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1. The Gontcharoff interpolation series?

£ F(a,) G, 2), (1.0)

n=0
where
Z Z Z(n—1)
Gole) =1, G,(2) =S dz’g &z S & (n>0),
ay 4, Gn—1
has been studied in various special cases. For example, if a, = a, (all n),
(1.0) reduces to the Taylor expansion of F(z). If a,=(—1)*, J. M.
Whittaker 2 showed that the series (1.0) converges to F(z) provided F(z)
is an integral function whose maximum modulus satisfies
fim g M) o
r—>w r
the constant }m being the “best possible’’. In the case |a,| <1, I have
shown3 that the series converges to F(z) provided F(z) is an integral
function whose maximum modulus satisfies

fim 28H ) 7959,
r—>x 7
and 4 that while 7259 is not the “best possible” constant here, it cannot
be replaced by a number as great as -7378.
In this paper, I consider a generalisation of Whittaker’s result, namely
the case in which @, = w™ where |w|=1 (argw 5 0), and prove

TamorEM 1. The series 3 F®(wn) P, (z), where |w| =1, argew #0,

n=0

z{n—l)

z z' z’
Py2) =1, P,,(z)=5 dz’j dz"j dz”’...j D (n>0),
1 © 2

@ wt—1

! The notation used here differs from that adopted in 6 (Chapter III) in the omission
of a factor n! from G,(z).

2 J. M. Whittaker, 5, 458.

3 8. S. Macintyre, 4.

¢ 8. 8. Macintyre, 3.
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converges uniformly to F(z)in any bounded region, provided F(z)is an integral
Sfunction whose maximum modulus satisfies

i e, o

r—>w

p1 being the modulus of the smallest zero of the integral function f(z, w) defined
by the power series

Fz, w)= %0 hn=Dn p1 (1.2)
ne=
The constant p, is shown to be the “best possible’” in this case, and
it is evident that Whittaker’s result follows as a special case, since
f(z, —1)=sinz-}cosz.
It is possible to sharpen condition (1.1) of Theorem I, and we prove
TreEOrREM II. If we déﬁne w, P,(2), p, as in Theorem I, the series
§OF<")(w7L) P, (z) converges wniformly to F(z) in any bounded region,

provided F(z) is an integral function satisfying

F(z) = O{en\"\¢(p, |2])}, (1.3)
where $(2) is a function of z such that X 'k $(k) is absolutely convergent.
k=1

2. Let the moduli of the zeros of f(z, w) be arranged in a sequence p,,
in ascending order of magnitude. Differentiating (1.2) we have

QZ — % w*"('”—l)z”‘l/(n—l) |

0z 1
= 3 D g | (2.1)
0
= flwz, w). (2.2)
Consider gz, z) =f<xz, —LI;) /f (z, -i—) (2.3)
— 52 Qule) (2l <o) (2.4)
Since gz, 0)=1, g¢g(1,2)=1,
it follows that
@o(x)=1 and Q,(1)=0(n>0). (2.5)
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Now it follows from (2.4), (2.5) that

2 =300/ @ (21<p), (2.6)
and from (2.2), (2.3) that
X —2y(af,2)
=S Q (). 2.7)
(1]

Hence, using (2.6), (2.7), we have

Q' (@) = Qua(@/w) (n2>1). (2.8)
It follows from (2.5), (2.8) that
z z fw z" [o z(”—l)/m
Qn(x)zj dx'J dx"j P j daim,
1 1 1 1

or, by the transformations {® = k1%

c ¢ gtn=)
inin) Qn(x)=J v j ar j dL® = P, (). (2.9)
1 w wa—1
Now, integrating
z Fd Zs—1;
R,,(z)zj dz'j dz"...s T () g (2.10)
1 w w1

repeatedly by parts!, we find
-1
B,(2)=F(z)— T FO(w)P,(2).
r=0

-1
Hence F(z)='% FO(w) P,(2)+R,(2). 2.11)
r=0
Let C, I be the circles |z| = }p;, |2] = #(p,+p,) respectively. From (2.4)
1 Z, 2
we have Qn(x) = %chi"“ ) . : (2.12)

Iff(z, %) has p zeros (denoted by z,, 2,, ..., 2,) on [¢| = p,, then g(z, 2)

has p poles (at most) between C and I, residues 4,(x), 4,(x), ..., 4,(z)
respectively, these residues being bounded for z in any bounded region.
Now | f(z, w)| has no zeros on I" and thus has a positive minimum on I'

which will be denoted by m. Since |f(z, w)|=|f (z, —1(;)1, we have, using

! See J. M. Whittaker, 6, 39, for a detailed argument of this nature.
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(1.2) and (2.3),

1 [ g(=, 2)
l2777;j1‘ Zntl dz

< eé(p.ﬂz)lzl/m (Pl'*z'P2> " (2.13)

<B(x)/<’i*2'—"2)", (2.14)

where B(z) is bounded for x in any bounded region. Moreover the residue
of g(z, 2)/zmttat 2 =2, (s= 1, 2, ..., p) is A,(x)/z"+' and this is of absolute
magnitude |4,(x)|p?*?. Now

L[ ey L den,,

gyl e 2m g 2

is equal to the sum of the residues of g(z, 2)/2"*! at the points z,, 2,, ..., 2,
and it follows from (2.12), (2.14) that

|Qu(@)| < 2 lilJrB(x)/(,%j_z)n

n+1

\A,ffl +B@) [ (252)" (2.15)

where A4 (z) and B(z) are bounded for 2 in any bounded region. On inte-
grating both sides of the equation from 1 to z/w we can show by induction
that, for any integer L,

a” ¥ Qb—r(x/w) (2. 16)

LTBE — 2 Y (b
and thus

x % fw 2 [w 21 o ™ je 2%—1) jo
s, k(—):j dx’j da ... j dij dx<'“+1>...5 das®),
T lw 1 1 1 0 0

1 jm/wd jz’/w d x(""”/w xk—n d
= I N T x/ .’12” ase &
wi(k—nxk D 1 51 (k—n)!

—“ Qk—r(x/w) (2.17)

0 r! 1 er—l)

from (2.16), ma,king use of (2. 5)and (2.8). Also, from (2.15)and (2.17)
it follows that

S,.k( >}<A(x) s ,k,+1+B(x) 071|<Pj,,2)k—n

<A (z) ptH1 B(z) ekertes / (P—li—2f’2)". (2.18)

https://doi.org/10.1017/5001309150001395X Published online by Cambridge University Press


https://doi.org/10.1017/S001309150001395X

AN INTERPOLATION SERIES FOR INTEGRAL FUNOTIONS 5

Again, if we use the transformations (2.9), the formula

eak=1)

dg(n)f dron \0 am (2.19)

g(n—l)

"—1

2y o

¢
WD S () — rdC'j ag J
1 w
arises from the definition of S, ;, (z/w) in (2.17).

3. From (2.10), (2.19), on expanding F™(z) in its Taylor series, we get

R ] , r4 " Z(n—1) @ @ Z( —n)
W (2) = ldz dz'" ... Z F®(0) Tyl dz

ot k=n

=3 FE(0) w1 8, (2), (3.1)
k=n

as follows from (2.17) and (2.19). If F(z)is an integral function, we have

k! F()
F®O0) = ——j i 4L,
0) 2m 18 =k/py {r+1 4
and using Stirling’s approximation for k!, if F(z) satisfies (1.3), we have

F®(0) = Ofp* VE (k)

Hence, from (2.18) and (3.1), R,(z) is less in modulus than the sum of
the remainders of two convergent series and thus tends to zero as » tends
to infinity. From (2.11) it then follows that the interpolation series

?jo FO(w) P,(2) (3.3)
r=
converges uniformly to F(z) in any bounded region provided F(z) is an
integral function satisfying (1.3). This completes the proof of Theorem II
and hence of Theorem I.

Let z,, where |2,|=p,, be the zero of smallest modulus of f(z, 1/w).
That the constant p, of Theorems I and II is the “best possible "’ is seen by
taking F(z) = f(z2,, 1/w) for which the maximum modulus M(r) clearly

satisfies

h_Iﬁ lOgM

r=>0

Then, by (2.2), F™(w™) = 2,"f(2,, 1/w) for all n. Thus for this function
all the terms of the series (3.3) are identically zero. It should be noted
that 2, is the zero of smallest modulus of f(z, w).

The numerical value of p, has been calculated! for argw = 2x, 47, 4x

= |2;| = p1-

1 See R. P. Boas, 1 and 2; S. S. Macintyre, 3,
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and the equivalent in radians of 136°, 137°, the values of p, in these cases
being approximately -746, -7398, -7379, -7378 and ‘7378 respectively.
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