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Abstract
Robotic lower limb exoskeletons are wearable devices designed to augment human motor functions and enhance
physical capabilities mostly adopted in healthcare and rehabilitation. The field is strongly dominated by rigid
exoskeletons driven by electromagnetic actuators constituted by electrical motors, gearboxes, and cylinders. This
review focuses on the design and specifications of the actuation systems of lower limb exoskeletons, with the ulti-
mate goal of providing reporting guidelines to allow for full reproducibility. For each paper, we assessed the quality
and completeness of technical characteristics with two ad hoc rating scales for motors and reducers; we extracted the
main parameters of the actuation unit and a quantitative analysis of the mechanical characteristics of the individual
components was carried out considering the exoskeleton application. Overall, we observed a lack of details in report-
ing on actuation systems equipped on exoskeletons. To overcome this limitation, herein we conclude by proposing
a data form and a checklist to provide researchers with a common approach in reporting the mechanical charac-
teristics of the actuation unit of their lower limb exoskeletons. We believe that the convergence of exoskeletons’
literature toward a clearer standardization of design and reporting will boost the development of this technology
and its diffusion outside the laboratory.

1. Introduction
Lower limb exoskeletons are heterogeneous devices that differ based on their application and costs.
Their scope is to enhance/restore mobility, and on these grounds, they have been mainly deployed in
rehabilitation [1, 2] or as walking assistive devices outside the clinical settings. Other applications have
been military [3] or human augmentation [4].

Despite the recent advances of soft robotic solutions [5], the field of lower limb exoskeletons for med-
ical applications is still strongly dominated by rigid exoskeletons driven by electromagnetic actuators
composed by electrical motors, gearboxes, and cylinders. Currently, a large variety of designs of lower
limb exoskeletons for gait rehabilitation or assistance have been proposed both in the literature and on
the market. However, there is an overall lack of detailed information and description of the actuation sys-
tems equipped on these devices (e.g., motor type and performance, characteristics of the transmission).
Indeed, commercial exoskeleton datasheets do often not contain details about the mechanical charac-
teristics of the actuation unit. In addition, this information is also generally overlooked in the academic
literature and by previous reviews. This variety and lack of information result in two major drawbacks:
i) it does not allow a complete reproducibility of the proposed devices by other research groups and
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ii) it prevents the identification of standards and commonalities between different designs, leading to
heterogeneous solutions and difficulty of comparison.

For this reason, this review focuses on the design of the actuation systems of rigid exoskeletons
equipped with electromechanical/electromagnetic actuation and the description of their characteris-
tics. Indeed, the inclusion of additional exoskeletal systems (e.g., cable-driven exosuits) would have
lead to the inclusion of mechanical components and transmission technologies with critically differ-
ent requirements and characteristics, limiting the thoroughness of the comparison. Thus, we decided
to include in this study only rigid exoskeletons for lower limb to have a more homogeneous analy-
sis focused on the most used and diffused category of exoskeletons. The aim is twofold (i) review the
overall quality of the description of the actuation unit as reported in the various papers, highlighting the
shortcomings and providing guidelines for the reporting to allow the full reproducibility of the exoskele-
ton’s actuation units and (ii) provide a quantitative comparison of the actuation technologies and their
parameters to identify standards and common characteristics among a variety of different lower limb
exoskeletons.

2. Related work
Previous reviews focused on actuation methodologies of lower limb powered exoskeletons. The work
published by Wang et al. [6] reported an overview of rehabilitation exoskeletons based on ergonomic
design, actuation, perception, control, and validation. In particular, it describes the different types of
actuation systems, highlighting the operating principles and the main advantages and disadvantages in
their application, quoting some existing robots, but without reporting technical details. In the review by
Plaza et al. [7], the aim was to describe the state of the art in the field of commercial medical exoskele-
tons, analyzing their properties, with respect to their clinical application. The authors reported only
general characteristics of the systems, the walking speed, and the joints peak torque of 13 different
exoskeletons. Mathew et al. [8] analyzed the technological advancements in signal sensing, actuation,
control, and training methods in exoskeletons for rehabilitation, including those for lower and upper
limbs. In particular, they highlighted the critical issues in designing the actuation unit using different
technologies, generally describing only the type of the actuation solution and suggesting future trends in
this field. Hussain et al. [9] focused on materials, actuation, and manufacturing in lower limb exoskele-
ton and provided a qualitative description of different actuation methods adopted by various commercial
robots. Tiboni et al. [10] proposed a wide study on the world of exoskeletons investigating methods and
solutions for exoskeleton design, actuation, and sensors. They conducted a statistical analysis to study
the distribution of different solutions concerning the device purpose, body part to which the device is
dedicated, operation mode, and design methods. In particular, the type of actuation and sensing are ana-
lyzed in detail, highlighting the main statistical trends in their development, but no technical details on
the solutions are provided. The more complete technical review on lower limb exoskeletons’ actuation
is represented by the work of Sanchez-Villamañan et al. [11]. In their work, they reviewed 52 lower
limb wearable exoskeletons. They collected data into standardized data sheets on actuation, structure,
and interface attachment components. The aspects of the different solutions were highlighted creating
a set of data sheets that contain the technical characteristics of the reviewed devices. However, their
work focused only on exoskeletons equipped with compliant actuators, discarding all the works adopt-
ing traditional actuation solutions (e.g., DC motor with harmonic drives) that represent the majority of
the exoskeletons currently present in the literature and on the market. The current review differs from
these works as we aim at providing guidelines and reporting a checklist to allow reproducibility of the
actuation unit of rigid lower limb exoskeletons. In addition, we completed an in-depth revision on the
specific technical parameters of each component (i.e., motor, transmission) in existing systems to find
trends that can be useful to build an initial standardization [12].
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Table I. Data extraction form used for the technical parameters collection.

Exoskeleton
Authors Year doi DOF Application Name

Motor
Type Brand Model Voltage [V] Max power

[W]
Nom torque

[Nm]
Nom speed

[rpm]
Weight [kg]

Reducer
Type Brand Model Ratio Max repeated

peak torque
[Nm]

Max
momentary
peak torque

[Nm]

Max input
speed [rpm]

Weight [kg]

3. Materials and methods
3.1. Inclusion criteria
Inclusion criteria were as follows: (i) peer-reviewed papers, (ii) in English language, regarding (iii)
rigid bilateral lower limb exoskeletons, (iv) simultaneously powered at hips and knees joints, and
(v) equipped with electromechanical/electromagnetic actuation systems. Exclusion criteria were vir-
tual models and simulations. Articles, conference papers, and book chapters were considered eligible,
whereas reviews and conference abstracts were excluded. Patent descriptions were also excluded because
they do not report technical details of the components aiming, instead, at protecting designs or solutions.
Exoskeletons for military and industrial applications were also excluded from this study.

3.2. Articles selection
The following databases were used: Scopus and PubMed. The search string was modeled using the AND
and OR Boolean operators, which correspond respectively to the algebraic intersection and union, as
follows: exoskeleton AND ( ( lower AND limb ) OR walk∗ ) AND ( active OR powered ) AND ( motor
OR actuator OR adapter OR design ). The search string and databases used in the study were chosen
with help from an expert researcher and agreed among the authors. Figure 1(a) reports the Preferred
Reporting Items for Systematic Review and Meta-Analysis extension for Scoping Reviews [13] flow
chart. A total of 1692 papers published until January 2025 were identified. Duplicates were excluded
utilizing the Zotero software: 1383 articles remained for title screening. Subsequently, based on title
screening, the papers out of topic or inclusion criteria were excluded. A total of 266 articles underwent
abstract screening. Hundred and twenty-four papers remained for full-text analysis. During both title
and abstract screening, if a paper did not meet the agreement of all the investigators about the inclu-
sion/exclusion criteria, it was moved to the next stage. One investigator (FB) carried out the process,
and the papers were cross-checked by two experienced reviewers (ST, NP). A fourth evaluator (EM)
reviewed the papers in case of discrepancies with other evaluators.

3.3. Data extraction process
A data extraction process was applied for each article that met the inclusion criteria (N = 66). The distri-
bution over the years of the papers included in this study is reported in Figure 1(b). A standardized form
was developed to extract data from the selected papers, reported in Table I. The extraction form con-
tained the following data: 1) authors and year of publication, 2) the digital object identifier (DOI) number
of the publication, 3) degrees of freedom defined as the number of actuated joints, and 4) exoskeleton’s
application (e.g., rehabilitative or assistive) and name if present. If the application was not explicitly
mentioned or easily identifiable from the article, we classified the device as “prototype”. In addi-
tion, specific technical characteristics of the actuation system were extracted for each exoskeleton joint

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000220
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 18 Aug 2025 at 17:48:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000220
https://www.cambridge.org/core


Robotica 1575

Figure 1. (a) PRISMA flow of the articles selection process. (b) Bar chart displaying the number of
papers included in the study, (b) distribution over the years of the papers included in the study.
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Table II. Rating scales used for the quality assessment of exoskeleton’s
actuation.

Rating Motor Reducer
1 No information No information
2 Only type indicated Only type indicated
3 Brand and model Only reduction ratio
4 Brand, model and power or voltage Type and reduction ratio
5 Complete description Complete description

(i.e., hip and knee). In particular, the following parameters were taken into consideration, separated by
system component:

• Motor: type, brand, model, voltage, maximum power, nominal torque, maximum speed, weight;
• Reducer: type, brand, model, reduction ratio, maximum repeated peak torque, maximum

momentary peak torque, maximum input speed, maximum average input speed, and weight.

To extract the technical data of each component, the following process was used. First, the values
explicitly reported in the papers were transcribed. If these values were not provided, further online
searches were conducted. In particular, if the article provided sufficient details to unequivocally deter-
mine the specific motors and reducers, the mechanical characteristics of interest were obtained from the
catalog of the producers. To unequivocally identify the motor from the catalogs, the minimum informa-
tion necessary to be indicated in the article are the brand, the model, the voltage, and the wattage. When
not provided, a standard voltage value of 24 V for motor control was hypothesized [14–19]. Instead for
the reducers, the brand, the model, and the reduction ratio are necessary. In case an information is miss-
ing and not identifiable from the catalogs, the information is marked as “not defined” (i.e., “N/D”). Not
having the internal structure of the reducers, being commercial products, we included the characteristics
available common to all the reducers. Another technical parameter to investigate should be the size of
the components. However, volume is a difficult information to find as it is not explicitly indicated in the
catalogs. It should be calculated from the external dimensions of the components, but too few values
for making any comparison were available. Moreover, the overall external dimensions depend not only
on the size of each component but also on the geometry of the assembly. This makes the comparison
between the exoskeletons impossible.

3.4. Quality assessment
A quality assessment was conducted for each article to investigate the quality of the articles on reporting
the technical description of the actuation units based on the data extracted in the previous stage. The
quality assessment was designed according to the approach used in previously published systematical
and/or meta-analysis review [20, 21] and customized to our needs and application. Thus, two ad hoc
rating scales were arranged, one for the motor description and one for the reducer description as reported
in Table II. The rating was initially performed by two investigators (FB, ST) independently. Then, a cross-
check by a third investigator (NP) was performed for the articles for which there were discrepancies
between the ratings of the two investigators. The rating was defined based on the presence or absence in
the article of the motor and reducer information collected in the data extraction form. The rating scores
were set from 1 up to 5. A score of 1 indicates the lack of actuation description or the absence of any
technical parameters for the motor and/or reducer. If only the motor type is mentioned (e.g., Brushed or
Brushless DC motor), a score of 2 was assigned to the article. If the article provides the brand and the
model of the motor used, thus allowing a search of the average motor characteristics from the producer
catalog, the article was assessed with a quality score of 3. If also the power or the driving voltage of
the motor is specified, the article is rated as 4 since this information allows us to extract the exact motor
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Figure 2. (a) Results of parameters description rating for motors on the left and reducers on the right.
Scores are from 1 up to 5 where 1 indicates that no information about the component is provided and 5
represents a complete description. (b) Paper selection: a total of 66 articles met the inclusion criteria.
Only the papers that obtained a score ≥ 3 up to 5 in at least one proposed rating scale on motors and
reducers were selected for the following quantitative analysis (N = 47). The remaining 19 articles whose
scoring was ≤ 2 in both rating scales were excluded from the subsequent analysis.

Figure 3. Percentage of reviewed papers sufficiently reporting the technical parameters on fundamental
characteristics of (a) motors and (b) reducers. A parameter was considered as sufficiently reported if
explicitly indicated by the authors or if it can be unequivocally extracted from external sources, i.e.,
catalogs.

characteristics from the catalogs. For the reducer, the score of 2 and 3 indicates that the article reports
either the reducer type (e.g., harmonic drive or planetary gearbox) only or the reduction ratio only. If
both type and reduction ratio are reported, the article is rated as 4. A score of 5 in the two scales indicates
that the article fully describes the technical characteristics of both the motor and the reducer without the
need for an additional search in the catalogs. Only studies rated 4 or 5 can be considered reproducible.

4. Results
4.1. Qualitative analysis
Of the 124 papers selected for full-text analysis, 56 did not meet the inclusion criteria. Figure 2(a)
shows the distribution of scores associated to the papers included in full-text qualitative analysis (N = 66)
(Figure 2b). Of note, 21 (32%) of the considered full papers do not provide sufficient information on
the motor and 19 (29%) on the reducer. In particular, regarding motor description, 17 papers (26%) do
not provide any detail (rating score 1) and 4 of them (6%) provide information only on the type (rating
score 2). Moreover, 18 of them (28%) do not provide any information on the reduction system (rating
score 1) and 1 of them (2%) indicate only the type. Only 15 (23%) and 25 (38%) out of 66 reviewed
papers provided full details about the motor and reducer, respectively.

To provide a clearer picture on the completeness of the technical information reported in the lit-
erature, Figure 3 shows the percentage of papers reporting each of the information and parameters
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Figure 4. (a) The distribution of exoskeletons’ applications is reported in the inner circles. Exoskeletons
with no specified use are defined as “Prototype”. For each application, the percentage of actuation unit
solutions is reported. The main three types are brushless DC motor in combination with a harmonic
drive (BLDC-HD), brushless DC motor coupled with a planetary gearbox (BLDC-PG), and serial elastic
actuator (SEA). Combinations of different solutions or personalized designs are indicated as “Other”.
(b) Global distribution of type of actuation unit among all the analyzed exoskeletons.

considered in the data form, for both motors (Figure 3a) and reducers (Figure 3b). Overall, 68.2% of
the papers (N = 45) declared at least the brand of the motor, while 63.6% (N = 42) indicated also the
model. However, only 33.3% (N = 22) indicated the supply voltage and 48.5% (N = 32) the power of
the motor. The lack of these information hampered the search for other parameters not expressly indi-
cated in the paper from external sources such as catalogs. It was thus possible to identify the nominal
torque, maximum speed, and weight values in less than 50% of the reviewed articles. For what concerns
the reducers, 69.7% of the exoskeletons (N = 46) use a reducer for both hip and knee joints, and all of
these (46 out of 46) indicate the type. The 95.7% of papers declared the reduction ratio, and the 58.7%
indicated also the brand of the reducer. However, only the 54.3% provided also the model. Exceptions
are represented by 6 exoskeletons (9.1%) that do not use any reducer in their actuation system and 14
(21.2%) do not provide any information on the reducer equipped on the exoskeleton.

Based on this qualitative assessment, we decided that those papers providing insufficient information
(rating score ≤ 2) on both motor and reducer of the actuated exoskeleton joints were excluded from
the subsequent analysis, maintaining only the papers that obtained a score ≥ 3 up to 5 in at least one
proposed rating scale on motors and reducer description.

4.2. Quantitative analysis
The following quantitative analysis considers only the 46 papers that provide sufficient information on
either the motor or the reducer, as selected in the qualitative analysis. In Figure 4(a), the classification
of the actuation systems divided by the exoskeleton’s application is shown. Assistive application is the
most frequent (N = 21, 44.7%), followed by rehabilitative ones (N = 18, 38.3%). Exoskeletons with no
specified use are defined as “Prototype” (N = 8, 17.0%). Actuation units present different solutions.
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Figure 5. Percentage distribution of motors’ power supply voltage reported in the articles. Only values
expressly provided by authors are included.

Assistive robots are mainly characterized by the use of a brushless DC Motor in combination with a
harmonic drive (BLDC-HD), while rehabilitative ones and prototypes have a more homogeneous distri-
bution among the technologies. Globally, the BLDC-HD solution is the most adopted (N = 22, 46.8%)
as shown in Figure 4(b). The reason for this prevalence is likely its back-drivability, allowing movement
even if the motors are powered off [19] and reducing errors due to backlash. On the other hand, 17.0%
of the papers (N = 8) used a brushless DC motor coupled with a planetary gearbox (BLDC-PG) and
12.8% (N = 6) adopted a serial elastic actuator (SEA) system for force transmission. SEA is composed
by an electric motor in combination with compliant elements to reduce shocks during gait phases, often
associated with a reducer, allowing a more biofidelic behavior of the joints. Moreover, there are other
particular systems that are a combination of the previous ones or a personalized design for a specific
application. In detail, only CUHK-EXO by Bing et al. [22] and the exoskeleton by Ghezal et al. [23]
adopted brushed DC motors for their actuation units. The first one is in combination with a planetary
gearbox, and the second is part of a SEA system. Furthermore, MLLRE exoskeleton by Guo et al. [24]
was composed by a body weight support and a four-bar linkage moved by an AC servo motor. In the
exoskeletons presented in Liu et al. [25] and Bergmann et al. [26], a variable stiffness actuator (VSA)
was used. VSA is an independent-setup, consisting of a double-actuation system that can perform the
joint torque/position and stiffness control task independently [27]. A windshield wiper motor, composed
by an electric motor attached to a worm gear, which transmits the force to a rod, was used in [28]. I-EXO
[29] and WSE [30] exoskeletons adopted a brushless DC motor and a servomotor, respectively, without
mentioning the presence of a reducer. The exoskeleton designed by Fang et al. [31] adopted a stepper
motor for the leg motion. Other works used compliant elements in combination with the motor which
have the purpose of absorbing impacts and shocks on the joints [32–34]. These different solutions will
be indicated as “Others” in the following analysis.

4.3. Actuation characteristics
In the following sections, the parameters of the different exoskeletons’ actuation technology are reported
and analyzed.

4.3.1. Motors
Figure 5 shows the distribution of motor supply voltage values used in the reviewed articles that expressly
indicate this information. As expected, the widely used solution involved a voltage of 24 V.

In Figure 6, the values of maximum power, nominal torque, maximum speed, and weight of the motors
are reported with the corresponding standard deviations. For each parameter, the overall mean and the
averages of the three most used actuation types (brushless DC motor coupled with harmonic drive –
BLDC-HD, brushless DC motor coupled with planetary gearbox – BLDC-PG, serial elastic actuator –
SEA) were calculated. It can be seen that the solutions combining the planetary gearbox adopt motors
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Figure 6. Technical parameters of motors are reported for hip (dark gray) and knee (light gray) joints.
In detail, (a) maximum power, (b) nominal torque, (c) maximum speed, and (d) weight of the electrical
motor. For each parameter, the overall mean among all the systems and the averages of systems divided
by their actuation unit type are reported. The considered actuation types are: brushless DC motor with
a harmonic drive (BLDC-HD), brushless DC motor with a planetary gearbox (BLDC-PG), serial elastic
actuator (SEA), and personalized designs (OTHER).

Figure 7. Average values of the motor’s parameters for the hip and knee joints based on exoskeletons’
application.

with greater power and speed than the solutions that couple a harmonic drive and SEA. The same trend
can be found in the motor weight, with SEA solutions adopting lighter motors with lower torque and
higher speed.

We analyzed the motor parameters based on the applications of the exoskeletons, as shown in Figure 7
reporting values both for the hip and knee joints’ actuation. Overall, we can notice that rehabilitative
devices adopt more powerful and heavy motors on average than the other applications.
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Figure 8. (a) Reduction ratio and (b) weight of reducers are reported. The overall mean among all the
systems adopting a reducer and the averages of systems adopting harmonic drive (HD) and planetary
gearbox (PG), both for hip and knee joints, are indicated. (c) The average values of hip and knee joints
reduction ratio and (d) reducer weight based on exoskeletons’ application are reported.

Figure 9. Joint actuation total weight composed by the sum of the motor and the reducer is reported,
for hip and knee joints. Only systems reporting the weights of both motor and reducer are included
(N = 14) and the overall mean among all the systems and the averages of systems adopting harmonic
drive (BLDC-HD) and planetary gearbox (BLDC-PG) were calculated.

4.3.2. Reducers
In Figure 8(a), we report the values of the reduction ratio of the reducers for the hip and knee joints with
the corresponding standard deviations. Figure 8(b) reports the values of weight. For each parameter,
the overall average values and the means of the two most used solutions (harmonic drive and planetary
gearbox) were calculated. In systems that use a harmonic drive, the reduction ratio is almost double
compared to applications with planetary reducers. However, the average weight of the analyzed planetary
gearboxes is half compared to that of the harmonic drives (Figure 8b). Moreover, as Figure 8(c) shows,
exoskeletons for assistive application on average adopt a greater reduction ratio than the rehabilitative
ones, even if the average reducer weight is almost the same (Figure 8d).

4.3.3. Global actuation unit
Observing the total weight of the joint actuation shown in Figure 9, composed by the weight of the motor
and of the reducer, it is important to notice that the solutions with planetary gearbox are almost 50%
lighter than the solutions using a harmonic drive.

Figure 10 shows the values of the maximum power and the nominal torque of the motor and the
reduction ratio of each exoskeleton. The graphs report the types of the actuation system, represented
with different symbols, and the application of the exoskeleton, depicted with different colors. As previ-
ously reported, we could not include all exoskeletons due to missing details of motors, reducers, or both.
The missing values were therefore indicated with N/D. All systems that use SEA (indicated with squares)
do not use reducers, except two systems that use custom SEA in combination with a harmonic drive
[35, 36]. We performed a linear regression between the extracted values to analyze if there is a relation-
ship between the power of the motors used and the reduction ratio chosen. The dotted lines indicate the
linear regressions for each exoskeleton group divided according to their application. Overall, we identi-
fied a negative trend in the regression lines in all the conditions, except for the ”prototype” group in the
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Figure 10. The relationships between the reduction ratio and the motor size are reported for bot hip and
knee joints, considering respectively the maximum motor power (top) and the nominal torque (bottom).
The exoskeleton applications are indicated with different colors, and the types of the actuation system
are indicated with different symbols. The dotted lines indicate the linear regressions for the exoskele-
tons grouped by their application. Values that are not reported in the manuscript nor identifiable from
cataloges are marked as N/D.

reduction ratio vs. nominal torque analysis. This indicates that on average there is a trade-off between the
motors’ power and the ratio of the transmission – i.e., exoskeletons equipped with more powerful motors
employ reducers with lower reduction ratios. This feature is more marked in rehabilitative exoskeletons,
although without a statistical significance (p > 0.05). In particular, exoskeletons that use a brushless
DC motor and a harmonic drive tend to use motors with lower power and nominal torque coupled with
higher reduction ratios, compared to solutions adopting planetary reducers, as shown also in Figure 6(a)
and Figure 8(a).

5. Discussion
5.1. Actuation technologies
Accurate selection and sizing of actuation are crucial steps in designing exoskeletons to achieve
lightweight and transparent systems. In this review, we define “actuation” as the subsystem responsible
for generating mechanical power at the joint level of the exoskeleton. Therefore, the following discussion
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will encompass considerations related to motor characteristics and transmission design solutions, con-
textualized according to the identified exoskeleton application. First of all, it is possible to observe that
there is an important heterogeneity in many parameters. This variability can be explained by the fact that
the solutions adopted by the authors are often very different because there are big differences also in the
structure of the exoskeleton. This changes the requirements between one device and another and involves
the use of components, although of the same type, very different from each other. Analyzing these data,
we wanted to study whether there were trends associated with the various types of components used.

Our review demonstrates that brushless DC motors are the most used electric actuators. Only CUHK-
EXO by Bing et al. [22] and the exoskeleton by Ghezal et al. [23] adopted brushed DC motors for their
actuation units. Specifically, brushless motors in combination with a harmonic drive represent the most
used solution. Indeed, despite the relatively low cost with respect to brushless motors, brushed DC
solutions are being progressively abandoned due to their higher rotor inertia, higher friction, higher
electromagnetic noise, and lower power-to-weight ratio [37, 38]. The use of harmonic drive allows for
higher reduction ratios than the solution with planetary reducers. Consequently, the motor can have
lower torque and minor powers. The reduced weight of a smaller motor is compensated by the increased
weight of the harmonic reducer (Figure 9). On the other hand, using a lower-powered motor allows for
the adoption of a smaller battery pack while maintaining the same usage duration.

The use of SEA is a more recent solution and allows for more biofidelic behavior of the joints in the
contact instants. They require the presence of compliant elements in series with the motors, but involve
a more complex design and often custom-made torsional springs [35, 36]. This aspect could be prob-
lematic in the commercialization phase of the exoskeleton, as the use of non-standard components could
lead to an important increase of the exoskeleton cost [39]. On average, exoskeletons for rehabilitation
use adopt more powerful motors and, in general, a greater variety of solutions than those for assistive
use. This might be explained in light of the severity and variety of mobility disorders of people with
disabilities undergoing physical rehabilitation (e.g., stroke [40], cerebral palsy [41], spinal cord injury
[42], orthopedic post-surgery patients [43]), and the necessity to accommodate different types of motor
training [1]. On the other hand, users of assistive systems are usually people with residual walking capa-
bilities, such as elderly people [32], who therefore require only partial support during the activities of
daily living. The trend in exoskeleton’s applications is to inversely relate the maximum power of the
motor to the reduction ratio of the reducer, when present, usually in favor of low-power motors coupled
with higher reduction ratio ≥ 100 (Figure 10). In fact, assistive devices are used mainly outside clinical
environments and therefore have requirements of portability, weight and cost. The BLDC-HD system
is the best at meeting these requirements. As a result, given the increased application on the market,
research is more focused on rehabilitation devices, while assistive exoskeletons rely on implementation
on a more robust and stable technology. Research focuses more on wearability and human–machine
interface. However, there are some exceptions such as the Symbitron [36], an assistive exoskeleton that
moves on inclined surfaces (e.g., slopes and stairs). Therefore, it adopts more powerful actuation units
(520W brushless DC motor plus a harmonic drive with ratio 100 for the hip and 50 for the knee and a set
of torsional springs). Another system, the LOPES exoskeleton for rehabilitation use has a support struc-
ture and adopts SEA with a combination of cable-driven actuation with high-power servomotors, 567W,
coupled with planetary gearboxes of 64 ratio [44]. In general, from the results obtained in this study, it
is possible to observe that, despite the trends highlighted, there are different technologies for the actua-
tion of rigid exoskeletons for lower limbs. This is also demonstrated by the high heterogeneity in many
parameters, as resulted from the standard deviation calculation. This variability can be explained by the
fact that the solutions adopted by the authors are often very different, due to the variety of mobility disor-
ders and disabilities of users. This leads to big differences also in the structure of the exoskeletons. In our
opinion, it is important to define a standardization and indications of reporting technical details, to sup-
port the development of these systems in the coming years. In view of the increasingly widespread use of
these technologies, extending it to everyday life and outdoor environments, it is essential to improve the
autonomy and transportability of systems, as well as increasing performance and reliability. Therefore,
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Table III. Checklist of the fundamental set of technical details to report in the actuation unit
description.

Motor
Type A1 Indicate the type of the motor
Brand A2 Indicate the brand of the motor
Model A3 Indicate the model of the motor
Voltage A4 Indicate the supply voltage of the motor
Max power A5 Indicate the maximum power of the motor
Nom torque A6 Indicate the nominal torque of the motor
Nom speed A7 Indicate the nominal speed of the motor
Weight A8 Indicate the weight of the motor

Reducer
Type R1 Indicate the type of the reducer
Brand R2 Indicate the brand of the reducer
Model R3 Indicate the model of the reducer
Ratio R4 Indicate the reduction ratio of the reducer
Max repeated peak
torque

R5 Indicate the maximum repeated peak torque of the reducer

Max momentary peak
torque

R6 Indicate the maximum momentary peak torque of the reducer

Max input speed R7 Indicate the maximum input speed of the reducer
Weight R8 Indicate the weight of the reducer

we believe that there will be three main directions in research. First, reducing weight and external dimen-
sions can allow a less demanding and more natural use of the system. This is a key aspect to improve
performances and rehabilitation and assistive results and increase the versatility of systems. Surely hav-
ing smaller motors will help to reduce the weight and adopting reducers with high reduction ratio as
harmonic drives or other technologically advanced reducers will also allow them to contain the external
dimensions. This trend will also lead to the application of smaller and more powerful batteries that can
increase the autonomy of the use of the exoskeletons, which is the second most critical development.
It is important to improve this characteristic to guarantee a sufficient usage time, especially in outdoor
environments. The third research direction will improve ergonomics and user comfort and in this field
the use of SEA is emerging in recent years. It guarantees greater comfort for the user especially during
the contact phase. One future development should be to optimize the design of components to simplify
the construction and lower the costs, allowing a wider application.

5.2. Quality of actuation description
Another objective of this review was to define if the parameters and characteristics of the actuation units
of the exoskeletons’ joints are sufficiently described to allow the reproducibility of the system. The aim,
being this a scoping review, was not to provide a complete technical analysis of all the exoskeleton sys-
tems, for which we refer to [10, 11]. It was mainly to identify pitfalls in the mechanical description of the
exoskeleton’s actuation units and propose a potential standardization for the reporting [12]. In particular,
herein we focused on papers describing exoskeletons equipped with electromagnetic/electromechanical
actuation, excluding other types of common actuation systems in lower limb exoskeleton (e.g., pneumatic
or hydraulic actuation). We took this decision for two main reasons: first, to allow a more homogeneous
definition and clearer comparison of the most relevant parameters describing the actuation unit; second,
electromechanical actuations represent the most widely used solutions for exoskeletons [10] as they pro-
vide enough power for the full actuation of the user’s lower limbs while having higher benefits in terms
of weight and dimensions compared to the other solutions [45, 46].
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Overall, we observed a lack of technical information across the reviewed literature. Only 47% of
included papers report sufficient information and technical data of the motors used for the actuation
systems. Indeed, 32% do not provide any technical detail beyond the type of component used and the
remaining provide partial but insufficient data. Reducers are better described than motors due to their
minor complexity and variety. However, 30% of reviewed works do not provide any description also of
reducers. The technical description of actuation is tendentially overlooked. Indeed, most of the works
focused more on the aspects of sensing and control [47–53], or on the gait pattern generation [54] without
entering in the details of the exoskeleton technical characteristics. Others focus on specific aspects of
the system, e.g., the human–exoskeleton interface [55] or the experimental evaluation of the system on
the end-users [56]. Another category includes works reporting on uncommon solutions with complex
construction demands, which focus on the description of the structure design and the mechanisms while
neglecting details of the actuation unit [57–61]. Specifically, information that are often missing are the
selected voltage supply for running the exoskeleton and the power of the motor. Even if the brand and the
model are provided, the lack of these details prevents the identification of the motor and the parameters
of interest (e.g., weight, nominal and peak torque, and maximum speed) from the catalogs. Nevertheless,
the analysis of the papers providing the voltage supply (N = 21) revealed a clear trend toward the usage
of 24 V power supply, supporting our initial choice of assuming a 24 V supply whenever not stated.

In view of the above results, we aim at providing a checklist of the minimum fundamental set of
technical details to be provided to ensure reproducibility for lower limb powered exoskeletons, reported
in Table III. It has to be combined with the data extraction form used in this review and reported in
Table I. In addition, a full list of the papers included in the review is provided as Supplementary Material
to simplify the comparison between newly developed systems and the state of the art. If a commercial
motor from a specific producer is used, only the first data in the list must be provided. In particular,
providing type, brand, model, supply voltage, and wattage allows to obtain the other values from external
sources (i.e., catalogs). On the other hand, if the system is equipped with a custom-made motor, it
is necessary to indicate at least power supply voltage, maximum power, nominal torque, peak torque,
nominal speed, and weight. In this way, it is possible to search for an equivalent commercial motor or
develop a custom-made one with the same mechanical characteristics as those used in the exoskeleton
that is reproduced. Similarly, for commercial reducers, it is necessary to report the type, brand, model,
and transmission ratio to obtain the other values from external sources. Otherwise, the parameters
description of custom-made reducers must be provided, indicating the reduction ratio, transmissible
nominal torque, transmissible peak torque, maximum input speed, and weight. When writing papers
regarding the exoskeleton actuation system, it would be important to follow the guidelines reported in
this checklist and at the same time fill in the data extraction form to ensure to provide all the information
necessary for the reproducibility of the actuation units.

6. Conclusions
This review was systematically conducted by applying the PRISMA statements to collect all the papers
regarding rigid bilateral lower limbs exoskeleton, powered simultaneously at hip and knee joints,
equipped with electromechanical/electromagnetic actuation system. The first aim was to focus on the
design of the actuation systems and the quality of the description of their characteristics to ensure repro-
ducibility. Subsequently, a quantitative comparison of the reported actuation technologies was conducted
to identify standards and common characteristics among different lower limb exoskeletons. An overall
lack of detailed information and description of the actuation systems resulted. Despite this lack of tech-
nical details, we observed trends in the technical characteristics of the actuation units’ components, such
as a trade-off with motor power and reduction ratio according to the exoskeleton application. These infor-
mation can be used to build a more complete and organic standardization. The guidelines and checklists
proposed in this review are an initial contribution in this direction.
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