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Fatty acids are known to play diverse roles in immune cells. They are important as a source of energy, as structural components of cell membranes,

as signaling molecules and as precursors for the synthesis of eicosanoids and similar mediators. Recent research has suggested that the localization

and organisation of fatty acids into distinct cellular pools has a direct influence on the behaviour of a number of proteins involved in immune cell

activation, including those associated with T cell responses, antigen presentation and fatty acid-derived inflammatory mediator production. This

article reviews these studies and places them in the context of existing literature in the field. These studies indicate the existence of several novel

mechanisms by which altered fatty acid availability can modulate immune responses and impact upon clinical outcomes.
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Fatty acids are hydrocarbon chains of varying length with one
end of the chain terminated by a methyl group and the other
end by a reactive carboxyl group1. The hydrocarbon chain
can be saturated, monounsaturated or polyunsaturated. Unsa-
turated fatty acids contain double bonds between pairs of adja-
cent carbon atoms; monounsaturated fatty acids contain one
double bond, whereas polyunsaturated fatty acids (PUFAs)
contain more than one double bond. There are only two clas-
sically essential fatty acids. These are linoleic and a-linolenic
acid, which cannot be synthesised de novo in animal cells and
must therefore be obtained from the diet. Linoleic acid is an
n-6 PUFA, described by its shorthand notation of 18 : 2n-6,
which refers to an 18-carbon fatty acid with two double
bonds, the first of which is on carbon atom 6 from the
methyl end. a-Linolenic acid is an n-3 PUFA with a shorthand
notation of 18 : 3n-3, describing an 18-carbon fatty acid with
three double bonds, the first being positioned at carbon atom
3 from the methyl end (Fig. 1). Dietary sources of linoleic
and a-linolenic acids include plant seeds and nuts, plant oils
and margarines1. In most diets intake of linoleic acid is
much greater (5 to 20-fold) than that of a-linolenic acid2.
Both essential fatty acids can be further elongated and desatu-
rated in animal cells forming longer chain and more unsatu-
rated members of the n-6 and n-3 families of PUFAs
(Fig. 2). The metabolism of the n-6 and n-3 fatty acids is com-
petitive, since both pathways employ the same set of enzymes.
The major end-product of the n-6 pathway is arachidonic acid
(20 : 4n-6). This pathway is quantitatively the most important
pathway of PUFA metabolism in humans, because linoleic
acid is consumed in greater quantities than a-linolenic acid.
The major end-products of the n-3 pathway are eicosapentae-
noic acid (EPA; 20 : 5n-3) and docosapentaenoic acid

(DPA; 22 : 5n-3); apparently relatively little a-linolenic acid
proceeds along the entire metabolic pathway to give rise to
docosahexaenoic acid (DHA; 22 : 6n-3)2. Oily fish and fish
oils contain a high proportion of the very long chain n-3
PUFAs, EPA, DPA and DHA3.

Fatty acids play diverse roles in all cells. They are import-
ant as a source of energy, as structural components of cell
membranes so influencing the physical and functional proper-
ties of membranes, and as signaling molecules and regulators
of gene expression1. In addition, some PUFAs including
dihomo-g-linolenic acid (20 : 3n-6), arachidonic acid, EPA
and DHA can serve as precursors for the synthesis of bioactive
lipid mediators including prostaglandins, leukotrienes, lipox-
ins, and resolvins4–8. Within the immune system, different
fatty acids act by differentially influencing cell membrane
structure and function, cell signaling and gene expression, and
patterns of lipid mediator production8–11. Through this variety
of mechanisms fatty acids can modify the functional activities
of cells of the immune system and the immune response as a
whole. There aremany reviews of this area8–19, and comprehen-
sive coverage of all aspects is beyond the scope of this article.
Instead this article will focus upon three specific areas in
which significant new findings have been made in recent
years. These are lipid rafts and T-cell signaling, antigen presen-
tation and lipid body formation.

Lipid rafts, T cell signaling and polyunsaturated fatty acids

Lipid rafts are dynamic microenvironments in the exoplasmic
leaflets of the phospholipid bilayer of plasma membranes.
They are rich in saturated fatty acids, sphingolipids,
cholesterol and glycosylphosphatidylinositol (GPI)-anchored
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proteins20,21. Rafts serve as platforms to facilitate the associ-
ation of signaling molecules and interactions and crosstalk
between cell types20,21. Activation of the proteins within
rafts by an extracellular ligand can result in rapid clustering,
which appears to be important for signal transduction in both
T and B lymphocytes22–25. The T-cell receptor (TCR) clusters
within lipid rafts upon contact with an antigen presenting cell,
forming an ‘immunological synapse’, or contact zone, where
intracellular signaling is thought to be initiated. Interestingly,
the role of membrane rafts in Th1 and Th2 cells appears to be
markedly different, with TCR activation in Th1 cells being
dependent on rafts, while that in Th2 cells is not26. The
reason for this difference is not clear, but has been suggested

to be due to differences in the composition, distribution or
quantity of lipid rafts27.

Some key signaling proteins, such as the tyrosine kinase lck
and the signaling molecule linker of activated T cells (LAT),
are retained in T cell rafts via acylation, while other important
signaling proteins, including CD4, ZAP70 and phospholipase
C-g1, translocate to rafts upon stimulation of the TCR.
Acylated proteins that are anchored to the inner lipid leaflet
are displaced from rafts when T cells are treated with long
chain n-3 PUFAs and to a somewhat lesser extent also with
n-6 PUFAs28. In contrast, GPI-anchored proteins remain
located in detergent-resistant membranes with PUFA treat-
ment28. Thus, PUFAs appear to selectively alter the protein
composition of the inner membrane lipid leaflet of T cells.
Notably the extent of displacement of acylated proteins from
detergent-resistant membranes correlates with impairment of
calcium signaling indicating a functional impact of these
alterations28. PUFAs are readily esterified to the sn-2 position
of membrane phospholipids of both rafts and the bulk plasma
membrane thereby altering raft protein localization29. Feeding
mice on an n-3 PUFA-rich diet resulted in incorporation of
EPA and DHA into the lipids of the rafts of spleen T cells
and this was associated with a decreased sphingomyelin con-
tent30. Hence, incorporation of PUFAs into membrane lipids is
a likely mechanism for protein displacement from rafts. Phos-
phorylation of LAT is the most upstream step that is inhibited

Fig. 1. The structure of the two essential fatty acids.

Fig. 2. The metabolic pathways by which essential fatty acids are converted to longer chain, more unsaturated derivatives.
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by long chain n-3 PUFA treatment of T cells31 and it appears
that LAT displacement from rafts is a molecular mechanism
mediating inhibition of T cell responses by n-3 PUFAs, at
least in vitro32. Importantly, animal studies have shown that
dietary fish oil affects early signaling events in T cells such
as phosphorylation of phospholipase C-g133 and have linked
alterations of T cell rafts by dietary n-3 PUFAs with func-
tional changes such as decreased proliferation and interleu-
kin-2 production34. There is no information regarding the
extent to which lipid rafts in human lymphocytes could be
modulated by dietary PUFAs, although human lymphocyte
lipids are readily modified by fish oil supplementation35–38.

Polyunsaturated fatty acids and antigen presentation

Studies conducted in the early to mid 1990 s found that cell
surface expression of major histocompatibility complex
(MHC) II and antigen presentation via MHC II are decreased
following in vitro exposure of antigen presenting cells to EPA
or DHA39–43. There are limited studies investigating the effect
of dietary PUFAs on MHC II expression44–46. The most
thorough study of this type is that of Sanderson et al.46 who
showed that feeding a fish oil-rich diet to rats resulted in
decreased expression of MHC II on dendritic cells which
was associated with a decreased capacity to present antigen
to antigen-sensitised spleen T cells. The reduction in antigen
presentation was probably much greater than could be
explained by the reduction in MHC II expression, suggesting
that other interactions between antigen presenting cells and
T lymphocytes were affected by dietary n-3 PUFAs. Indeed,
levels of CD2, CD11a and CD18 were also decreased on
dendritic cells from fish oil-fed rats46.

Recently the effect of PUFAs on MHC I expression and on
MHC I-mediated antigen presentation were reported for the
first time47. Expression of MHC I was decreased with in vitro
treatment of B lymphocytes with arachidonic acid or DHA.
The effect was fatty acid concentration dependent, with arachi-
donic acid being slightly more effective than DHA. There was
a functional effect of the reduced MHC I expression: cytotoxic
T lymphocyte mediated lysis of target cells enriched with
either arachidonic acid or DHA was decreased in a fatty acid
concentration dependent manner. By blocking of resident
MHC I molecules on the cell surface, it was identified that
arachidonic acid and DHA decreased the surface appearance
of new MHC I. Arachidonic acid and DHA were shown to
decrease cell surface MHC I expression by slowing flow of
new class I molecules from the endoplasmic reticulum to the
Golgi. The lower forward trafficking rate could account
for the lower level of MHC I surface expression. The finding
of arachidonic acid- and DHA-induced inhibition of MHC I
trafficking47 highlights a novel mechanism by which fatty
acids affect the biology of antigen presentation. EPA was not
examined in this work. Furthermore the work was restricted
to in vitro investigations and there is an obvious need to exam-
ine these effects and mechanisms in a dietary setting.

Lipid bodies as structures for generation of fatty
acid-derived mediators

Eicosanoids and other fatty acid-derived lipid mediators have
numerous roles in the regulation of immune and inflammatory

responses4–7, the true extent of which has probably not yet
been realised. It is becoming clear that the regulation of eico-
sanoid formation involves activation of enzymes at specific
intracellular sites and that this local generation of eicosanoids
might be facilitated by the presence of lipid bodies present
within many (if not all) cell types. Lipid bodies within eosino-
phils increase in number following an inflammatory stimulus
and appear to contain all of the enzymes necessary for eicosa-
noid synthesis48,49. Unlike lipid rafts, these distinct intracellu-
lar domains are not resistant to detergent solubilization and
there are consequently some methodological limitations to
their study. Since it is not yet possible to isolate lipid
bodies, their structure and composition have not been
elucidated.

Novel techniques have been used to cross-link newly-syn-
thesized leukotriene (LT) C4 at sites of synthesis within eosino-
phils and to follow its fate upon stimulation48. This approach
demonstrated that LTC4 formation does indeed occur in lipid
bodies and that, depending on the nature of the stimulus,
LTC4 can be either targeted towards the perinuclear membrane
or released into the extracellular milieu48,50. Like lipid rafts, the
distribution of lipid bodies can be polarized, but it is not clear
whether those producing eicosanoids destined to be secreted
are located close to the plasma membrane, while those that
are perinuclear produce eicosanoids solely for autotropic
effects. Recent studies have identified roles for lipid bodies in
inflammatory mediator synthesis in a range of situations. A
potential role for lipid bodies in sepsis is suggested by the
observation that their numbers are higher in leukocytes from
septic patients compared with healthy patients and that they
are inducible by lipopolysaccharide in murine macrophages51.
Administration of lipopolysaccharide to mice resulted in
increased lipid body content of peritoneal cells and this was
associated with increased prostaglandin (PG) E2 and LTB4 in
peritoneal lavage fluid52. Lipid body formation and presence
of inflammatory mediators was examined in mice fed different
oils prior to lipopolysaccharide exposure: olive oil was found to
decrease peritoneal leukocyte infiltration, lipid body formation
and PGE2 and LTB4 levels

52. This was associated with a sig-
nificant reduction in mortality52. Fish oil was not examined in
that study but it might be expected to have similar effects
since it is known that dietary fish oil decreases in vivo and ex
vivo inflammatory mediator responses to lipopolysacchar-
ide53,54, and improves survival55,56. Other recent studies have
attempted to address the mechanism of lipid body formation
in the different contexts. In murine models of allergy, lung eosi-
nophil influx and lipid body formation occurred in parallel in
response to an allergic challenge57. 5-Lipoxygenase expression
and LTC4 production were associated with lipid bodies. The
induction of lipid body formation appeared to involve either
eotaxin or RANTES acting via the CCR3 receptor57. Infection
of macrophages with Mycobacterium bovis bacillus induced
lipid body formation which was associated with increased
PGE2 production and localization of cyclooxygenase-2 to the
lipid bodies58. The authors confirmed that lipid bodies were
the main site of new PGE2 synthesis. The effect of infection
on induction of lipid bodies was inhibited in toll-like receptor
2, but not toll-like receptor 4, deficient mice58, suggesting a
role for the former in lipid body formation in macrophages in
response to infection. It is clear that more needs to be under-
stood about lipid bodies in the contexts of immune activation
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and inflammation in humans and of formation of different
families of lipid mediators from different substrate fatty acids.

Conclusion

Recent studies have focused attention on the central role of
fatty acids in immune cell regulation, highlighting that their
location and organization within cellular lipids has a direct
influence on the behaviour of a number of proteins involved
in immune cell activation, including those associated with T
cell responses, antigen presentation and fatty acid-derived
inflammatory mediator production. Studies have tended to
focus upon PUFAs per se or on PUFAs of different types
(e.g. n-6 vs. n-3). While these studies clearly suggest that
the fatty acid composition of lipid domains can strongly influ-
ence immune cell activation and functional responses, they
have been mainly conducted in model systems and the rel-
evance to the human setting requires urgent investigation.
Nevertheless, the studies described herein indicate several
novel mechanisms by which altered fatty acid availability
can modulate immune responses and impact upon clinical out-
comes relevant to infection and to inflammatory conditions.
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