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P E R T U R B E D S C H R Ô D I N G E R E Q U A T I O N S 

BY 

TAKASI KUSANO AND MANABU NAITO 

1. Introduction. We are concerned with the oscillatory behavior of the 
second order elliptic equation 

(1) Au + c(x, u) = f(x), xeE, 

where A is the Laplace operator in n-dimensional Euclidean space Rn, E is an 
exterior domain in jRn, and c:ExR->R and f:E->R are continuous 
functions. 

A function v : E —> .R is called oscillatory in E if v(x) has arbitrarily large 
zeros, that is, the set {xeE: v(x) = 0} is unbounded. For brevity, we say that 
equation (1) is oscillatory in E if every solution u e C2(E) of (1) is oscillatory in 
E. 

Our purpose here is to establish criteria for equation (1) with / ( x ) ^ 0 to be 
oscillatory in E. This work has been motivated by the observation that there 
seems to be no literature except for Allegretto [1] dealing with oscillation 
theory of perturbed elliptic equations. We note that the unperturbed case of (1) 
(/(x) = 0) has so far been studied in great detail; see e.g. Kreith [6] and 
Swanson [9]. 

In Section 2, with the help of the method of spherical means introduced by 
Noussair and Swanson [7], the problem under study is reduced to the problem 
of oscillation of ordinary differential inequalities of the form 

(2) ( f n ~ y )' + H(r)0(y ) < F(t), F(t) £ 0. 

Section 3 develops new oscillation criteria for a class of perturbed ordinary 
differential inequalities including (2). Thus Section 3 has independent interest. 
The desired oscillation criteria for equation (1) are derived in Section 4 by 
specializing the results of Section 3 to inequalities of the form (2). 

2. Reduction to a one-dimensional oscillation problem. We employ the 
notation: 

Et = {xeRn:\x\>t}, St={xeRn :\x\ = t}, t>0, 

where |x| denotes the Euclidean length of x. 
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THEOREM 1. Suppose that c(x, u) satisfies the following conditions: 
(i) c(x, —u) = —c(x, u) for xeE and u>0; 

(ii) c(x, M)>H( |X | )4>(U) for xeE and u>0, where H\ [0,oo)-» (0,QO) is con­
tinuous and 3> : (0, o°)—»(0, °°) is continuous and convex. 

Let F(t) be the spherical mean of f(x) over St9 i.e. 

(3) F ( 0 = - i = r f f(x)dS% 

vJ jst 

where an is the area of the unit sphere Sx. 
Then equation (1) is oscillatory in E if the ordinary differential inequalities 

(4) ( f n - y ) ' + F^HitWy) < fn _ 1F(0, 

(5) ( r -V) ' + r_1H(0<i>(y) < - r^FU) , 

are oscillatory att = <x> in the sense that neither (4) nor (5) has a solution which is 
positive on [t0,°°) for any f 0>0. 

Proof. Suppose that equation (1) has a solution u{x) which is positive in ET 

for some T > 0 . Let U(t) denote the spherical mean of u(x) over St. Then, by a 
result of Noussair and Swanson [7], U(t) satisfies 

(r-'U'it))^— f Au(x)dS, f>T , 

from which, using (1), condition (ii) and the convexity of <ï>, we see that 

(rn_1 LT(r))' < - r^HCO^K U(0) + 'n_1F(r), * ̂  T. 

This shows that U(t) is a positive solution of inequality (4). Similarly, it can be 
shown that if u(x) is a negative solution of (1) in ET, then the function —U(t) is 
a positive solution of inequality (5). This contradicts the hypothesis of the 
theorem, and the proof is complete. 

3. Oscillation of ordinary differential inequalities. We now consider the 
ordinary differential inequality 

(6) (q(t)(p(t)y)y + h(t,y)<r(t), 

in generalization of (4) and (5). The objective of this section is to obtain 
conditions under which inequality (6) is oscillatory at t = °° in the sense that it 
has no eventually positive solution. The following conditions are always as­
sumed to hold: 

(a) p, q : [a, <») -^ (0, oo) and r:[a,<x>)-+ R are continuous, and 

P dt 

(7) -7^= 0°; 
Ja q(t) 

(b) h :[a, °°)x(0, <»)—>(0, °°) is continuous and non-decreasing in the second 
variable. 
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We define 

(8) Q ( U ) = ( " 7 ^ , M e [a, oo). 

THEOREM 2. Suppose that 

(9) lim inf -^—- \ Q(t, s)r(s) ds = -°° 
t, 1 ) JT 7-^T Q(t, 

/or a// sufficiently large T>a. 
Then inequality (6) has no solution which is positive on [t0, a>) /or any t0> a. 

Proof. Let y(t) be a positive solution of (6) defined on [to,00). From (6) we 
have 

(q(t)(p(t)y(t)yy = r(t)-h(t,y(t))^r(t), t>t0. 

Integrating the above inequality twice, we get 

f * Wc f * 1 fs 

= C! + c2OUto)+ Q(t, s)r(s) ds, f>f0, 
•'to 

where cx and c2 are constant. We divide the above by Q(t, t0) and let t—>°°. In 
view of (9) we then conclude that 

r • «PCM') ™ hm inf —— = -oo 
*-~ 0(r, r0) 

which contradicts the assumption that y(t) is positive on [f0, °°). This completes 
the proof. 

REMARK 1. In Theorem 2 the unperturbed inequality 

(10) (q(t)(p(t)y)')'+ h(t, y)^0 

may or may not have eventually positive solutions. 

THEOREM 3. Suppose that inequality (10) has no eventually positive solution. 
Suppose moreover that there exists a continuous function p : [a, °°) -> JR which is 
oscillatory and satisfies 

(11) (q(t)(p(t)p(t)yy = r(t), f>a , 

and 

(12) liminf[p(f)p(t)] = 0. 

Then inequality (6) has no eventually positive solution. 
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Proof. Suppose that (6) has a solution y(f) which is positive on [t0,
œ). Put 

z(t) = y(t) — p(t). Then, in view of (11), z(t) satisfies 

(13) (q(t)(p(t)z(t))y < -h(t, y(t)) < 0, f > r0. 

It follows that z(t) is eventually of constant sign, say for t>tl>t0. If z(t)< 
0, t>tx, then y(f)<p(f), £>f1? which implies that y(t) takes negative values in 
any neighborhood of infinity. Thus we must have z(t)>0 for t>tx. We note 
that (p(t)z(t))'>0 for t>tx. 

An integration of (13) yields 

(14) q(t)(p(t)z(t))'>\ h(s,y(s))ds, t>tx. 

Dividing (14) by q(t) and integrating from tx to f, we obtain 

p(f)z(f)=>c+[ —- I h(a, y (a)) dads, t>tu 

or 

p ( 0 y ( 0 ^ c + p(r)p(r)+ — - h(a,y(a)) dads, t>tu 
Ju q(s)Js 
]
tl q(s), 

where c = p(f1)z(f1)>0. Using (12), we see that there is a T>tt such that 

(15) p ( 0 y ( 0 ^ + f ~ M h(a,y(a))dads, t>T. 
2 JT q(s) Js 

We denote by w(t) the right hand side of (15) divided by p(t). Then w(f)< 
y(r), f > T , and by differentiation 

(16) (q(t)(p(t)w(t))')' + h(t, y(0) - 0, r - T. 

Noting that h(f, w(0)^M*5 y(0), f — T, we conclude that w(t) is an eventually 
positive solution of the differential inequality (10). This contradiction proves 
the theorem. 

REMARK 2. The idea of employing the function p(t) satisfying (11) follows 
Kartsatos [3,4]. It can be shown [2] that inequality (10) has an eventually 
positive solution if and only if so does the differential equation 

(17) (q(t){p(t)yYY +Ht, y) = 0. 

4. Oscillation of the partial differential equation (1). Let us now turn to the 
original elliptic equation (1), for which effective oscillation criteria are derived 
on the basis of the results of the preceding sections. 

According to Theorem 1 equation (1) is oscillatory in an exterior domain E 
if the ordinary differential inequalities (4) and (5) have no eventually positive 
solution. Inequality (4) [or (5)] is formally a special case of (6) in which 
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p(0 = l, q(t) = tn~\ fc(l,y) = r - 1 H(f)*(y) , r(t) = r ^ F f r ) [or - t ^ T O ] , but 
condition (7) is violated in case n > 3 . To avoid this difficulty we use the fact 
that 

( t n - l y y = r - 2 ( r 3 - n ( r - 2 y y y 

to replace (4) and (5) by the following equivalent inequalities: 

(18) (t3-n(tn-2y)y + tH(t)<!>(y)<tF(t), 

(19) (t3-n(tn-2y)'y+tH(t)<t>(y)<-tF(t). 

THEOREM 4. Suppose that c(x, u) satisfies the conditions of Theorem 1. Let 
F(t) denote the spherical mean of f(x) defined by (3). Suppose that if n = 2, then 

(20) lim inf f ( 1 - |^Li) sF(s) ds = -oo, 
f-oo J T V lOgf/ 

(21) l imsupf ( l - ^ W ( s ) d s = oo, 
,_*» JT \ log f / 

/or a// /arge T, and if n > 3 , then 

(22) lim inf [ [ l - f - Y HsF(s) ds = -oo, 

(23) l imsupf [ l - ( " ) n lsF(s)ds=«>, 

/or a// /arge T. Then equation (1) is oscillatory in E. 

Proof. Inequality (18) [or (19)] is a special case of (6) in which p(t) = tn~2, 
q(t) = t3-n, h(t,y) = tH(t)<f>(y), r(t) = tF(t) [or -tF(t)]. It is clear that (7) is 
satisfied and the function Q(f, s) defined by (8) becomes 

Q(t,s)=< 

Hence we are able to apply Theorem 2 to see that neither (18) nor (19) has an 
eventually positive solution. The desired conclusion now follows from Theorem 
1. This completes the proof. 

EXAMPLE 1. Consider the equation 

1 -, . , (24) Au +—j-T u = \x\ sin \x\ 
4|x | 

in Ex = {xeR3 : | x |> l} . The spherical mean over St of /(x) = |x| sin |x| is 

logf 

1 
1 

- logs 

- ( r~ 2 - s" -2) 

(n 

(n 

= 2), 

a=3). 
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F(t) = i sin r, and it is easy to verify that 

limsup ( l — ]s 2 s insds = < 

lim inf I (1 — )s2 sin s ds = -o° 

and 

for all large T > 1 . It follows from Theorem 4 that equation (24) is oscillatory 
in E1^R3. We note that the unperturbed equation 

1 
Aw+—— u3 = 0 

4\x\ 

has a positive solution W(JC) = |JC|~1/2. 

Applying Theorem 3 we have the second oscillation theorem for equation 

(i). 

THEOREM 5. Suppose that c(x, u) satisfies the conditions of Theorem 1. Let 
F(t) denote the spherical mean of f(x) defined by (3). Equation (1) is oscillatory 
in E if the differential inequality 

(25) ( r 3 - n ( r " 2 y)T + tff(r)4>(y) < 0 

has no eventually positive solution and if there exists a C2 function p : [1, °°) —> R 
with the following properties: 

(i) p{t) is oscillatory; 

(ii) (f3-w(r-2
P(0)T = tF(0, t ^ i , 

(iii) limt__[t"-2p(f)] = 0. 

EXAMPLE 2. Consider the equation 

2 3 
(26) Aw +7-^ u = T-^ [sin(log |x|) -cos(log \x\)] 

\x\ \x\ 
in E1={xeR3 : | x |> l} . The associated ordinary differential inequality is 

( fy)"+^y<0, 

which has no eventually positive solution. It is easily verified that the function 

_3_ 

5t2 P(0 = 7 ^ [ 2 s i n ( l o ê 0 + cos(log 0] 

satisfies conditions (i)-(iii) of Theorem 5. Hence all solutions of equation (26) 
are oscillatory in Ex <=R3. One such solution is u{x) = sin(log |X|)/|JC|2. Theorem 
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4 is not applicable to (26). Note that the homogeneous equation 

2 
Aw+—7z u = 0 

1*1 
is oscillatory in Ex; see Noussair and Swanson [7]. 

REMARK 3. Our results cannot cover an important class of sublinear equa­
tions of the form 

(27) Au+ c(x) |u | 7 sgnu =/ (*) , 0 < y < l . 

The unperturbed case of (27) has been studied by Kitamura and Kusano [5] 
and Noussair and Swanson [8], but their techniques fail when the non-
vanishing perturbation f(x) is present. 
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