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Abstract

We define a subgraph of the zero divisor graph of a ring, associated to the ring idempotents. We study
its properties and prove that for large classes of rings the connectedness of the graph is equivalent to the
indecomposability of the ring and in those cases we also calculate the graph’s diameter.
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1. Introduction

In the last two decades various papers appeared studying groups and rings via certain
graph structures. The zero divisor graphs of commutative rings were introduced by
Beck in [2], where the zero divisor graph of a commutative ring R is defined as
a simple graph with vertices being the set of all non-zero zero divisors Z(R), and
x, y ∈ Z(R) being adjacent if and only if xy = 0. This concept was later generalized
to non-commutative rings by Redmond in [6], where non-zero zero divisors x and y
are adjacent if and only if xy = 0 or yx = 0. Zero divisor graphs of non-commutative
rings were further studied by Akbari and Mohammadian in [1], where special attention
was devoted to semisimple Artinian rings and hence to rings of matrices. It was proved
in [1] that if the zero divisor graph of a ring R is isomorphic to the zero divisor graph
of some matrix ring Mn(F), where F is a finite field and n > 0, then R ∼= Mn(F).

On the other hand, there was some research in [4] and [5] on the graphs of complete
systems of orthogonal idempotents in finite (possibly non-commutative) rings, proving
that the graphs of the indecomposable finite rings are connected and finding some
inequalities for the number of elements in indecomposable finite rings according
to the number of elements in their Jacobson radical. Here we say that a ring is
indecomposable if it cannot be written as a non-trivial direct sum of its subrings.

The graphs studied in this paper are subgraphs of the zero divisor graph, defined
on the set of idempotents of an arbitrary associative ring with unity, satisfying the
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descending chain condition on idempotents. We define the edges of a graph in
such a way that they correspond exactly to all the pairs of orthogonal idempotents
e and f such that either eR f 6= 0 or f Re 6= 0. Thus, such a graph is in some
sense directly measuring the indecomposability of a ring. We find the conditions for
connectedness of such graphs in large classes of rings, and in those cases we also
calculate their diameters.

In the next section we study the properties of these graphs, defined only on the
complete sets of orthogonal idempotents of a ring. In the following section we expand
the results to the graphs, defined on the set of all idempotents in a ring and in the final
section we apply these results to some classes of rings.

2. Graphs associated to complete systems of orthogonal idempotents

Let R be an associative ring with unity 1. An element x ∈ R is called an idempotent
if x2

= x . The set of all idempotents in R will be denoted by E(R). A natural partial
order is defined on E(R) by f ≤ e if and only if f e = e f = f . An idempotent
e 6= 0 is called a primitive idempotent if f ≤ e implies f = 0 or f = e, for any
idempotent f ∈ E(R). Throughout the paper P shall denote the set of all primitive
idempotents in R.

A set of idempotents S = {e1, . . . , en} ⊆ E(R) is called a complete system of
orthogonal idempotents in R if e1 + · · · + en = 1 and ei e j = 0 for all i 6= j ; S is a
complete system of primitive orthogonal idempotents in R if it is a complete system of
orthogonal idempotents and all idempotents in S are primitive.

We say that R satisfies the descending chain condition on idempotents (DCCI) if
any decreasing chain of idempotents in respect to ≤ in R must be finite. Note that
DCCI implies the ascending chain condition on idempotents because 1 ∈ R.

If S = {e1, . . . , en} is a complete system of orthogonal idempotents, assign to S
a graph G(S) with vertices being the elements of S and distinct vertices ei , e j being
adjacent (denoted by ei ∼ e j ) if and only if ei Re j 6= 0 or e j Rei 6= 0.

The following lemma was proved in [5] for finite rings, but it also holds in a more
general setting and we include the proof for the sake of completeness.

LEMMA 1. If R is indecomposable, and S = {e1, . . . , en} is a complete system of
orthogonal idempotents in R then G(S) is connected.

PROOF. We prove this by induction on n. If n = 1, then G(S) = K1, the full
graph on one vertex. For n > 1 assume that G({e1, . . . , en−1}) is connected and
consider G(S). Indecomposability of R implies that at least one of fn R(1 − fn) and
(1 − fn)R fn is non-trivial. Assume fn R(1 − fn) 6= 0. Hence

0 6= fn R( f1 + · · · + fn−1) = fn R f1 + · · · + fn R fn−1

which implies fn R fi 6= 0 for some i < n and fn ∼ fi . 2
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LEMMA 2. Let S = {e1, . . . , en} be a complete system of primitive orthogonal
idempotents in a ring R. Then G(S) is connected if and only if R is indecomposable.

PROOF. Let R = R1 ⊕ R2. Then 1 = f1 + f2, where f1 ∈ R1, f2 ∈ R2 are
idempotents. For ei ∈ S we obtain ei = ei f1ei + ei f2ei . Primitivity of ei implies that
exactly one of ei f1ei and ei f2ei equals ei , while the other equals 0. Then S = S1 ∪ S2,
where S1 = {ei ∈ S | ei f1ei = ei } and S2 = {ei ∈ S | ei f2ei = ei }, induces a separation
of G(S).

On the other hand, a separation of G(S) with the set of vertices S = S1 ∪ S2, where
there are no edges connecting S1 to S2, induces a ring decomposition

R =

∑
ei ∈S1

ei Rei ⊕

∑
ei ∈S2

ei Rei . 2

PROPOSITION 3. R decomposes as an orthogonal direct sum of (indecomposable)
subrings R1 ⊕ · · · ⊕ Rr if and only if there exists a complete system of (primitive)
orthogonal idempotents S in R such that the graph G(S) has r components.

PROOF. Let R = R1 ⊕ · · · ⊕ Rr be a direct sum. Then there exist xi ∈ Ri such that
1 = x1 + · · · + xr . Multiplying by xi yields x2

i = xi and xi are primitive idempotents
if the rings Ri are indecomposable. Hence S = {x1, . . . , xr } is a complete system of
orthogonal idempotents in R and G(S) is an empty graph on r vertices. To prove the
converse, assume that G(S) has r components S1, . . . , Sr for some complete system
of (primitive) orthogonal idempotents in R. Decompose R as

R =

∑
ek∈S1

ek Rek ⊕ · · · ⊕

∑
ek∈Sr

ek Rek .

Each of the graphs G(Si ) is connected and
∑

ek∈Si
ei is the unity in

Ri =
∑

ek∈Si
ek Rek . Furthermore, if Si is a complete orthogonal system

of primitive idempotents in Ri then Ri is indecomposable. For ei ∈ Si ,
e j ∈ S j , i 6= j , we obtain ei Re j = e j Rei = 0 because there are no edges in G(S)

between the components Si and S j , and hence( ∑
ek∈Si

ek Rek

)
R

( ∑
ek∈S j

ek Rek

)
=

( ∑
ek∈S j

ek Rek

)
R

( ∑
ek∈Si

ek Rek

)
= 0. 2

LEMMA 4. Let R be an Artinian ring and {e1, . . . , en} and { f1, . . . , fm} two
complete orthogonal systems of primitive idempotents. Then n = m and there exists a
unit a ∈ R and a permutation π : {1, . . . , n} → {1, . . . , n} such that ei = a fπ(i)a−1.

PROOF. This follows from [3, Lemma 3.3] and the fact that R is Artinian, so the
decomposition of R into a direct sum of indecomposable modules Rei is uniquely
determined up to an isomorphism and a permutation of the direct summands. 2

If G is a graph, then any full subgraph of G is called a clique, while any empty
subgraph of G is called an anticlique.
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THEOREM 5. Let S be a complete system of orthogonal idempotents in an
indecomposable ring R and G(S) the associated graph. Then G(S) has a maximal
clique of power k if and only if there exists a set { f1, . . . , fk} ⊆ S such that:

(1) (g + h)R(g + h) is indecomposable for all g, h ∈ { f1, . . . , fk}; and
(2) for all g ∈ S\{ f1, . . . , fk} an i ∈ {1, . . . , k} exists such that ( fi + g)R( fi

+ g) ∼= fi R fi ⊕ gRg.

PROOF. Assume that { f1, . . . , fk} form a maximal clique in G(S). Choose
g, h ∈ { f1, . . . , fk}. Then {g, h} is a complete system of orthogonal idempotents
in (g + h)R(g + h) and the associated graph G({g, h}) is connected. Hence
(g + h)R(g + h) is indecomposable. This proves (1). To prove (2) choose
g ∈ S\{ f1, . . . , fk}. A vertex fi in the maximal clique exists such that g � fi . Hence
fi Rg = 0 = gR fi and the assertion follows. 2

THEOREM 6. Let S be a complete system of orthogonal idempotents in an
indecomposable ring R and G(S) the associated graph. Then G(S) has an anticlique
of power k if and only if { f1, . . . , fk} ∈ S exist such that

( f1 + · · · + fk)R( f1 + · · · + fk) =

k⊕
i=1

fi R fi .

PROOF. If { f1, . . . , fk} is the anticlique in G(S), then fi R f j = f j R fi = 0 for all
i, j = 1, . . . , k. 2

Hence G(S) in a sense ‘measures’ the decomposability of R.

3. Graphs associated to E(R)

Let A ⊆ E(R)\{0, 1} be any set of non-trivial idempotents in R. Define the
graph G(A) to be a simple graph with the set of vertices being A, and where e, f ∈ A
are connected by an edge, denoted e ∼ f , if and only if:

(1) e f = f e = 0; and
(2) eR f 6= 0 or f Re 6= 0.

Furthermore, denote G(R) = G(E(R)\{0, 1}).

LEMMA 7. If R is indecomposable and e ∈ E(R)\{0, 1} then e is adjacent to 1 − e
in G(R).

PROOF. The contrary would imply the decomposition

R = eRe ⊕ (1 − e)R(1 − e). 2

LEMMA 8. Let R be a ring that satisfies the DCCI, and e, f ∈ E(R) with the
property e ∼ f . Then a primitive idempotent g exists such that g ≤ f and g ∼ e.

https://doi.org/10.1017/S0004972708000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000154


[5] Indecomposability graphs of rings 155

PROOF. Choose a primitive idempotent g1 with g1 ≤ f and observe that
f − g1 ∈ E(R). Then eg1 = e( f g1) = 0 = (g1 f )e = g1e. Hence g1 is orthogonal to
e, and similarly f − g1 is orthogonal to e. Without any loss of generality, we can
assume that eR f 6= 0 and obtain

0 6= eR f = eRg1 + eR( f − g1).

Hence at least one of eRg1, eR( f − g1) is non-trivial. If eRg1 6= 0, take g = g1.
Otherwise, proceed in the same way with f − g1 in the place of f to obtain g ∈ P ,
g ∼ e in finitely many steps. 2

LEMMA 9. For any non-trivial idempotent e ∈ E(R) a primitive idempotent e′
∈ P

exists with e ∼ e′.

PROOF. Lemma 7 implies e ∼ 1 − e, while Lemma 8 provides a primitive
idempotent e′

≤ 1 − e with e ∼ e′. 2

PROPOSITION 10. The graph G(R) is connected if and only if the graph G(P) is
connected in which case diam G(R) ≤ diam G(P) + 2.

PROOF. Lemma 8 implies that any path in G(R) connecting primitive idempotents
can be realized as a path in G(P). Hence if G(R) is connected then so is
G(P). Assume now that G(P) is connected and consider non-trivial idempotents
e, f ∈ G(R). Lemma 9 yields the existence of primitive idempotents e′, f ′ such that
e′

∼ e and f ′
∼ f . Since G(P) is connected, there exists a path connecting e′ and f ′

in G(P). Hence
e ∼ e′

∼ · · · ∼ f ′
∼ f

is a path connecting e and f in G(R), and the final assertion follows as well. 2

The following example shows that diam G(P) + 2 is the sharpest general bound for
diam G(R).

EXAMPLE 11. Consider the ring R ⊆ Mn(F) of all 3 × 3 matrices of the form∗ 0 ∗

0 ∗ ∗

0 0 ∗

 ,

where ∗ denotes an arbitrary element of F . Let ei be a diagonal element with 1 on
the i th diagonal entry and 0s elsewhere. Observe that S = {e1, e2, e3} is a complete
orthogonal system of idempotents in R, and e1 ∼ e3 ∼ e2, e1 � e2 in G(R). This
implies that graph G(S) is connected and R is indecomposable. Primitive idempotents
are of the form

x(a) =

1 0 a
0 0 0
0 0 0

 , y(b) =

0 0 0
0 1 b
0 0 0

 or z(u, v) =

0 0 u
0 0 v

0 0 1

 .
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The edges in G(P) are precisely all x(a) ∼ z(−a, v) and all y(b) ∼ z(u, −b).
Hence z(u, v) ∼ x(u) ∼ z(−u, v′) ∼ y(−v′) ∼ z(u′, v′) is the shortest path connect-
ing z(u, v) to z(u′, v′) in G(P) and it is an easy exercise to show that diam G(P) = 4.
What about G(R)? Idempotents of rank two are of the form

f (a, b) =

1 0 a
0 1 b
0 0 0

 , g(c) =

1 0 0
0 0 c
0 0 1

 or h(u, v) =

0 u v

0 1 0
0 0 1

 .

Then f (a, b) is adjacent only to z(−a, −b) and z(u, v) is not adjacent to any
idempotent of the form g(c) or h(u, v). Hence

f (a, b) ∼ z(−a, −b) ∼ x(a) ∼ z(−a, −b′) ∼ y(b′) ∼ z(−a′, −b′) ∼ f (a′, b′),

is the shortest path connecting f (a, b) and f (a′, b′) in G(R), and diam G(R) = 6.

4. The application to Artinian rings

Let J denote the Jacobson radical of R.

PROPOSITION 12. If J commutes with E(R) then G(R) = G(R/J ). (Moreover,
S ⊆ R is a complete system of orthogonal idempotents in R if and only if S̄ ⊆ R/J is
a complete system of orthogonal idempotents in R/J .)

PROOF. We can lift an arbitrary idempotent e in R/J to an idempotent e ∈ R.
Suppose that e + j is also an idempotent for some j ∈ J . This implies (e + j)2

=

e + 2ej + j2
= e + j , so we get (1 − 2e − j) j = 0. But (1 − 2e)2

= 1, therefore
1 − 2e − j is an invertible element, and we can conclude that j = 0. Thus the lifting
of idempotents is unique. Now, if ei e j = 0 ∈ R/J , we know that ei e j ∈ J . However,
since J commutes with E(R), ei − ei e j is an idempotent, and therefore ei e j = 0 by
the above argument. We have proved that ei ∼ e j implies ei ∼ e j .

On the other hand, if ei ∼ e j and we have ei Re j ⊆ J , then ei + eire j is an
idempotent for every r ∈ R, so ei Re j = 0 by the above, which is a contradiction.
Therefore ei ∼ e j also implies ei ∼ e j . 2

If R is Artinian, then, by the Wedderburn theorem, the factor ring R/J is a direct
sum of fields and full matrix rings over fields.

COROLLARY 13. Suppose that J commutes with E(R). If R is indecomposable,
then R/J is indecomposable.

PROOF. The result is a direct consequence of the previous proposition and
Lemma 2. 2

LEMMA 14. Let R = Mn(F) and for each i let ei denote the diagonal matrix with
the i th diagonal element being 1 and 0 elsewhere. If e ∈ R is an arbitrary primitive
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idempotent then e ∼ ei if and only if the i th row and the i th column of the matrix e
are zero.

PROOF. Since e is a primitive idempotent, there exists such a unit a ∈ R that
e = ae j a−1 for some j . Therefore the rank of e is one, so e = xyT for some vectors x
and y. Also, let ei = fi f T

i , where fi denotes the vector with 1 on the i th component
and 0 elsewhere. If e ∼ ei then eei = (yT fi )(x f T

i ) = 0, so the i th component of
y is 0. Similarly ei e = ( f T

i x)( fi yT) = 0, so the i th component of x is also 0;
therefore both the i th row and the i th column of the matrix e are zero. The other
implication is trivial. 2

COROLLARY 15. Let R = Mn(F) and let ei be the diagonal matrix with the i th
diagonal element being 1 and 0 elsewhere and a an arbitrary unit. Then aei a−1

∼ ei
if and only if ai i = a−1

i i = 0.

PROOF. Note that aei a−1
= (aei )(ei )a−1. By the previous lemma, the i th row and

the i th column have to be zero and this is true if and only if ai i = a−1
i i = 0. 2

COROLLARY 16. Let R = M2(F). Then G(R) is not connected and the number of
components for connectivity is equal to the index of the normalizer of any primitive
idempotent in R.

PROOF. If e is an arbitrary idempotent, it follows from the previous lemma that
e ∼ e1 implies e = e2. Let a and b be arbitrary units. So, if ae1a−1

∼ be2b−1

then b−1ae1(b−1a)−1
= e1, and thus ae1a−1

= be1b−1. On the other hand,
if ae1a−1

∼ be1b−1 then b−1ae1(b−1a)−1
= e2, and thus ae1a−1

= be2b−1
=

1 − be1b−1, which yields be1b−1
= ae2a−1. We have proved that, for each a, the

idempotent ae1a−1 is connected only to the idempotent ae2a−1, so there are as many
components in G(R) as the number of elements conjugated to e1. 2

THEOREM 17. Let S be a complete orthogonal system of primitive idempotents in
an indecomposable ring R. If J commutes with E(R) then:

(1) if |S| > 2 then G(R) is connected and diam G(R) = 5;
(2) if |S| = 2 then G(R) is not connected and the number of components for

connectivity is equal to the index of the normalizer of any primitive idempotent
in R.

PROOF. By the Corollary 13, and the fact that G(R) = G(R/J ), we can assume
that R is a full matrix ring Mn(F) over a field and we may assume that S =

{e1, . . . , en}, where ei is the diagonal matrix with the i th diagonal element being 1 and
0 elsewhere. By Proposition 10 it suffices to show that G(P) is connected. Choose a
primitive idempotent e ∈ P . There exists an invertible matrix a such that e = ae1a−1.
Since a−1e1a Rb−1e1b = a−1e1 Re1b−1

6= 0 and e j Ra−1ei a = e j Rei a 6= 0, for every
i, j , primitive idempotents are adjacent in G(P) if and only if they are orthogonal.
Hence G(S) ∼= Kn is a full graph.
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If |S| = 2 then the statement follows directly from Corollary 16. Therefore, we can
now assume that |S| > 2.

Orthogonality of idempotents a−1ei a, e j is equivalent to ei ae j = 0 = e j a−1ei
which is further equivalent to ei ae j = 0 = det a[i | j], where a[i | j] denotes the
submatrix in a with i th row and j th column being erased.

Consider any primitive idempotents a−1e1a, b−1e2b ∈ P . (Note that any
idempotent can be written in either form.) Denote c = ab−1. Gauss elimination
yields the existence of matrices p and q such that (cpq)11 = 0 and (cpq)22 = · · · =

(cpq)2n = 0. The matrix p changes entries (2, 2), . . . , (2, n) in c to 0 and is of the
form

p =


1 ∗ · · · ∗

0 1 · · · 0
...

... · · ·
...

0 0 0 1

 ,

while q changes the (1, 1)-entry in cp to 0 and is of the form

q =


1 0 0 · · · 0
∗ 1 0 · · · 0

0 0 1 · · ·
...

...
...

... · · ·
...

0 0 0 · · · 1

 .

Hence e1(ab−1 pq)e1 = 0 = e1(ab−1 pq)−1e1, e1q−1e3 = e3qe1 and e3 p−1e2 = 0 =

e2 pe3. This implies that

ba−1e1ab−1
∼ pqe1(pq)−1

∼ pe3 p−1 ∼ e2,

or equivalently

a−1e1a ∼ b−1 pqe1(pq)−1b ∼ b−1 pe3 p−1b ∼ b−1e2b.

Any two primitive idempotents in R can therefore be connected by a path of length at
most 3, which implies diam G(P) ≤ 3 and diam G(R) ≤ 5 by Proposition 10. It is an
easy exercise to find an example proving that in fact diam G(R) = 5. 2

COROLLARY 18. Assume that R is not local and that eJ f = 0 for every pair of
idempotents e and f such that e f = 0. Then G(R) is connected if and only if R/J is
a matrix ring of dimension at least 3. In that case, diam G(R) = 5.

PROOF. Let (·) denote the canonical map from R onto R/J . Since the ideal J
is nilpotent, an element a ∈ R is invertible if and only if a ∈ R/J is invertible.

Therefore the set of all invertible elements in R is equal to (·)
−1

(R/J ). Now,
let S denote a complete orthogonal system of primitive idempotents in R/J and
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let S denote the ‘lifted’ complete orthogonal system of primitive idempotents in R.
Also let G R/J denote the subgraph of G(R) induced by all the lifted idempotents
from R/J . By the above remark, if e′ is an arbitrary idempotent in R, we know that
e′

= (1 + j)−1e(1 + j) for some j ∈ J and some e ∈ G R/J .
If e � f for an idempotent f ∈ G R/J , then either e f 6= 0 or eR f = 0. If e f 6= 0,

then e′ f 6= 0, since e′ = e and eJ f = 0. On the other hand, eR f = 0 implies that also
e′ R f = 0, so e′ � f . So we see that e′ can only be connected to those idempotents
in G R/J that e is connected to.

If e ∼ f for an idempotent f ∈ G R/J , then eR f 6= 0 and thus also e′ R f 6= 0, again
since e′ = e. However, e f = 0 implies e′ f = 0, since eJ f = 0, and thus e′

∼ f .
Therefore e ∼ f for two idempotents in G(R) if and only if e ∼ f in G(R/J ). By

Theorem 17, G(R/J ) is connected if and only if it is a matrix ring of dimension at
least three.

We also note that, for connected graphs, the diameter of G(R) equals the diameter
of G(R/J ), so the equality also follows directly from Theorem 17. 2

EXAMPLE 19. If we omit the condition eJ f = 0 in the previous corollary the
assertion no longer holds. Namely, consider the ring of upper triangular matrices of
dimension at least three. Its graph is connected, but since the Jacobson radical is equal
to the set of all strictly upper triangular matrices, the factor ring R/J is a direct sum
of fields. Of course, ei Je j 6= 0 for every i < j (where ei , e j denote the canonical
idempotent matrices).
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