs per pen performing most of the tail-biting
behaviour, thus having greater values of outgoing centrality para-
meters with a greater difference to the lower ranking pigs. On the
other hand, being bitten was more evenly distributed between the
pigs. Therefore, the differences in the ingoing centrality para-
meters between the top-ranked pig and the other pigs were smal-
ler. Thus, the ‘Overlap Top 1’ accuracy scores of the outgoing
centrality parameters were higher than the ‘Overlap Top 3’ accur-
acy scores.

For the ‘Overlap Top 3’ measurement, there was one case in
which the accuracy score decreased with increasing sampling
rate. As already mentioned, sparse networks could alter the accur-
acy scores of the ‘Overlap Top 3’ measurement in a positive dir-
ection, because of too many tied ranks in the first three ranks of
the sampled network. Thus, the probability of an overlap is
higher, yielding a better accuracy score.

Centrality parameters
Overall, the outgoing centrality parameters yielded better accuracy
scores than the ingoing centrality parameters. As mentioned
above, there were greater differences between the top-ranked pig
and the other pigs regarding the outgoing centrality parameters.
Thus, the ranking order was more stable at the same error level,
providing higher accuracy scores. The weighted in- and out-
degree only consider the direct neighbours of a node, therefore
the probability to be affected by random edge removal is smaller
compared to the weighted in- or outgoing closeness or the
weighted betweenness centrality, which also consider the indirect
neighbours of a node. Furthermore, the values and the variance of
the weighted betweenness centrality, which focuses on the short-
est paths in a network, were very low in the current study. The
reason for this was that there were no nodes in the critical pos-
ition of being on the shortest path between most other nodes.
Instead, there were more cross connections between the nodes,
providing more alternative paths and shortest paths between the
nodes. The effect of removing a single edge on the ranking
order based on the weighted betweenness centrality becomes
greater the more the shortest paths rely on this edge. Thus, in a
network with one central node, there are fewer edges which
belong to the shortest path, and therefore, it is less likely to ran-
domly remove an edge that has the potential to affect the ranking
order. However, in a network with more cross connections
between the nodes as in the current study, there are more edges
which belong to the shortest path, and therefore, it is more likely
to randomly remove an edge with the potential to affect the rank-
ing order. Thus, the weighted betweenness centrality is affected

the most by random edge removal, leading to low accuracy scores.
This corresponds to Zemljič and Hlebec (2005) in which it was
stated that ‘easier’ centrality parameters, i.e. parameters that
only consider direct neighbours, yield more robust results.

Implication

To produce valid contact data of animal groups for social network
analysis, it is important to thoroughly train and supervise the
observers before and during the observations. Moreover, the
interobserver reliability should be carefully monitored and
the data should be screened for mistakes on a random basis.
Nevertheless, it is not possible to eliminate errors. Thus, the
results of the comparison of sampled datasets can be used as guid-
ance for future studies to plan data acquisition and estimate
potential accuracy. Here, the robustness of centrality parameters
differed according to the used measurement of accuracy, the cen-
trality parameter and the time window. Since the hypothesis of a
study determines the required centrality parameters and the
appropriate measurement of accuracy, only the length of the
time window can be adjusted to improve the accuracy of
the data. Therefore, this can be used for example to compensate
the usage of a less robust centrality parameter. However, real
observers do not miss events at random, therefore the actual
accuracy will probably be lower than estimated.

Conclusion

The current study analysed the robustness of centrality para-
meters in tail-biting networks affected by random edge removal
as well as missed events during real observations. The results
based on the random edge removal show that higher accuracy
was achieved by fewer missed events, more observations in total
and greater differences between the nodes. Moreover, ‘local’ cen-
trality parameters were more robust than ‘global’ centrality para-
meters. The analysis based on real observers compared to the
reference showed similar trends. However, it demonstrated the
need to check interobserver reliability more carefully. Since longer
observation periods yield higher accuracy, there will always be a
trade-off between accuracy and workload, which has to be evalu-
ated for each investigation and used centrality parameters. The
current study can function as a rough estimation of the potential
accuracy.
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