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Abstract Given the tropicalization of a complex subvariety of the torus, we define a morphism between
the tropical cohomology and the rational cohomology of their respective tropical compactifications. We
say that the subvariety of the torus is cohomologically tropical if this map is an isomorphism for all closed
strata of the tropical compactification.

We prove that a schön subvariety of the torus is cohomologically tropical if and only if it is wunderschön
and its tropicalization is a tropical homology manifold. The former property means that the open strata
in the boundary of a tropical compactification are all connected and the mixed Hodge structures on
their cohomology are pure of maximum possible weight; the latter property requires that, locally, the
tropicalization verifies tropical Poincaré duality.

We study other properties of cohomologically tropical and wunderschön varieties, and show that in a
semistable degeneration to an arrangement of cohomologically tropical varieties, the Hodge numbers of
the smooth fibers are captured in the tropical cohomology of the tropicalization. This extends the results
of Itenberg, Katzarkov, Mikhalkin and Zharkov.
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1. Overview

The tropicalization process transforms algebraic varieties into piecewise polyhedral

objects. While losing part of the geometry, some of the invariants, such as dimension
and degree, of the original variety can still be computed from its tropicalization. For the

complement of a hyperplane arrangement, Zharkov shows that the tropical cohomology

of the tropicalization computes the usual cohomology of the variety [49]. Moreover,
Hacking relates the top-weight mixed Hodge structure of a variety to the homology of its

tropicalization [18]. We are interested in determining for which varieties the tropicalization

remembers the cohomology. Part of our motivation to study this question comes from the
work of Deligne [12] in which he gives a Hodge-theoretic characterization of maximal

degenerations of complex algebraic varieties. We are more specifically interested in

determining how tropicalization is related to maximal degenerations, as this question is

intimately related to open problems on large-scale limits of families of complex algebraic
varieties; see Section 8.4 for a discussion.

We introduce the relevant concepts and notation before stating our results. Let N be

a lattice of rank n, M the dual lattice, and T = Spec(C[M ]) ∼= (C∗)n the corresponding
torus. We let NR and NQ denote N ⊗Z R and N ⊗Z Q, respectively. Let X ⊆ T be a

non-singular subvariety of T and denote by X = trop(X) its tropicalization [35, 34]. A

unimodular fan Σ in NR with support X gives rise to a complex toric variety CPΣ and a
tropical toric variety TPΣ. Taking the closures of X and X in CPΣ and TPΣ, respectively,

gives compactifications X and X. We note that the compactifications depend on the

choice of the fan Σ whose support is trop(X); however, we have chosen not to indicate

it in the notation for X or X. Here and elsewhere in the paper, we use bold letters for
algebraic varieties and regular letters for tropical varieties.

For a complex variety Z, we denote by H•(Z) the cohomology ring of Z with coefficients

in Q. For a tropical variety Z, the k -th tropical cohomology group of Z can be defined
as Hk(Z) :=

⊕
p+q=kH

p,q(Z), where Hp,q(Z) is the (p,q)-th tropical cohomology group

with Q-coefficients introduced in [20]; see Section 2.6. The tropical cohomology groups

together form a ring H•(Z) =
⊕

kH
k(Z), the product structure being induced by the

cup product in cohomology [36, 17]. We note that the tropical cohomology of Z depends

only on Z. In particular, if Z = trop(Z), no information about Z beyond trop(Z) goes

into the recipe for computing H•(trop(Z)).
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Cohomologically tropical varieties 3

The question addressed in this paper can be informally stated as follows: Under which
conditions can the cohomology of X be related to the tropical cohomology of trop(X)?

Let X, Σ and X be as above, with X and X the corresponding compactifications. We

define τ∗ to be the ring homomorphism τ∗ :H•(X)→H•(X) between the cohomologies
of X and X, defined by composing the isomorphism Hk,k(X) ∼= Ak(CPΣ), proved in [7,

Theorem 1.1], with the cycle class map Ak(CPΣ)→H2k(CPΣ) and the pullback morphism

on cohomology associated to the embedding X ↪→ CPΣ. The groups Hp,q(X) are sent to

zero by τ∗ for p �= q. We refer to Section 3 for more details.
In the following, we will use the map τ∗ not only on X and X, but also on some of their

subvarieties: the toric varieties CPΣ and TPΣ are endowed with natural stratifications

induced by the cone structure of Σ. Each cone σ ∈Σ gives rise to the torus orbits Tσ and
Nσ

R in CPΣ and TPΣ, respectively, with corresponding latticeNσ. The closures in CPΣ and

TPΣ of these orbits are denoted by CP
σ
Σ and TP

σ
Σ, respectively, and are isomorphic to the

complex and tropical toric varieties associated to the star fan Σσ of σ in Σ. Intersection
with these strata induces a stratification of X and X. We denote by Xσ =X∩Tσ and

Xσ = X ∩Nσ
R the stratum associated to σ ∈ Σ, and by X

σ
and Xσ their closures in

X and X, respectively. The stratum Xσ is a closed subvariety of the torus Tσ, and its

tropicalization coincides with Xσ. Moreover, the star fan Σσ is a unimodular fan with
support Xσ. We thus obtain a morphism H•(Xσ)→H•(X

σ
) that we also denote by τ∗.

Definition 1.1. Let X ⊆ T be a subvariety, Σ a unimodular fan with support
X = trop(X), and X and X the corresponding compactifications. We say that X is

cohomologically tropical with respect to Σ if the induced maps τ∗ : H•(Xσ) → H•(X
σ
)

are isomorphisms for all σ ∈ Σ.

We show that the property of being cohomologically tropical for schön subvarieties of

tori does not depend on the chosen unimodular fan. Recall from [44, 18] that a subvariety
X ⊆T is schön if for some, equivalently for any, unimodular fan Σ of support trop(X),

the open strata Xσ, σ ∈ Σ, of the corresponding compactification are all non-singular.

It also implies that the compactification X is non-singular and that X \X is a simple

normal crossing divisor.

Theorem 4.4. Suppose that the subvariety X ⊆ T is schön and let X = trop(X) be its

tropicalization. The following are equivalent.

(1) There exists a unimodular fan Σ with support X such that X is cohomologically
tropical with respect to Σ.

(2) For any unimodular fan Σ with support X, X is cohomologically tropical with respect

to Σ.

Such a schön subvariety X⊆T will be called cohomologically tropical. For example, the

linear subspaces in CP
n, restricted to the torus, form a family of cohomologically tropical

subvarieties. These very affine varieties are complements of hyperplane arrangements;

see Section 8.2. A generalization is given in [40] in which Schock defines quasilinear

subvarieties of tori as those having a tropicalization which is quasilinear – in other words,
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T -stable in the language of [5]. He shows that these subvarieties are necessarily schön. It

follows from his results that quasilinear subvarieties of tori are cohomologically tropical.

We now introduce a class of subvarieties X⊆T with cohomology amenable to a tropical
description using the notion of mixed Hodge structures; see Section 2.4.

Definition 1.2. A non-singular subvariety X ⊆ T of the torus is called wunderschön

with respect to a unimodular fan Σ with support trop(X) if all the open strata Xσ of the
corresponding compactification X are non-singular and connected, and the mixed Hodge

structure on Hk(Xσ) is pure of weight 2k for each k.

In particular, a point in the torus is wunderschön. It follows from the preceding

discussion that if X is wunderschön, it is schön. Therefore, if X is the compactification
with respect to a unimodular fan Σ, the boundaryX\X is a strict normal crossing divisor.

We prove that the property of being wunderschön is independent of the fan, and that

the cohomology of a wunderschön variety is divisorial in the sense of Section 5.

Theorem 4.5. Suppose that the subvariety X⊆T is wunderschön with respect to some
unimodular fan. Then X is wunderschön with respect to any unimodular fan with support

X = trop(X).

Theorem 5.1. Let X ⊆ T be a wunderschön subvariety. Let X be the compactification
of X with respect to a unimodular fan Σ with support X = trop(X). Then the cohomology

of X is divisorial and generated by irreducible components of X\X.

A tropical variety X is called a tropical homology manifold if any open subset in X

verifies tropical Poincaré duality. For a tropical variety which is the support of a tropical
fan, this amounts to the property that for some, equivalently for any, rational unimodular

fan Σ of support X, the corresponding open strata Xσ verify tropical Poincaré duality

for all σ ∈Σ. In particular, this implies that, for any unimodular fan Σ of support X, any
open subset of the corresponding tropical compactification X verifies tropical Poincaré

duality.

A tropical fanfold X is called Kähler if for some, equivalently for any, quasi-projective

unimodular fan Σ with support X, and for any σ ∈ Σ, the Chow ring A•(Σσ) verifies the
Kähler package – that is, Poincaré duality, hard Lefschetz theorem and Hodge-Riemann

bilinear relations. Here, for a unimodular fan Σ, the Chow ring A•(Σ) coincides with the

Chow ring of the corresponding toric variety CPΣ.
We have the following main theorem on characterization of cohomologically tropical

subvarieties of tori.

Theorem 6.1. Let X ⊆ T be a schön subvariety with support X = trop(X). Then the
following statements are equivalent.

(1) X is wunderschön and X is a tropical homology manifold.

(2) X is cohomologically tropical.

Moreover, if any of these statements holds, then X is Kähler.

We deduce the following result from the above theorem.
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Theorem 6.2 (Isomorphism of cohomology on open strata). Suppose thatX⊆T is schön

and cohomologically tropical. Let Σ be any unimodular fan with support X = trop(X).

Then we obtain isomorphisms

τ∗ :Hk(Xσ) ∼−→Hk(Xσ)

for all σ ∈ Σ and all k.

Going beyond cohomologically tropical subvarieties of tori, and following the work

of [20], one can ask the following question. Which families Xt of complex projective

varieties over the complex disk degenerating at t= 0 have the property that the tropical
cohomology of their tropical limit captures the Hodge numbers of a generic fiber in the

family?

In Theorem 7.1, we weaken the condition given in [20] by showing that it suffices
to ask the open components of the central fiber to be cohomologically tropical and

schön. By Theorem 6.1, this is equivalent to asking the maximal dimensional strata to

be wunderschön and their tropicalizations to be tropical homology manifolds.
More precisely, let π : X → D∗ be an algebraic family of non-singular algebraic

subvarieties in CP
n parameterized by a punctured disk D∗ and with fiber Xt over t ∈D∗.

Let Z ⊆ TP
n be the extended tropicalization of the family (see Section 7).

By Mumford’s proof of the semistable reduction theorem [25], we find a triangulation of
Z (possibly after a base change) such that the extended family π : X→D is regular and

the fiber over zero X0 is reduced and a simple normal crossing divisor. Note that since

the extended family is obtained by taking the closure in a toric degeneration of CPn, each
open stratum in X0 will be naturally embedded in an algebraic torus.

Theorem 7.1. Let π :X→D∗ be an algebraic family of subvarieties in CP
n parameterized

by the punctured disk and let π : X→D be a semistable extension. If the tropicalization

Z ⊆ TP
n is a tropical homology manifold and all the open strata in X0 are wunderschön,

then Hp,q(Z) is isomorphic to the associated graded piece W2p/W2p−1 of the weight

filtration in the limiting mixed Hodge structure Hp+q
lim . The odd weight graded pieces in

Hp+q
lim are all vanishing.
Moreover, for t∈D∗, we have dimHp,q(Xt) = dimHp,q(Z), for all nonnegative integers

p and q.

Degenerations appearing in the previous theorem are necessarily maximal in the sense
of [12]; see Section 8.4 for more discussion of this connection.

Theorem 7.2. Notations as above, the family X→D∗ is maximally degenerate.

We refer to the earlier work of Gross-Siebert [16] on integral affine manifolds with

singularities and degenerations to arrangements of complete toric varieties, the work
of Ruddat [38] on non-necessarily maximal degenerations of Calabi-Yau varieties, and

[19, 28, 29, 39] for other interesting results connecting the topology of tropicalizations to

the Hodge theory of nearby fibers.
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2. Preliminaries

2.1. Subvarieties of the torus and tropicalization

We briefly recall the tropicalization of subvarieties of tori. Let N be a lattice of rank n,
M its dual, NR =N ⊗R, and T=TN = Spec(C[M ])∼= (C∗)n. Let X be a d -dimensional

subvariety of the torus T, so that X =V(I) for an ideal I ⊆ C[M ]. The tropicalization

of X can be described using initial ideals; see, for example, [35, Section 3.2],

trop(X) = {w ∈NR | inw(I) �= 〈1〉}.

A d -dimensional fan Σ is weighted if it comes equipped with a weight functionwt : Σd →Z,

where Σd denotes the d -dimensional cones. A tropical fan is a weighted fan which is pure
dimensional and which satisfies the balancing condition in tropical geometry [35, Section

3.3]. A fanfold is a subset of NR which is the support of a rational fan, and it is a tropical

fanfold if it is the support of a tropical fan.
The tropicalization X := trop(X) is a tropical fanfold, and any fan structure on trop(X)

is equipped with a weight function wtX induced by X. If Σ is a rational fan in NR of

support X and η is some facet of Σ, then for a generic point w in the relative interior of
η, the variety V(inw(I)) is a union of translates of torus orbits. Then, wtX(η) is equal

to the number of such torus orbit translates counted with multiplicity. This number is

invariant for generic choices of points in the relative interior of η. The tropicalization

endowed with the weight function wtX satisfies the balancing condition and thus is a
tropical fanfold in NR [35, Section 3.4].

2.2. Tropical compactifications of complex varieties

We now briefly review the notion of tropical compactifications introduced in [44]. Let Σ

be a fan in NR, and CPΣ the associated toric variety. There is a bijection between cones

in Σ and torus orbits in CPΣ. For each σ ∈ Σ, we denote by Tσ the corresponding torus
orbit. The closure TXTσ is the disjoint union

⊔
γ⊇σT

γ , for cones γ ∈ Σ containing σ.

For X⊆T a subvariety and its closure X in CPΣ, we have X=
⊔

σ∈ΣTσ∩X. We denote

the stratum Tσ ∩X by Xσ, and its closure by X
σ
. Note that X

σ
=

⊔
γ⊇σX

γ .

For Σ a unimodular fan with support equal to X = trop(X), the closure X of X in CPΣ

is compact, giving a tropical compactification [44, Proposition 2.3]. Moreover, for such a Σ,

the compactification X of X in CPΣ is said to be schön if the torus action T×X→CPΣ is
non-singular and surjective, in which caseX is non-singular, and the boundaryD :=X\X
is a simple normal crossing divisor [44, Theorem 1.2]. The compactification X is schön

if and only if Xσ is non-singular for each σ ∈ Σ [18, Lemma 2.7]. If X admits a schön

compactification, then any unimodular fan with support equal to X will provide a schön
compactification [31, Theorem 1.5], and in this case, we will say that X is schön.

Example 2.1. For f =
∑

I∈Δ(f) aIx
I ∈C[x±

1 , . . . ,x
±
n ] a Laurent polynomial, it is pointed

out in [44, p. 1088] that the very affine hypersurface X= V (f) being schön is equivalent

to the condition that f is nondegenerate (with respect to its Newton Polytope), a concept

studied in [46, 45] and [26]. For each face γ ∈ Δ(f) of the Newton Polytope of f, one
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defines fγ =
∑

I∈γ aIx
I . Then f is nondegenerate if, for all γ ∈Δ(f), the polynomials

x1
∂fγ
∂x1

, . . . ,xn
∂fγ
∂xn

share no common zero in (C∗)n. This implies that X = V (f) is schön by, for instance,

[46, Lemma 10.3].

2.3. Canonical compactifications of tropical varieties

Let Σ be a rational fan in NR. The dimension of a cone σ will be denoted by |σ|, and
we denote by Σk the set of cones of Σ of dimension k. The unique cone of dimension 0

is denoted 0. Let γ,δ be two faces of Σ. We write γ � δ if γ is a face of δ. For δ ∈ Σ a

cone, the saturated sublattice parallel to δ is denoted Nδ, and the quotient lattice N/Nδ

is denoted N δ, with quotient map πδ :N →N δ. By a slight abuse of terminology, we also

denote by πδ the map of real vector spaces NR →N δ
R. Furthermore, the star at δ is the

fan Σδ in N δ
R whose cones are given by

{
πδ(σ) | δ � σ

}
.

We briefly review the construction of tropical toric varieties, referring to [35, Chapter

6.2] for a detailed construction. Let T=R∪{+∞} denote the tropical semi-field. Denote

by σ∨ the semigroup of element of MR which are nonnegative on σ. For each σ ∈ Σ, one

defines U trop
σ := Homsemigroup(σ

∨∩M,T), which can be identified with the set
⊔

δ�σN
δ
R.

We equip U trop
σ with the subset topology of the product topology on the infinite product

Tσ∨∩M . For σ unimodular, U trop
σ is isomorphic to Rn−|σ|×T

|σ|. For δ � σ, the inclusion

identifies U trop
δ as an open subset of U trop

σ . The tropical toric variety TPΣ associated to Σ
is the space given by gluing the U trop

σ along common faces, with underlying set
⊔

σ∈ΣNσ
R .

Let Σ be a fan with support X. The canonical compactification X of X relative to the

fan Σ is the closure of X as a subset of its tropical toric variety TPΣ. Furthermore,X has a
cellular structure, which we denote Σ; see Section 2.6 and [7, Section 2] for details. For any

cone σ ∈Σ, we denote by Xσ the fanfold associated to Σσ. The canonical compactification

Xσ of Xσ is canonically isomorphic to the closure of Xσ when considered as a subset in

Nσ
R ⊆TPΣ, and we will denote this compactified fanfold byXσ, when Σ is understood from

the context. Moreover, there is an inclusion of canonical compactifications i :Xσ ↪→Xδ

for δ � σ.

When X = trop(X), the tropical canonical compactification X relative to any fan Σ
with support X is the same as the extended tropicalization of the closure X ⊆ CPΣ in

the sense of [23, 37, Section 3].

2.4. Mixed Hodge structures

Keeping the notation from Section 2.2, let X ⊆ T be a non-singular subvariety, and Σ
a unimodular fan supported on the tropicalization X = Trop(X), so that we obtain a

tropical compactification X of X. Moreover, suppose that the boundary D :=X\X is a

simple normal crossing divisor. We have that D=
⋃

ζ∈Σ1
X

ζ
.

By [11, Section 3], the logarithmic de Rham complex Ω•
X
(logD) induces an isomorphism

Hk(X;Q)∼=Hk(X;Ω•
X
(logD)),
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for each k. Moreover, there is a weight filtration W• on the logarithmic de Rham complex,
which gives a mixed Hodge structure on Hk(X). This is given by the Deligne weight

spectral sequence

E−p,q
1 =Hq−2p(

⊔
σ∈Σp

X
σ
) =⇒ Hq−p(X),

which degenerates on the E2-page. Below, we display the rows E•,2k+1
1 and E•,2k

1 , where

the rightmost elements are in position (0,2k+1) and (0,2k), respectively.⊕
σ∈Σk

H1(X
σ
)

⊕
δ∈Σk−1

H3(X
δ
) · · ·

⊕
ζ∈Σ1

H2k−1(X
ζ
) H2k+1(X)

⊕
σ∈Σk

H0(X
σ
)

⊕
δ∈Σk−1

H2(X
δ
) · · ·

⊕
ζ∈Σ1

H2k−2(X
ζ
) H2k(X).

All the differentials are sums of Gysin homomorphisms with appropriate signs. Recall
that, given a unimodular fan Σ, and a pair of faces σ,δ ∈ Σ such that δ is a codimension

one face of σ, the inclusion map i : X
σ → X

δ
induces a restriction map in cohomology

i∗ :H•(X
δ
)→H•(X

σ
), with dual map i∗ :H

•(X
σ
)∗ →H•(X

δ
)∗. Applying the Poincaré

duality for both X
σ
and X

δ
gives a map PD−1

X
δ ◦ i∗ ◦PDX

σ :H•(X
σ
)→H•+2(X

δ
), called

the Gysin homomorphism and denoted Gysσ�δ.

Since the Deligne spectral sequence degenerates at the E2 page, the cohomology of the

rows E•,2k+1
1 and E•,2k

1 yields the following associated graded elements

GrW2k+1(H
k+1) GrW2k+1(H

k+2) · · · GrW2k+1(H
2k) GrW2k+1(H

2k+1)

GrW2k(H
k) GrW2k(H

k+1) · · · GrW2k(H
2k−1) GrW2k(H

2k),

(1)

whereHk :=Hk(X) and GrWl (Hk) denotes the weight l part of the mixed Hodge structure

on Hk.

Recall that a mixed Hodge structure H is pure of weight n if GrWi (H) = 0 for i �= n. A
mixed Hodge structure H is Hodge-Tate if GrWk (H) is of type (l,l) if k = 2l and 0 for k

odd; see, for example, [12, p. 689].

2.5. Wunderschön varieties

We now consider wunderschön varieties X ⊆ T as introduced in Definition 1.2. As we
noted previously, wunderschön varieties are schön. In addition, we have the following.

Proposition 2.2. If a non-singular subvariety X⊆T is wunderschön with respect to Σ,
then the weight function of the tropicalization wtX is equal to one on all top dimensional

faces η of Σ.

Proof. The weight wtX(η) is equal to the intersection multiplicity of X with the toric
stratum CPΣη . In other words, it is the number of points in the variety X

η
counted with

multiplicities. Since X is wunderschön, the variety X
η
must consist of a single point.

Hence, for all facets η, we have wtX(η) = 1.
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Figure 1. E1-page from Example 2.5.

A consequence of the wunderschön property is that, for each σ ∈ Σ, the even rows of

the E2 = E∞-page for Xσ, taking a priori the form shown in (1), are in fact zero except

in the leftmost position, which implies that Hk(Xσ) =GrW2k(H
k(Xσ)). Moreover, the odd

rows of the E1-page are all identically zero by the following lemma.

Lemma 2.3. Let X ⊆ T be a wunderschön variety with respect to Σ. Then
H2k−1(X

σ
) = 0 for k = 1, . . . , dim(X

σ
) and all σ ∈ Σ.

Proof. The property is true for a wunderschön point. By induction on dimension, we
have H2k−1(X

σ
) = 0 for k = 1, . . . , dim(X

σ
) and all cones σ except the central vertex

0, so that it remains to prove that H2k−1(X) = 0 for k = 1, . . . , dim(X). For each

such k, the (2k− 1)-th row of the E2-page of the Deligne spectral sequence is given
by E0,2k−1

2 = H2k−1(X) = GrW2k−1(H
2k−1(X)) and all other terms are 0. Since X is

wunderschön, GrW2k−1(H
2k−1(X)) = 0, and so H2k−1(X) = 0.

Since the E2-page is the cohomology of the E1-page, this proves the following lemma.

Lemma 2.4. For X ⊆ T a wunderschön variety with respect to Σ, and for each cone
σ ∈ Σ and each k, we have the following exact sequences

0−→Hk(Xσ)
res−−→

⊕
μ�σ|μ|=|σ|+k

H0(X
μ
)

Gys−−→
⊕

ν�σ|ν|=|σ|+k−1

H2(X
ν
)

Gys−−→ ·· ·

· · · Gys−−→
⊕

ξ�σ|ξ|=|σ|+1

H2k−2(X
ξ
)

Gys−−→H2k(X
σ
)−→ 0,

where res denotes the logarithmic residue map and Gys denotes a signed sum of suitable

Gysin maps.

Example 2.5 (Wunderschön curves are rational). We classify wunderschön curves

X⊆T. A tropical compactification X consists of adding points to X. Points have pure

mixed Hodge structure on their cohomology. Thus, for X to be wunderschön with respect
to a fan Σ, it is necessary that each stratum Xζ for ζ ∈ Σ1 be connected (i.e., consists

of a single point). The Deligne weight spectral sequence degenerates on the E2 page,

and is shown in Figure 1 and Figure 2. Note that H2(X) is trivial. Moreover, if X is
wunderschön, then H1(X) = GrW1 (H1(X)) must be trivial.

Therefore, a non-singular curve X ⊆ T is wunderschön if and only if the curve X is

isomorphic to CP1 and it meets each toric boundary divisor of CPΣ in only one point.
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Figure 2. E2-page from Example 2.5.

We conclude that the only wunderschön (open) curves are complements of a finite set of

points in a non-singular rational curve.

2.6. Tropical homology and cohomology

We now briefly sketch the theory of tropical homology and cohomology, and refer to [21,

22, 4, 7, 20, 2, 17] for details. We work with Q-coefficients.
Let Σ be a rational fan in NR with support X. Let X be the closure of X inside the

tropical toric variety TPΣ. The closure X has a cellular structure Σ where the cells of Σ

consist of the closures of the cones in Σσ for all σ ∈ Σ. In particular, each face of Σ is
indexed by a pair of cones σ,γ ∈ Σ satisfying γ � σ, and denoted Cσ

γ ∈ Σ. For each face

Cσ
γ ∈ Σ, the p-th multi-tangent space Fp(C

σ
γ ) (with Q-coefficients) is defined as

Fp(C
σ
γ ) :=

∑
η�γ

p∧
(Nη/Nσ)⊗Q⊆

p∧
Nσ

Q .

Moreover, for α � β two faces of Σ, there is a map ιβ�α : Fp(β) → Fp(α), which is an
inclusion if both faces lie in the same subfan Σσ for some σ, or if α=Cσ

η and β =Cσ′

η with

η � σ � σ′, then ιβ�α is induced by the projection Nσ′ →Nσ. Generally, the map ιβ�α

is defined as compositions of such inclusions and projections. Furthermore, by dualizing,

we obtain the p-th multi-cotangent spaces Fp(α) and reversed morphisms.

By selecting orientations for each of the cones α ∈ Σ, we obtain relative compatibility
signs sign(α,β) ∈ {±1} for α ≺ β with |β| = |α|+1. We may thus use the multi-tangent

spaces to define a chain complex

Cp,q(Σ) :=
⊕
α∈Σq

Fp(α),

that is, summing over faces α of dimension q in Σ, with differentials ∂q := Cp,q(Σ) →
Cp,q−1(Σ) defined component-wise as the maps sign(α,β)ιβ�α when α ≺ β and
|β|= |α|+1, and defined to be 0, otherwise. Similarly, by dualizing everything, we
obtain a cochain complex Cp,q(Σ) for the multi-cotangent spaces.

The homology groups Hp,q(Σ) := Hq(Cp,•(Σ)) of the complex Cp,•(Σ) are invariants

of the canonically compactified support X of the support X of the fan Σ. Therefore,
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we define the tropical homology of X as the homology Hp,q(X) := Hq(Cp,•(Σ)) of the
complex Cp,•(Σ). The tropical cohomology of X is Hp,q(X) :=Hq(Cp,•(Σ)).
In fact, tropical homology and cohomology can be defined for any rational polyhedral

space. Moreover, there are various equivalent descriptions of tropical (co)homology in

terms of cellular, singular and sheaf theoretic terms [20, 36, 17]. For any rational
polyhedral space Z, we set

Hk(Z) :=
⊕

p+q=k

Hp,q(Z).

For example, for a fanfold X, the tropical homology is Hp,q(X) = Fp(0) if q = 0 and 0

otherwise, and the tropical cohomology of X is Hp,q(X) =Fp(0) if q = 0 and 0 otherwise
[22, Proposition 3.11].

If X is a tropical fanfold, the balancing condition implies the existence of a fundamental

class [X] ∈ Hd,d(X), which induces a cap product � [X] : Hp,q(X) → Hd−p,d−q(X) for
each p,q ∈ {0, . . . ,d}. When these maps are isomorphisms for all p and q, the variety X is

said to satisfy tropical Poincaré duality.

Definition 2.6. A tropical fanfold X is called a tropical homology manifold if one of the

three following equivalent conditions hold:

• There exists a unimodular fan Σ with support equal to X such that each of the
canonical compactifications Xσ satisfies tropical Poincaré duality, for all cones
σ ∈ Σ.

• For any unimodular fan Σ with support equal to X, each of the canonical
compactifications Xσ satisfies tropical Poincaré duality, for all cones σ ∈ Σ.

• Any open subset U of X satisfies tropical Poincaré duality – that is, the tropical
Poincaré duality induces an isomorphism between the tropical cohomology and
the tropical Borel-Moore homology of U (see [22, 21] for details).

A tropical variety Z is called a tropical homology manifold if any open subset U of Z

verifies tropical Poincaré duality. here

This definition corresponds to the notion of homological smoothness in [6] and to local

tropical Poincaré duality spaces in [2]. The equivalence of the three statements for tropical
fanfolds is nontrivial and follows from Theorems 1.2 and 1.3 in [6], and Theorem 1.8 of

the article [7].

2.7. Chow rings of fans

We now recall some facts about the Chow ring of a fan; see, for instance, [5] for more

details.

Let Σ be a unimodular fan in a vector space NR. The Chow ring A•(Σ) is the quotient
ring

A•(Σ) :=Q[xζ | ζ ∈ Σ1]
/
(I+J)

with a variable xζ for each ray ζ ∈ Σ1. Here, I is the ideal generated by all monomials

xζ1 · · ·xζl such that the rays ζ1, . . . ,ζl do not form a cone of Σ, and J is the ideal generated
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by the expressions
∑

ζ∈Σ1
〈m,eζ〉xζ , where eζ ∈N is the primitive vector of the ray ζ and

m ranges over elements of the dual lattice M.

For σ ∈ Σ, we define xσ := xζ1 · · ·xζk , where ζ1, . . . ,ζk are the rays of σ. As a vector
space, A•(Σ) is generated by xσ, σ ∈ Σ. For a pair of cones δ � σ, there is a Gysin

map Gysσ�δ : A•(Σσ) → A•+|σ|−|δ|(Σδ). This map is defined by mapping xη′ ∈ Σσ to

xη′xζ1 · · ·xζr , where η′ is a face of Σσ, η is the corresponding face in Σδ, and ζ1, . . . ,ζr are
the rays of σ not in δ.

Since Σ is unimodular, there is an isomorphism of rings ΦΣ : A•(Σ) ∼−→ A•(CPΣ) from

the Chow ring of Σ to the Chow ring of the toric variety CPΣ; see, for example, [9,
Section 3.1]. Furthermore, the cycle class map cycΣ :A•(CPΣ)→H2•(CPΣ) gives a graded

ring homomorphism to cohomology; see [14, Corollary 19.2]. Consider a subvariety X of

the torus, and assume that the support of Σ is Trop(X). Let X be the corresponding

compactification. There is the restriction map of rings r∗ :H•(CPΣ)→H•(X). Composing
all these homomorphisms gives a morphism of rings Φ :A•(Σ)→H2•(X) which maps xσ
to the class of X

σ
.

In the tropical world, there is a similar map. Let X be the support of Σ and let X be
the corresponding compactification. One can consider the composition

A•(Σ)→H2•(TPΣ)→H2•(X)

mapping xσ to the class of Xσ. By [7, Theorem 1.1], this composition induces an

isomorphism of rings
⊕

kA
k(Σ) ∼−→

⊕
kH

k,k(X). We define the inverse map Ψ :H•(X)→
A•/2(Σ) by mapping (p,q)-classes to zero if p �= q. Here, by convention, Ak/2(Σ) is trivial
for odd k. If Σ is a tropical homology manifold, Ψ is an isomorphism by [7, Theorem 1.3];

that is, Hp,q(X) is trivial for p �= q.

Kähler package. We recall the Kähler package for Chow rings of fans; see [5]. Assume
Σ is tropical and quasi-projective; that is, there exists a conewise linear function f on

Σ which is strictly convex in the following sense. For any σ ∈ Σ, there exists a linear

map m ∈ M such that f −m is zero on σ and strictly positive on U \σ for some open
neighborhood U of the relative interior of σ. To such an f, one can associate the element

L :=
∑

ζ∈Σ1
f(eζ)xζ ∈ A1(Σ). These elements coming from strictly convex functions are

called ample classes. Since Σ is tropical, the degree map deg :Ad(Σ)→Q mapping xη to

wt(η) for any facet η of Σ is a well-defined morphism.

The Chow ring A•(Σ) is said to verify the Kähler package if the following holds:

• (Poincaré duality) the pairing

Ak(Σ)×Ad−k(Σ) → Q,
a,b �→ deg(ab),

is perfect for any k ;
• (Hard Lefschetz theorem) for any ample class L, the multiplication by Ld−2k

induces an isomorphism between Ak(Σ) and Ad−k(Σ) for all k ≤ d/2;
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• (Hodge-Riemann bilinear relations) for any k ≤ d/2 and any ample class L, the
bilinear map

Ak(Σ)×Ak(Σ) → Q,
a,b �→ (−1)k deg(Ld−2kab),

is positive definite on ker( ·Ld−2k+1 :Ak(Σ)→Ad−k+1(Σ)).

A tropical fanfold X is called Kähler if it is a tropical homology manifold and there
exists a quasi-projective unimodular fan of support X such that A•(Σσ) verifies the

Kähler package for any σ ∈ Σ. In such a case, any quasi-projective unimodular fan Σ on

X verifies the previous property (cf. [5, 6]).

2.8. Tropical Deligne resolution

Let Σ be a unimodular fan on some tropical homology manifold X. Let δ � σ be two faces

of Σ. The inclusion itrop :Xσ →Xδ of canonically compactified fanfolds, both satisfying
tropical Poincaré duality, gives a homomorphism itrop∗ :Hk(X

σ)→Hk(X
δ). Applying the

tropical Poincaré duality for both Xσ and Xδ, this gives a map PD−1

Xδ
◦ itrop∗ ◦PDXσ :

Hk(Xσ) → Hk+2(|σ|−|δ|)(Xδ), called the tropical Gysin homomorphism and denoted

Gystropσ�δ.
In [6, Theorem 1.6], it is shown that for a fanfold X which is a tropical homology

manifold and a simplicial fan Σ with support X, there are tropical Deligne resolutions,

that is, exact sequences for any k,

0−→Hk(X)−→
⊕
σ∈Σk

H0(Xσ)−→
⊕

δ∈Σk−1

H2(Xδ)−→ ·· ·

· · · −→
⊕
ζ∈Σ1

H2k−2(Xζ)−→H2k(X)−→ 0,

where the first nonzero morphism is given by integration (that is, by the evaluation

of the element α ∈ Hk(X) at the canonical multivector of each face σ ∈ Σk), and all

subsequent maps are given by the tropical Gysin homomorphisms (with appropriate signs

[6, Section 3]).

3. The induced morphism on cohomology by tropicalization

The aim of this section is to define a map relating tropical cohomology to classical
cohomology, as well as to prove Proposition 3.2, which relates Gysin maps in tropical

and classical cohomology.

Definition 3.1. Let X⊆T be a subvariety and Σ a unimodular fan with support X =

trop(X), and X and X be the compactifications of X and X with respect to Σ. We define

τ∗ :H•(X)→H•(X)

to be the ring homomorphism defined as the composition of the maps Ψ : H•(X) →
A•/2(Σ) with Φ :A•/2(X)→H•(X) from Section 2.7.
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The map τ∗ is the morphism comparing the tropical and classical cohomology in order
to define cohomologically tropical varieties in Definition 1.1.

We will now relate the classical and tropical Gysin maps through the map τ∗. This will
be useful later for comparing Deligne sequences.

Proposition 3.2. Let X = Trop(X) the be tropicalization of a subvariety X ⊆ T, Σ a

unimodular fan with support X, with σ,δ ∈Σ such that δ is a face of σ of codimension one,

giving inclusion maps X
σ →X

δ
and Xσ →Xδ. Then the following diagram commutes:

Hk(Xσ) Hk(X
σ
)

Hk+2(Xδ) Hk+2(X
δ
).

Gystropσ�δ

τ∗

Gysσ�δ

τ∗

Proof. Expanding the definition of τ∗, we obtain the following diagram:

H•(Xσ) A•/2(Σσ) H•(X
σ
)

H•+2(Xδ) A•/2+1(Σδ) H•+2(X
δ
).

Gystropσ�δ
Gysσ�δ

Φ

Φ

Ψ

Ψ

Gysσ�δ

The first square is commutative by [4, Remark 3.15], in light of [7, Theorem 1.1]. The

commutativity of the second square follows from the functoriality of the cycle class map
in light of [9, Section 3.2] and [14, Section 19.2].

Remark 3.3. Let X ⊆ TN and X′ ⊆ TN ′ be two non-singular subvarieties of tori

associated to two lattices N and N ′, with X and X ′ the corresponding tropicalizations,

and two unimodular fans Σ and Σ′ with supports X and X ′, respectively.
Assume there exists a morphism of lattices φ :N →N ′ which takes cones of Σ to cones

of Σ′ such that the induced map φ|X : X → X ′ is surjective. This makes the induced

morphism of toric varieties f :CPΣ →CPΣ′ proper [15, Section 2.4]. We denote by f trop :
TPΣ → TPΣ′ the induced morphism on tropical toric varieties.

Furthermore, suppose that f(X) =X′. SinceX is compact, we have that f(X) = f(X) =

X
′
. This also gives f trop(X) =X ′ for the canonical compactifications of X and X ′ with

respect to Σ and Σ′. One can then prove the commutativity of the following diagram:

H•(X ′)
τ∗
−→ H•(X

′
)

H•(X)−−−→
”τ∗”′

H•(X).

ftrop,∗ f∗

here

Proposition 3.4. Let X⊆T be a subvariety of complex dimension d and Σ a unimodular
fan with support X = trop(X), and X and X be the compactifications of X and X with

respect to Σ. Suppose X satisfies tropical Poincaré duality and X is non-singular. Then

τ∗ :H•(X)→H•(X) is injective.
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Proof. Both maps Ψ : H2d(X) → Ad(Σ) and Φ : Ad(Σ) → H2d(X) commute with the

corresponding degree maps. Now for both tropical and classical cohomology, the fact that
the products induce perfect pairings implies that τ∗ is injective.

4. Irrelevance of fan

To be schön, wunderschön, cohomologically tropical, Kähler or a tropical homology
manifold are all properties of the form ‘there exists a fan Σ such that a specific property

holds’ with some restriction on the fan, as unimodularity for instance. Informally, we

say that such a property is fan irrelevant if we can replace ‘there exists a unimodular
fan’ by ‘for any unimodular fan’ (this is strongly linked with the notion of T -stability
for properties of tropical fans in [5]). It is already known that to be schön, Kähler or

a tropical homology manifold is fan irrelevant. In this section, we prove Theorems 4.4
and 4.5 about the fan irrelevance of being cohomologically tropical and wunderschön. We

begin with a lemma.

Lemma 4.1. Suppose a schön subvariety X ⊆ T is cohomologically tropical. Then, the

tropicalization X = trop(X) is a tropical homology manifold.

Proof. Let Σ be a unimodular fan whose support is trop(X). It follows that the

cohomology groups H•(Xσ) are all isomorphic to the cohomology groups H•(X
σ
), and

so they verify Poincaré duality. We infer that X is a tropical homology manifold.

Let X be a schön subvariety of the torus which is cohomologically tropical. It

follows from the previous lemma and the fan irrelevance of being a tropical homology
manifold that all the cohomology groups Hp,q(X) are vanishing provided that p �= q,

for the canonical compactification X of X with respect to any unimodular fan with

support X.
Let Σ be a unimodular fan with support the fanfold X, and let σ be a cone in Σ of

dimension at least two. Let Σ′ be the barycentric star subdivision of Σ obtained by star

subdividing σ; see, for example, [5, 47]. Denote by ρ the new ray in Σ′. Let X and X ′ be
the compactifications of X with respect to Σ and Σ′, respectively.
The following theorem provides a description of the Chow ring of Σ′ in terms of the

Chow rings of Σ and Σσ.

Theorem 4.2 (Keel’s lemma). Let J be the kernel of the surjective map i∗0�σ :A•(Σ)→
A•(Σσ) and let

P (T ) :=
∏
ζ≺σ
|ζ|=1

(xζ +T ).

There is an isomorphism of Chow groups given by the map

χ :A•(Σ)[T ]
/
(JT +P (T )) ∼−→A•(Σ′)
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which sends T to −xρ and which verifies

∀ζ ∈ Σ1, χ(xζ) =

{
xζ +xρ if ζ ≺ σ,

xζ otherwise.

In particular, this gives a vector space decomposition of A•(Σ′) as

A•(Σ′)∼=A•(Σ)⊕A•−1(Σσ)T ⊕·· ·⊕A•−|σ|+1(Σσ)T |σ|−1. (1)

In addition, if X is the tropicalization of a schön subvariety X⊆T, and X and X
′
are

compactifications of X with respect to Σ and Σ′, respectively, then we have an isomorphism

H•(X
′
)∼=H•(X)[T ]

/
(JT +P (T )),

and the decomposition

H•(X
′
)∼=H•(X)⊕H•−1(X

σ
)T ⊕·· ·⊕H•−|σ|+1(X

σ
)T |σ|−1. (2)

Here, by an abuse of notation, the variable T denotes the image of −xρ in H2(X
′
) for

the induced map A•(Σ′) → H•(X
′
), J is the kernel of H•(X) → H•(X

σ
), and P (T ) is

the image of
∏

ζ≺σ|ζ|=1(xζ +T ) in H•(X)[T ] under the map A•(Σ)→H•(X).

Decomposition (1), for instance, means that for any 1 ≤ k ≤ |σ|, we have a natural

injective map

A•(Σσ) ↪→A•(Σ′ρ)
−Gysρ�0

↪−−−−−−→A•+1(Σ′)
Tk−1

↪−−−→A•+k(Σ′).

The piece A•(Σσ)T k in the above decomposition then denotes the image of the above

map. We refer to [24] and [5] for more details and the proof.

Two unimodular fans with the same support are called elementary equivalent if one
can be obtained from the other by a barycentric star subdivision. The weak equivalence

between unimodular fans with the same support is then defined as the transitive closure of

the elementary equivalence relation. We will need the weak factorization theorem, stated
as follows.

Theorem 4.3 (Weak factorization theorem [48, 33]). Two unimodular fans with the same

support are always weakly equivalent.

We are now in a position to prove the independence of being cohomologically tropical

from the chosen fan for schön varieties.

Theorem 4.4. Suppose that the subvariety X ⊆ T is schön and let X = trop(X) be its

tropicalization. The following are equivalent.

(1) There exists a unimodular fan Σ with support X such that X is cohomologically
tropical with respect to Σ.

(2) For any unimodular fan Σ with support X, X is cohomologically tropical with respect

to Σ.
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Proof. Suppose that the subvariety X of the torus T is schön. Let X = trop(X). Let Σ

be a unimodular fan with support X such that X is cohomologically tropical with respect

to Σ. Let Σ′ be a second unimodular fan with support X. We need to prove that X is
cohomologically tropical with respect to Σ′. By the weak factorization theorem, it will be

enough to assume that Σ and Σ′ are elementary equivalent.

We consider the compactifications X
′
and X ′ of X and X with respect to Σ′, and those

with respect to Σ by X and X.

Consider first the case where Σ′ is obtained as a barycentric star subdivision of Σ.

Denote by σ the cone of Σ which has been subdivided and by ρ the new ray of Σ′.
We start by explaining the proof of the isomorphism H•(X ′) ∼−→H•(X

′
). We use the

notation preceding Theorem 4.3. By Keel’s lemma, we get

A•(Σ′)∼=A•(Σ)[T ]
/
(JT +P (T )) and H•(X

′
)∼=H•(X)[T ]

/
(JT +P (T ))

with J and P (T ) as in Theorem 4.2.
By [7, Theorem 1.1] (see Section 2.7), we have isomorphisms Ap(Σ′) ∼−→Hp,p(X ′) and

Ap(Σ) ∼−→Hp,p(X) for each p. Moreover, since X is cohomologically tropical by Lemma

4.1, all the cohomology groups Hp,q(X ′) and Hp,q(X) are vanishing for p �= q.

The isomorphism H•(X ′) ∼−→ H•(X
′
) now follows from the commutativity of the

diagram in Remark 3.3, the isomorphisms H•(X) ∼−→ H•(X) and H•(Xσ) ∼−→ H•(X
σ
),

and the compatibility of the decompositions in Keel’s lemma in the tropical and algebraic

settings with respect to these isomorphisms.

Consider now an arbitrary cone δ of Σ′ and denote by η the smallest cone of Σ which
contains δ. The star fan Σ′δ of δ in Σ′ is isomorphic to a product of two fans Δ×Θ with

Δ a unimodular fan living in Nη
R and Θ a unimodular fan living in Nσ,R

/
Nδ∩σ,R. In the

case η �� σ, the first fan Δ coincides with the star fan Ση of η in Σ. Otherwise, when
η � σ, Δ is the fan obtained from Ση by subdividing the cone σ/η. The other fan Θ is 0

unless δ contains the ray ρ in which case, Θ is the fan of the projective space of dimension

|σ|− |σ∩ δ|. Similarly, X
′δ
admits a decomposition into a product Y×Z, where Y =X

η

in the case η �� σ, and Y is the blow-up of X
σ
in X

η
in the other case η � σ. And Z is

CP
0 – that is a point – unless δ contains ρ in which case Z∼= CP

|σ|−|σ∩δ|.

The isomorphism H•(X ′δ) ∼−→ H•(X
′δ
) for δ can be then obtained from the above

description, and by observing that when σ is face of η and Δ is the subdivision of η/σ

in Ση, we can apply the argument used in the first treated case above to X
η
and Xη to

conclude.

Consider now the case where Σ is obtained as a barycentric star subdivision of

Σ′. We only discuss the isomorphism H•(X ′) ∼−→ H•(X
′
); the other isomorphisms

H•(X ′δ) ∼−→ H•(X
′δ
) for δ ∈ Σ′ can be obtained by using the preceding discussion.

The cohomology of X ′ appears as a summand of the cohomology of X according to

the decomposition in Keel’s lemma. Similarly, the cohomology of X
′
is a summand of the

cohomology of X. Using the compatibility of the decompositions in the Keel’s lemma, the

isomorphism H•(X) ∼−→H•(X) induces an isomorphism H•(X ′) ∼−→H•(X
′
) between the

two summands.
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Theorem 4.5. Suppose that the subvariety X⊆T is wunderschön with respect to some
unimodular fan. Then X is wunderschön with respect to any unimodular fan with support

X = trop(X).
pagebreak

Proof. The proof of this theorem is similar to the proof given above for Theorem 4.4.

We omit the details.

5. Divisorial cohomology

In this section, we prove Theorem 5.1, which states that the cohomology of a wunderschön
variety is divisorial.

The cohomology of a non-singular algebraic variety Z is divisorial if there is a surjective

ring homomorphism Q[x1, . . . ,xs]→H•(Z) such that the image of each xi is [Di]∈H2(Z),

the Poincaré dual of some divisor Di of Z. Similarly, the Chow ring A•(Z) is divisorial
if there is a surjective ring homomorphism Q[x1, . . . ,xs] → A•(Z) such that the image

of each xi is the class of a divisor Di of Z. In this case, we also say that the (Chow)

cohomology of Z is generated by the divisors D1, . . . ,Ds. Notice that if Z is projective
and its cohomology is divisorial, then all its cohomology is generated by algebraic cycles

and the Hodge structure on the cohomology is Hodge-Tate.

The Chow ring of any non-singular complex toric variety is divisorial and generated
by the toric boundary divisors; see [9, Section 3.1] and Section 2.7. It follows, using our

previous notations, that if the the map τ∗ : H•(X) → H•(X) is a surjection, then the

cohomology of X is divisorial and generated by the irreducible components of X\X.

Theorem 5.1. Let X ⊆ T be a wunderschön subvariety. Let X be the compactification
of X with respect to a unimodular fan Σ with support X = trop(X). Then the cohomology

of X is divisorial and generated by irreducible components of X\X.

Proof. We proceed by induction on the dimension of X. If X is a point, then this is

trivial. Notice also that if X is a wunderschön curve, then X must be CP
1, and hence,

the cohomology is divisorial as H•(CP1)∼=Q[x]/〈x2〉.
We have the following commutative diagram:

⊕
ρ∈Σ1

Q[xζ | ζ ∈ Σ1 and (ρ+ ζ) ∈ Σ2]
⊕

ρ∈Σ1
H•(X

ρ
)

Q[xζ | ζ ∈ Σ1] H•+2(X),

⊕
ρ fρ

⊕
ρ−·xρ Gys

f

where ρ+ ζ is the cone generated by the rays ρ and ζ, the fρ are surjective ring

homomorphisms which send xζ to [X
ρ+ζ

], and f maps xζ to [X
ζ
]. SinceX is wunderschön,

the maps ⊕
ρ∈Σ1

Hk(X
ρ
)→Hk+2(X)
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from the Deligne weight spectral sequence are all surjections for k ≥ 0, and we deduce
that f is surjective. Therefore, the cohomology of X is divisorial and is generated by the

components of X\X.

6. Proof of the main theorem

We now turn to proving Theorem 6.1.

Theorem 6.1. Let X ⊆ T be a schön subvariety with support X = trop(X). Then the
following statements are equivalent.

(1) X is wunderschön, and X is a tropical homology manifold,

(2) X is cohomologically tropical.

Moreover, if any of these statements holds, then X is Kähler.

Proof. We begin by assuming that X is wunderschön and that X is a tropical homology

manifold, and prove that X is cohomologically tropical. We must show that the maps

τ∗ : H•(Xσ) → H•(X
σ
) are isomorphisms for all σ ∈ Σ. Notice that X is non-singular

since it is wunderschön.

If X is of dimension 0 and wunderschön, it consists of a single point. Therefore, its

tropicalization is a point of weight 1 thus X is cohomologically tropical. We proceed
by induction on the dimension of X. Therefore, we can assume that each of the Xσ is

cohomologically tropical for all cones σ ∈ Σ not equal to the origin.

Since X is schön, let D = X \X be the simple normal crossing divisor of the
compactification. The Deligne weight spectral sequence for the tropical compactification

(X,D) of X abuts in the associated graded objects of the weight filtration of the

cohomology of Hk(X). Since X is wunderschön, the E1-page of Deligne spectral sequence

extends to exact rows by Lemma 2.4, with the morphisms being sums of Gysin maps. In
the tropical setting, since X is a tropical homology manifold, there are tropical Deligne

resolutions Section 2.8, where the maps are sums of tropical Gysin maps.

Now by induction, τ∗ : H•(Xσ) → H•(X
σ
) is an isomorphism, and moreover, the

appropriate commutative diagrams using the classical and tropical Gysin maps commute

by Proposition 3.2. We may therefore identify the two exact sequences. Applying the

five lemma in the cases k ≥ 2, exactness gives us isomorphisms Hk(X) → Hk(X) and
τ∗ : H2k(X) → H2k(X). For k = 0, since X is assumed to be connected, there is an

isomorphism H0(X)∼=Q∼=H0(X), and it merely remains to show the claim for k = 1.

We consider the following commutative diagram:

0 H1(X)
⊕

ζ∈Σ1

H0(Xζ) H2(X) 0

0 H1(X)
⊕

ζ∈Σ1

H0(X
ζ
) H2(X) 0.

g

τ∗⊕
τ∗

By induction, the middle vertical arrow is an isomorphism, and we wish to show that the

rightmost vertical arrow is an isomorphism. By a diagram chase, exactness of the lower

https://doi.org/10.1017/S1474748025101114 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101114


20 E. Aksnes et al.

row implies that this arrow is surjective. The injectivity follows from Proposition 3.4.
Therefore, the map τ∗ :H2(X)→H2(X) is an isomorphism. Together with our induction

assumption on the maps τ∗, this proves that X is cohomologically tropical.

Now assume that X is cohomologically tropical. By Lemma 4.1, we know that X is a
tropical homology manifold. It remains to show that X is wunderschön. We again proceed

by induction on dimension as the case for points is trivial. We equip X with the tropical

compactification X given by Σ, such that all open Xσ are wunderschön by induction,

for σ different from the central vertex of Σ. We have H0(X) ∼= H0(X) by hypothesis,
and H0(X) ∼= Q; thus, X is connected and so is X. It remains to show that the mixed

Hodge structure on Hk(X) is pure of weight 2k for each k. This follows from comparing

the Deligne weight spectral sequence and tropical Deligne resolution by Proposition 3.2,
using that all the maps τ∗ are isomorphisms. Hence, X is wunderschön.

Finally, we prove that if X is cohomologically tropical, then X is Kähler. By Lemma

4.1, we know that X is a tropical homology manifold. There exists a unimodular fan Σ
with support X such that Σ is quasi-projective. It follows that the Chow rings A•/2(Σσ),

σ ∈ Σ, are isomorphic to H•(X
σ
). Moreover, since Σ is quasi-projective, and X is schön,

X
σ
is a non-singular projective variety, and so its cohomology verifies the Kähler package.

We conclude that X is Kähler.

Theorem 6.2 (Isomorphism of cohomology on open strata). Suppose that X⊆T is schön

and cohomologically tropical. Let Σ be any unimodular fan with support X = trop(X).
Then we obtain isomorphisms

τ∗ :Hk(Xσ) ∼−→Hk(Xσ)

for all σ ∈ Σ and all k.

Proof. It suffices to prove the statement for X, since if X is cohomologically tropical, so

are all strata Xσ. It follows from the proof of Theorem 6.1 that if X is cohomologically
tropical, then X is wunderschön, and hence, the 2k-th row of the 1st page of the Deligne

weight spectral sequence provides a resolution of Hk(X) for all k. Moreover, the maps

τ∗ : H•(Xσ) → H•(X
σ
) are isomorphisms for all strata, and they commute with the

tropical and complex Gysin maps. Therefore, we obtain an isomorphism of the resolutions

which induces isomorphisms τ∗ :Hk(Xσ)→Hk(Xσ) for all σ ∈ Σ and all k.

7. Globalization

We discuss a natural extension of the main theorem of [20]. We follow the setting of that

work. Let π :X→D∗ be an algebraic family of non-singular complex algebraic varieties in

CP
n over the punctured disk D∗. By base change, the family X gives rise to a subvariety

Xη of Pn
K where K=C((t)) is the field of formal Laurent series with complex coefficients.

(Here, η refers to the generic fiber.) We denote by Z ⊆ TP
n the tropicalization of the

family, defined as the extended tropicalization of the subvariety Xη ↪→ Pn
K.

We suppose Z admits a unimodular triangulation. This is always possible after a base

change of the form D∗ →D∗, z �→ zk, for k ∈ Z+. Using the triangulation, we construct

a degeneration of CPn to an arrangement of toric varieties, and taking the closure of the
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family X inside this toric degeneration leads to a family X extended over the full punctured
disk D. By Mumford’s proof of the semistable reduction theorem, we can always find a

triangulation, after a suitable base change, such that the extended family is regular and

the fiber over zero is reduced and simple normal crossing. This is known as a semistable
extension of the family π : X→D∗.
Denote by X0 the fiber at zero of the extended family. Note that since the extended

family is obtained by taking the closure of the family in a toric degeneration of CPn, each

open stratum in X0 will be naturally embedded in an algebraic torus. For t ∈D∗, denote
by Xt the fiber of π over t.

Theorem 7.1. Let π :X→D∗ be an algebraic family of subvarieties in CP
n parameterized

by the punctured disk and let π :X→D be a semistable extension. If the tropicalization Z ⊆
TP

n is a tropical homology manifold and all the open strata in X0 are wunderschön, then

Hp,q(Z) is isomorphic to the associated graded piece W2p/W2p−1 of the weight filtration

in the limiting mixed Hodge structure Hp+q
lim . The odd weight graded pieces in Hp+q

lim are
all vanishing.

Moreover, for t∈D∗, we have dimHp,q(Xt) = dimHp,q(Z), for all nonnegative integers

p and q.

Proof. Denote by Δ the dual complex of X0. By construction, Δ naturally lives in the

tropicalization Z. For each simplex δ ∈Δ, denote by Zδ the corresponding (open) stratum

in X0 and denote by Zδ the corresponding unimodular star fan in Z. Let Zδ and Zδ be
the corresponding compactifications. Note that Zδ is also the closure of Zδ in X0.

Since Z is a tropical homology manifold, the local fanfolds appearing in the tropical

variety Z are all tropical homology manifolds. Moreover, for each δ ∈Δ, the Chow ring

of the star fan Zδ is also the tropical cohomology ring of Zδ. Since Zδ is cohomologically
tropical, these rings are as well isomorphic to the cohomology ring of Zδ.

The Steenbrink spectral sequence [43] for X degenerates at page two and gives the

weight b part of the limit mixed Hodge structure Hd
lim in each cohomological degree d.

The first page of the Steenbrink sequence is given by

STa,b
1 :=

⊕
s≥|a|

s≡a (mod 2)

STa,b,s
1 ,

where

STa,b,s
1 :=

⊕
δ∈Δ
|δ|=s

Ha+b−s(Zδ).

The differential d :STa,b
1 →STa+1,b is given by a signed sum of Gysin and restriction maps.

(The correct formulation involves taking the Tate twist Ha+b−s(Zδ)(a−s
2 ) in STa,b,s so

that all the terms have weight b; we omit them for sake of simplification.)

Denoting the weight filtration in the limit mixed Hodge structure Hd
lim by W•H

d
lim, and

setting
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grwb H
d
lim :=WbH

d
lim/Wb−1H

d
lim,

we have

grwb H
d
lim �Hd−b(ST•,b).

The wunderschön assumption implies that the cohomology of Zδ is of Hodge-Tate type
for all δ ∈Δ. By the Deligne weight spectral sequence, this implies that the same holds

for the cohomology of Zδ. Therefore, the odd cohomology groups of Zδ all vanish. Since

a− s is even, we infer that for b odd, all the terms STa,b,s
1 vanish. In other words, the

odd weight graded pieces of the limit mixed Hodge structures all vanish. Furthermore,
the limit mixed Hodge structure will be of Hodge-Tate type.

We set b= 2p and d= p+ q, so that in weight 2p and degree p+ q, we get

grw2pH
p+q
lim �Hq−p(ST•,2p).

The tropical Steenbrink spectral sequence for the tropical homological manifold Z is

given in a similar way by

STa,2p
1 :=

⊕
s≥|a|

s≡a (mod 2)

STa,2p,s
1 ,STa,2p,s

1 , STa,2p,s
1 :=

⊕
δ∈Δ
|δ|=s

Ha+2p−s(Zδ),

with differential d : STa,2p
1 → STa+1,2p a signed sum of Gysin and restriction maps. The

Steenbrink-Tropical comparison theorem proved in [4, 20] implies that

Hp,q(Z) =Hq−p(ST•,2p).

By assumption on the degeneration, we get isomorphisms between the cohomology
groupsH•(ZXZδ)�H•(Zδ). Comparing the two Steenbrink sequences ST•,2p and ST•,2p,
we deduce that grw2pH

p+q
lim �Hp,q(Z). This gives the first part.

To prove the second statement, note that since the limit mixed Hodge structure on Hd
lim

is Hodge-Tate, the p-th part of the limit Hodge filtration F •
lim on Hd

lim contributes only in

the graded piece grw2pH
p+q
lim . This implies that the Hp,q piece in the Hodge decomposition

of Hp+q(Xt) has dimension equal to that of grw2pH
p+q(Z), finishing the proof of the

theorem.

From the proof, we deduce the following statement that shows that degenerations

appearing in the above theorem are all maximal.

Theorem 7.2. Notations as in Theorem 7.1, the family X→D∗ is maximally degenerate.

Proof. Each closed stratum in X0 has a cohomology of Hodge-Tate type. Steenbrink
spectral sequence shows that the limit mixed Hodge structure is Hodge-Tate.

We discuss maximal degenerations further in Section 8.4.
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8. Discussions

8.1. Examples

In this section, we give various examples of varieties verifying some but not all conditions
of the main Theorem 6.1. These examples tend to demonstrate that the main theorem

cannot be weakened.

8.1.1. A wunderschön variety which is not cohomologically tropical. Take

N = Z2. Let X ⊆ TN be the conic given by the equation a+ bz1 + cz2 + dz1z2 = 0 for
generic complex coefficients a,b,c and d. The variety X is CP1 with four points removed.

This is a wunderschön variety: looking at the compactification X ⊆ (CP1)2, X is non-

singular, and the intersections with torus orbits are the points hence non-singular, so that
X is schön. Moreover, each of the points removed is trivially wunderschön. Finally, the

Deligne weight spectral sequence shows that X has pure Hodge structure. However, the

tropicalization X of X is the union of the axes in R2, which is not uniquely balanced
(i.e., dimH2(X) = 2 > 1). This means that X is not a tropical homology manifold

(see [2, Theorem 4.8]). Moreover, computing the cohomology groups of X, we obtain

dimH0(X) = 1, dimH1(X) = 0 and dimH2(X) = 2, which differs from the cohomology

groups of the sphere X.

8.1.2. A schön variety with pure strata, whose tropicalization is a tropical
homology manifold but which is not cohomologically tropical. Let X be a

generic conic in (C∗)2. The variety X is CP1 with six points removed. Its tropicalization

is the usual tropical line equipped with weights equal to 2 on all edges – hence again
a tropical homology manifold by [2, Theorem 4.8]. The variety X is schön since it is

non-singular, and each one of the three strata consists of two distinct points; hence, it is

non-singular. The mixed Hodge structure on X is pure, as the Deligne weight spectral
sequence shows that GrW1 H1(X) =H1(X) = 0. However, it is not wunderschön since its

strata are not connected. The map τ∗ : H•(X) → H•(X) is an isomorphism: it maps

the class of a point in X to twice the class of a point in X. Nevertheless, X is not

cohomologically tropical since, for any ray ζ of X, H0(X
ζ
)∼=Q2 but H0(Xζ)∼=Q.

8.1.3. A schön variety which is not pure nor cohomologically tropical and
whose tropicalization is a tropical homology manifold. Consider the punctured
elliptic curve X in (C∗)2 of equation az21 + bz2+ cz1z

2
2 = 0 for generic complex coefficents

a,b and c. Topologically, it is a torus punctured in three points. The tropicalization is the

unimodular tropical line of weight one with rays generated by (2,1),(−1,1) and (−1,−2),
which is a tropical homology manifold. The variety X is non-singular and connected, and

each of the three strata at infinity of its compactification is a point hence non-singular and

connected. Hence, X is schön. The cohomology group H1(X) is nontrivial of dimension
2. However, H1(X) is trivial. Hence, X is not cohomologically tropical. This is because

X is not wunderschön. More precisely, H1(X) is not pure of weight 2. Indeed, by the

Deligne weight spectral sequence, GrW1 (H1(X))∼=H1(X) �= 0.
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8.1.4. A non-schön variety which is cohomologically tropical. Once again, N
is of dimension 2. Let X ⊆TN be given by the equation (z1−a)(z2− b) = 0 for a,b �= 0.

The variety X is a reducible nodal curve with two components both being CP
1 with two

punctures. The tropicalization is again the union of the two coordinate axes in R2, which
is not a tropical homology manifold, and the variety X is not schön as it is singular.

However, for each line of the cross, the cocycle associated to this line is mapped to the

cocycle associated to the corresponding sphere. This is an isomorphism between H2(X)
and H2(X). Since H0(X) is trivially isomorphic to H0(X) and other cohomology groups

are trivial, we deduce that X is cohomologically tropical.

8.2. Hyperplane arrangement complements

We will now see that all three properties of Theorem 6.1 are satisfied for complements
of projective hyperplane arrangements. We will use the de Concini-Procesi model of the

complement of a projective hyperplane arrangement [13], as discussed in [35, Section 4.1].

Let A= {Hi}ni=0 be an arrangement of n+1 hyperplanes in Pd
C, not all having a common

intersection point, and let XA = Pd
C \

⋃
Hi∈AHi be the complement of the arrangement.

For each i, let �i be the homogeneous linear form such that Hi =
{
z ∈ Pd

C | �i(z) = 0
}
.

These define a map XA → (C∗)n given by z �→ (�i(z)) in homogeneous coordinates on
(C∗)n. This map is injective, since no z ∈ XA lies on all hyperplanes by assumption,

and induces an isomorphism of XA ∼= YA, where YA is a subvariety of (C∗)n; see [35,

Proposition 4.1.1] for details. By a theorem of Ardila and Klivans [1], the tropicalization
YA = Trop(YA) is the support of the Bergman fan ΣMA of the matroid MA associated

to the arrangement A; see [35, Sections 4.1–4.2].

First, Tevelev shows [44, Theorem 1.5] that the variety XA is schön, it is clearly

connected, and by [42], its cohomology has a pure Hodge structure of Hodge-Tate type.
Moreover, given a face σ ∈ ΣMA , the star fan of σ corresponds to the complement of

a hyperplane arrangement. By induction, this shows that complements of hyperplane

arrangements are wunderschön.
Furthermore, it is shown in [22, 21] by an inductive argument that the Bergman fan ΣMA

of a matroid is a tropical homology manifold. Therefore, one can apply Theorem 6.1, which

gives us that YA is cohomologically tropical (i.e., the map τ∗ :H•(Y A)→H•(YXYA)
is an isomorphism).

In light of Theorem 6.2, this can be compared with the main result of [49], also

independently proved in [41], showing that H•(XA)∼=H•(XA), however lacking explicit

maps.

8.3. Non-matroidal examples

We say that a subvariety X of a torus TN is non-matroidal if the tropicalization of X is

not a Bergman fanfold, up to isomorphisms of the lattice N.
We present an example of X ⊆ TN which is not a complement of a hyperplane

arrangement yet is wunderschön and cohomologically tropical, and the tropicalization

trop(X) is a tropical homology manifold.
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Figure 3. A very-affine variety X which is not a complement of hyperplane arrangement and verifies the

main theorem; see Section 8.3.

Figure 4. The combinatorial structure of a non-Bergman fan verifying the main theorem described in

Section 8.3.

The variety X will be the complement of an arrangement of lines and a single conic

in CP
2. Let [z0 : z1 : z2] be homogeneous coordinates on CP

2. Let L0, L1, and L2 be the
coordinate lines of CP2 so that Li is defined by zi = 0. Let L3 be defined by the linear

form z0− z1+ z2 = 0 and let the conic C be defined by z21 + z22 − z0z1−2z1z2 = 0. Let A
denote the union of L0, . . . ,L3,C.
As depicted in Figure 3, note that C is tangent to L1 at the point [1 : 0 : 0] where L1

intersects L2. Also the conic C is tangent to L0 at the intersection point [0 : 1 : 1] with

L3. The conic also passes through the intersection point [1 : 1 : 0] of L2 and L3.
Consider the map φ : CP2 \A→ (C∗)4 defined by

[z0 : z1 : z2] �→ (z̃1,z̃2,1− z̃1+ z̃2,z̃
2
1 + z̃22 − z̃1−2z̃1z̃2), with z̃1 =

zi
z0

and z̃2 =
z2
z0

.

Let X ⊆ (C∗)4 denote the image of the map φ. The space trop(X) is 2-dimensional and

is the support of the fan described below.
The fan has 8 rays in directions given in Figure 4. Each ray is adjacent to exactly 3 faces

of dimension 2 for a total of 12 faces of dimension 2. The structure is given in Figure 4:

we draw an edge between two vertices if the there is a face between the two corresponding
rays. Note that to get a unimodular subdivision, one has to add some rays – for instance,

the rays α and β of Figure 4. We denote by Σ this unimodular fan.

It can be verified in polymake that this fan is a tropical homology manifold and its
tropical Betti numbers are 1,0,6,0,1. For an alternative proof, note that the the fan Σ

is obtained by the process of tropical modification [34] as follows. Let ΣU3,4
⊆ R3 be the

Bergman fan of the uniform matroid U3,4. Its rays are the rays 0,1,2 and 3 in Figure 4,
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where we forget the fourth coordinate. Let C ⊆ΣU3,4
be a tropical trivalent curve with rays

a,b,c (once again, we forget the last coordinate). Then Σ in R4 is obtained by a tropical

modification of ΣU3,4
along C. By [21], the Bergman fan ΣU3,4

is a tropical homology

manifold; see also Section 8.2. By [2, Theorem 4.8], the trivalent tropical curve is also a
tropical homology manifold. By [6, Theorem 1.4], the modification of ΣU3,4

⊆ R3 along

C is a tropical homology manifold. The tools developed in this last article also allow to

compute the cohomology of X quite easily, and to check that the fan is Kähler.

The compactification of X in CPΣ is given as follows. Consider CP
2 blown up in the

three points whose homogeneous coordinates are [1 : 0 : 0],[0 : 1 : 1], and [1 : 1 : 0]. Then,

in the blow-up, the exceptional divisor above [1 : 0 : 0], the proper transform of C, and

the proper transform of L1 all intersect in a single point. Similarly, there is a triple
intersection of the exceptional divisor above [0 : 1 : 1] and the proper transforms of C and

L0. We further blow up these two intersection points to obtain a surface X. The divisor

X \X consists of the five exceptional divisors and the proper transforms of all curves
in A. Therefore, dimH2(X) = 6 and dimH0(X) = dimH4(X) = 1 and dimHk(X) = 0

otherwise.

We claim that X is wunderschön. Indeed, for each ray ζ of the fan Σ, the variety X
ζ
is

CP
1 with two or three marked points corresponding to the intersections with the other

divisors in X\X, so it is wunderschön. Moreover, X is non-singular and connected, and

its cohomology is pure. Hence, X is wunderschön.

In [3], tropicalizations of complements of curve arrangements are considered more
generally from the perspective of determining when they are cohomologically tropical.

In particular, [3, Example 7.4] gives an infinite family of non-matroidal cohomologically

tropical varieties of dimension two.
Other examples of cohomologically tropical varieties include the moduli spaces M(3,6)

and M(3,7) of 6 and 7 lines in CP
2, respectively; see [32, 40, 10].

By the tropical and classical Künneth formula, the product of two cohomologically

tropical varieties is again cohomologically tropical. Moreover, in a product X1 ×X2 ⊂
TN1

×TN2
, if one of the factors is non-matroidal, the product remains non-matroidal

(because the same statement holds for a product of fanfolds, using the fact that local

fanfolds of a Bergman fanfold are all Bergman).
Using the family of non-matroidal examples above, as well as the complements of

hyperplane arrangements in any dimension, we obtain infinite families of non-matroidal

cohomologically tropical varieties in arbitrary dimension at least two.

8.4. Maximal degenerations

Motivated by the work of Deligne [12] and our results, Theorem 7.1 and Theorem 7.2, we

can ask the following question.

Question 8.1. Is there a tropical geometric characterization of maximally degenerate
families of complex algebraic varieties? Is it true that those families in which the open

strata of special fibers have a cohomology which is pure of Hodge-Tate type are exactly

those covered by our Theorem 7.1?
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These questions are intimately related to open problems on large scale limits of families
of complex algebraic varieties. For instance, a recent work by Yang Li [30] reduces the

metric SYZ conjecture in maximally degenerate families of complex algebraic varieties

to the existence of solutions to a tropical Monge-Ampère equation, once this equiation
has been properly formulated. For those degenerations appearing in Theorem 7.1, our

results show that the corresponding tropical variety is Kähler in the sense of [4] and

moreover recovers the geometry of the degenerate fiber as well as the limit Hodge-theoretic

geometry of the family. In a forthcoming work [8], a differential calculus on tropical
varieties is developed that combines Chow rings of local tropical fans with real differential

forms on the variety. Tropical Hodge theory can be then used to properly formulate the

Monge-Ampère equation on the tropicalization using tropical Kähler forms. This allows
to formulate a tropical analogue of the Monge-Ampère equation and study its solutions.

Another instance of a large-scale asymptotic problem is a conjecture by Kontsevich

and Soibelman [27] that predicts the convergence of the normalized Calabi metrics in
maximally degenerate families of Calabi-Yau varieties to a tropical Calabi metric (once

this has been properly defined) on the limit tropical variety.

8.5. T -stability
It seems plausible that a framework parallel to the one in [5] can be developed for

properties of tropicalization of algebraic varieties. The properties discussed in this paper
concern pairs consisting of a subvariety of an algebraic torus and a fan structure on its

tropicalization. Three basic operations can be conducted on these pairs: products, blow-

ups and blow-downs, and taking the graph of a holomorphic function on the subvariety,
restricted to the complement of its divisor. For example, the cases described in Sections

8.2 and 8.3 can both be obtained by these operations. The properties of being schön,

wunderschön and cohomologically tropical should be T -stable in this framework. We
refer to [40] for some results in this direction.
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