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Abstract. Aninteresting theory arises when the classical theory of modular forms is expanded to
include differential analogs of modular forms. One of the main motivations for expanding the
theory of modular forms is the existence of differential modular forms with a remarkable property,
called isogeny covariance, that classical modular forms cannot possess. Among isogeny covariant
differential modular forms there exists a particular modular form that plays a central role in the
theory. The main result presented in the article will be the explicit computation modulo p of this
fundamental isogeny covariant differential modular form.
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1. Introduction

The classical theory of modular forms can be extended to include certain interesting
new functions of elliptic curves called differential modular forms. Some of these
possess a remarkable property called isogeny covariance that does not have an
analog in the classical theory. Among isogeny covariant differential modular forms
there is one that plays a central role. In this paper we compute the reduction modulo
p of this form explicitly and deduce a few of the unexpected corollaries.
Differential modular forms, introduced in A. Buium’s paper entitled ‘Differential
modular forms’ [1], involve either arithmetic analogs of derivations called
p-derivations or usual derivations. In providing the relevent definitions we define
everything for the case of p-derivations and then note later in the introduction
how the definitions vary from those for p-derivations in the case of usual derivations.
Let p be a prime number greater than three. In general, a p-derivation is as follows:

DEFINITION 1.1. A p-derivation is a set theoretic map, 6: 4 — B, from a ring 4 to
an A-algebra B such that

0(x+y) = ox+ 3y + Cp(x, ), (1.1)

o(xy) = yox + xPdy + pdxoy, (1.2)
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for all x,y € A where

X+ Y — (X + Y)Y

C)(X.Y) = .

If we let R be any complete discrete valuation ring where R has maximal ideal
generated by p and an algebraically closed residue field &, then there exists a unique
lifting of the Frobenius morphism to R which we will refer to as ¢ and there exists
a unique p-derivation when both 4 and B are R given by d(x) = (¢(x) — x*)/p.

Let M(R) be the set

M(R) = {(a, b) € R*|4a® + 27b* € R*}.

The set M(R) is therefore in one-to-one correspondence with the set of pairs con-
sisting of an elliptic curve over R and an invertible 1-form. Set M° =
Zpler, e, A" and M' = Z,[c1, ¢, 5¢1, 9z, A']" where A = —4¢} —27¢5. Here
c1, €3, 0c1, dcy are variables over 7Z,, and ~ represents the p-adic completion. The
elements of M! are called §-modular functions of order 1. Any -modular function
f e M! defines a map (still denoted by f) from M(R) to R, by substituting
a, b, da, ob in for ¢y, ¢y, ¢y, 0c;. The element f € M is uniquely determined by
the associated map from M(R) to R. As such every é-modular function is a function
of elliptic curves. There is a canonical reduction modulo p map from M° to
MY =TF,[c1, c2,A™"] and from M' to M} = F,[c1, ¢2, dc1, dca, A™']. The reduction
modulo p of a 6-modular function f is its image under the canonical map from
M" to M.

We define a d-character of order < 1 to be a group homomorphism y: R* — R* of
the form y = y,,, with (m,n) € Z x 7, where

%
Xm,n(/D =" (%) .

Then a 6-modular function has weight y if for any 1 € R*

f(Gta, 1°b) = y(A)f (a, b)

for all (a, b) € M(R). A -modular form is a -modular function with a weight. This
definition of d-modular forms introduced in Buium’s paper [1] represents an exten-
sion of the definitions given by Deligne and Katz [2].

A special collection these 6-modular forms possess the following property that
does not have a classical analog.

DEFINITION 1.2. A 6-modular form is isogeny covariant if for any two pairs (a, b)
and (a, b) with an étale isogeny of degree N between the corresponding elliptic curves
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that pulls back dx/y to dx/y
f(a.b) = N""*f(a,b)

where k is a constant that depends solely on the weight.

Note that for y = y,, , the constant is k = m 4 n(1 — p). Buium proves in Corollary
7.24 in [1] that up to multiplication by a constant in Z, there is a unique isogeny
covariant 6-modular form of order one and weight y_,_; _;. (From now on unique
will mean up to multiplication by an invertible constant of Z,.) We can now state
our main result.

THEOREM 1.3. The reduction modulo p of the unique, isogeny covariant §-modular
Sform of weight y_, , _, and order 1 is

(—9cp§c —|—6c”5c)
p—1 2 lAp = + /o,

where E,_1 € Mg is the Hasse invariant and f € Mg.

Deligne’s congruence tells us the Hasse invariant is the reduction modulo p of the
normalized Eisenstein form of weight p — 1 [2], hence the choice of notation here.
(Later, in Theorem 3.6 we will give an explicit formula for fy which does have weight
%—p—1,0 and is a modular form of order 0.)

This theorem has interesting corollaries. First we provide the formula for a class of
polynomials that occur frequently in the first corollary and later in the explicit for-
mula for fy. For two integers a¢ and b with b odd, write @ = 3m+n where
ne€{0,1,2} and let

: _i( mk ) m—2k—12+n y
/a’b_kzo 3dk+2—n b% (1.3)

x (— 1)m+k—%(cl)3k+2—n(cz)m—Zk—Z-'rn—%7
where (]) denotes the binomial coefficient with the convention that (}) = 0 if k > j.
Next we clarify the concept of a Fourier expansion of a d-modular form which
is also part of our first corollary. Indeed there is a natural ring homomorphism
M' — Zy((g))" called the Fourier expansion or ¢ expansion that sends F to F(g)
by sending

11— cu(q) = —27*37 Ey(g),
21— ¢o(q) = =273 Eg(q),
ca(@”) — (calq))
—
cs(q’) — (cs(q)Y
—

ocy 1= doca(q) =

56’2 - 5006(q) =
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where E4(q) and E4(q) are the Eisenstein series of weights 4 and 6, respectively. This
homomorphism from M' — 7Z,((¢))" induces a homomorphism M} — F,((¢))" that
takes the reduction of F modulo p denoted F to the reduction of F(g) modulo p
denoted F(g). Buium proves in Remark 7.5 [1] that the unique isogeny covariant
o-modular form of order one and weight y_, ;_; is in the kernel of this
homomorphism. We also know that E,_;(g) =1 modulo p. As an immediate
consequence

COROLLARY 1.4. The q expansions, c4(q), cs(q), doca(q), and doce(q) are related by
the identity

9¢s(q) doca(q) — 6¢4(q) doce(q)

—1 _ k
- Z( U [6¢4(@Pes(@V 1apss @) — (@) es(@P" 3y s s @]+

k
p—l p—k p— k
Ty ) es(@) cs(@V " [Aes@rns (@] +
k=1 i=0
A p—k\(=1) i —k—i
+ZZ( ) es(@) cs(@V " [6¢s(@P 1oy (@]~
k=1 i=0
p=l pk p— . .
> ) 64(q)’66(q)’7”‘”[966(q)"vp+3k+,-,p(q)]+
k=1 i=0

~~

n—1 p—k )k ] s
+AgY ( ) ca(@)' e @™ prarti3p(Q)s
k=1 i=0

where y,,(q) is the q expansion of y, , a polynomial in c¢| and c; which is explicitly
given in formula (1.3).

Note that even though dgc4(q) and dyce(g) are not modular forms, the combination
9¢6(q) docalq) — 6¢4(q) doce(q) is a modular form. This phenomenon of combining
ca(q), c6(q), doca(q), and dgce(g) to get the g expansion of a modular form should
be viewed as an arithmetic analogue of the fact that

2¢4(q)0cs(q) — 3ce(q)0ca(g) = Alq)

where 0 = ¢g(d/dq) [3]. The latter fact is a direct consequence of Ramanujan’s

formulas for Ocg(q) and Ocy(q).
There exists a relationship between the formula in Theorem 1.3 and the coefficients

of the modular polynomial. The relationship is based on the following congruence
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proved by Buium in Corollary 6.3 and Remark 6.4 [1]

p P
Ep1|:(]'p2 —J')]'/—FZZC “+””:|
=0

v=0
P

=a(” - ) 1

])

=950 67,0
1 C1+ &) fo:|

modulo p, where j = ¢} /A is the j-invariant, j' is its p-derivative &(j) and a € Z,. The
¢y are constants such that

izp:i:c o — [(D—(X” — Y)(Y? — X))

n=0 v=0

modulo p, where ® is the modular polynomial. We can manipulate this formula as

follows
PP
Bt )
n=0 v=0
.p2 . C%pcg C3p p 2p ( 2\p—k
= (" D] a=gfo — Ep- ‘A P5(4) + ¢ 5(27)+Z Ay

modulo p or

+ E, | %[cb — (X7 — Y)(Y? = X)]

N " ( 2 A
= (" D] a~tfo = Epr 5y | e 64) + &5 QN+ -
A k=1

'3>k(27c§>”—k>}

which relates Theorem 1.3 directly to coefficients of the modular polynomial modulo

P

The proof of Corollary 6.3 in [1] uses the following corollary of Theorem 1.3.

COROLLARY 1.5. Let f be the unique isogeny covariant d-modular form of weight
X—p-1,—1 and order 1. Then the ring (Ml/(f))E is regular.

Proof. Tt is enough to show that the ring (Mo/(f))E is regular since (M /(f))E
p-adically complete. We can cover the spectrum of the ring (Mo /()= E, w1th the
two opens sets given by the spectra of (MO/(f))E e = = I,[¢1, ¢, 5c1]A and
(MO/(f))E & = Ipler, ¢, 0¢2]5 which are regular. O

The key to proving Theorem 1.3 is the fact that the unique isogeny covariant
o-modular form of weight y_,_, _, is congruent modulo p to a specific ‘deformation
class’ of an elliptic curve called f4.; in Buium’s paper, ‘Differential modular forms’
[1]. This ‘deformation class’ is a p-derivation analog of the Kodaira—Spencer class
for a family of elliptic curves for usual derivations. The construction of f g is

https://doi.org/10.1023/A:1017536003747 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017536003747

22 CHRIS HURLBURT

the construction of a Kodaira—Spencer map for p-derivations in an analogous
manner to the construction of a Kodaira—Spencer map for usual derivations.

In order to describe the p-derivation analog of the Kodaira—Spencer map, we must
first establish the setting in which this map is defined. Let E be the elliptic curve over
M? defined by the homogeneous equation

f(X,Y,Z)=2Y* - X* — | XZ? — 0, 2°.

Then let U and V" be the affine open sets of E given by the equations f(x, y, 1) and
f(u, 1, z), respectively. The unique p-derivation §: M® — M that sends ¢y, ¢, into
dcy, ¢, can then be lifted to p-derivations d&y:O(U) - O(U)® M} and
Sy:0(V)— O(V)® M}. Their difference oy —Jy induces a map (dy — dp):
oUNV)® M) — O(UNV)® M| that is additive, vanishes on M{, and satisfies

(0u —ov)(fg) =fT(0u — dy)(g) + & (6u — ov)(f).

Consequently if F: Ey — Ey for Ey = E® Mg is the absolute Frobenius on E; that
takes x—x? and F*T is the pull-back of the tangent sheaf by F, then é; — § defines
a cocycle in F*T and hence an element in H'(Ey ® M}, F*T). (If the 6y and &, were
liftings of a usual derivation then their difference would be a cocycle in H!(E, T) that
represents the image of 6 under the Kodaira—Spencer map.) In the case of
p-derivations this difference represents a natural analog to the Kodaira—Spencer
map.

We know that the M} module H'(Ey ® M}, F*T) is free with a basis consisting of
the class [0] of @ = y?(F o 8/dx) where 0 is viewed as a Cech cocyle in F* T with respect
to the covering {U, V}. The mapping from H'(Ey ® M}, O) to H(Ey® M}, F*T)
that sends the equivalence class of [a] € H'(Ey ® M}, O) for a € O(UN V) to the
equivalence class of [a0] € H'(Ey ® Mé, F*T) is therefore a module isomorphism.
In a similar vein, the class [x?/y] of the cocycle x?/y generates H'(Ey ® Mé, 0)
as a rank one free M-module, and thus the map that sends 4 € M| to the equivalence
class [4x?/y] is also a module isomorphism. We obtain isomorphisms

HYEy® M,F*T) =~ H'E,@M}\,0) =~ M}

X2

[al] «—  [d]= [
¥

| —

We claim that under the above isomorphisms [0y — dy] € H'(Ey ® M&, F*T) cor-
responds to

|:(5U —p)(x)
y]’

Indeed if 6y — 6y = ab for some a € O(UN V) then (5y — dp)(x) = ay?(3x/dx) .
Hence a = ((0y — dy)(x))/y’. Now we uniquely write

a= Zany" + beny” +x° Zeny",

] e H'(Ey ® M}, O).
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with a,, b,, e, € M(% Due to the fact that all monomials x’)/ except for x?/y are
coboundaries with respect to {U, V}, the class [a] € H'(Ey ® Mé, 0) equals the class
[e_1x*/y]. Under the isomorphism H'(Ey ® M}, O) ~ M}, the image of this class,
[e—1x%/y], is e_;. From now on we will refer to the image of the class [e_;x?/y] which
is e_j as f 4or and to the expression Y. @,)" + x Y b,y" + x> e,)" as the normal form
of a.

With certain modifications the same computation can be applied to usual
derivations. In order to do this, first set M° = Q[cy, ¢2, A"}, and M' = M} =
Qley, €2, dcy, ¢, A_l]. The elements of M in this case are still called -modular
functions of order < 1. Now let R be an algebraically closed field of characteristic
zero and 0:R — R a nonzero derivation. Any f e M' still defines a map
f:M(R) — R by substitution. We must next set the character to be y = y,,:
R* — R*, 1,,(A) = 2". Under this definition of y, the §-modular function f € M'
then has weight y if f(A*a, 1%b) = y(1)f(a, b). In this case a 5-modular form is still
a 6-modular function with weight. If f € M' of weight y,, where m an even integer
is isogeny covariant then for any (a, b), (a, b) where there is an isogeny of degree
N between the corresponding elliptic curves, f(a, b) = N~"/*f(a, b). Buium proves
in [1] that up to multiplication by a constant in Q there is a unique isogeny covariant
o-modular form of weight y_, and order 1.

THEOREM 1.6. The unique, isogeny covariant -modular form of weight y_, and
order 1 in the case of usual derivations is

—9¢0¢1 + 6¢10¢
A .

2. Computation of f,,; for Usual Derivations

This section is dedicated to proving Theorem 1.6 as an illustration of the process used
to compute f 4. in the case of p-derivations. Let § be the usual derivation we just
described. Similarly let E, U, V, dy, and dp be as described above. In this case
of usual derivations fg. is the image of dy —dy in M} under the module
isomorphisms H'(E, T) ~ H'(E, ©) ~ M". Then to start with liftings must be found
for o.

2.1. Any lifting is defined by its behavior on the generators. In the case of dy these
are x and y and Jy is subject to the constraint that dy(f(x, y, 1)) = 0. Let U, be
the open subset of U defined by 9f/dx # 0 and let U,, be the open subset of U defined
by 9f /9y # 0. Then let oy, be a lifting of 6 to Uy and dy, a lifting of 6 to U,. If 6y is
applied ‘formally’ to f(x, y, 1) the result is ‘

(—3x2 —¢1)0yx+2yoyy — xdcy — dc; =0

and any lifting of d must satisfy this result.
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Specifically let dy, be the lifting on U, obtained by letting dy (¥) = 0 and then

xdcy + ocy

du. () ="35- o

Let oy, be the lifting on U, obtained by letting dy,(x) = 0 and then

xocy + 0¢y

oy, () = 5

We use the following trivial lemma to combine dy, and dy, into a derivation dy on
O(U, N U,) that is a linear combination of dy, and dy,. Then we note that the result-
ing derivation is defined over all of U and as such is a lifting over all of U.

LEMMA 2.1. If 6,0,:C— D are two derivations lifting &:Qlci, c», A7 —
Qley, ¢a, ¢y, dcy, A1 where

Qler, e, A7 —> Qley, ¢2, dey, dea, A

A \
C — D

is a commutative ring diagram and if by, by € D are such that by + by, =1, then
b101 + b202: C — D is a derivation that lifts o.

Let 4 and B be polynomials such that 49f /dx + Bof /oy = 1. If we let by = Adf /ox
and by = Bof/dy then by the lemma 6y = bidy, +b2dy, is a derivation on
O(U, N U,) that lifts 6 and is in fact defined over all of U. Explicitly the polynomials

_ 46% + 6x2¢; — 9xc) B_ 9y(2xc; — 3¢3)

A= A ' 2A

work. Then the linear combination 6y = b1dy, + b20y, is

Su(x) = (xbcy + (562)(4614— 6x%¢c; — 9xcz)’

_ (x0c1 4 0¢2)9y(2xcr — 3¢a)

Su() = = ,

which is defined over all of U.

The method for finding dy is the same. Specifically the generators are u and z and
Oy 1s subject to the constraint d,(f(u, 1,z)) = 0. Let V,, and V., be the open subsets
of V defined by 9f/ou # 0 and 9f/dz # 0 respectively. Let dy, be a lifting of 6 to
V, and dy. a lifting of 6 to V.. Formally applying é, to f(u, 1, z) the constraint is

(—3u2 — 0122)5 y(u) + (1 — 2uzey — 32202)5 y(z) — uz’d¢y — 220¢, = 0.
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Explicitly, let d, be the lifting on V, arising from setting dy, (z) = 0 and solving for

uz2dcy + 230¢r

0 =
Vu(u) (—31/{2 — CIZZ)

Let dp. be the lifting on V. arising from setting . («) = 0 and solving for

uz?dcy + 236¢y
(1 = 2uzey — 322¢0)

oy.(2) =

The let C and D be polynomials such that Cdf/du+ Dof /oz =1 on V. Precisely

C=u(—3cz — ciu), D=-3c2—zou+1

Using the lemma above, if by = C9f'/ou and b, = Ddf /9z, then 6y = b1y, + b0V is
a lifting of J. Applied to u and v,
op(u) = (u22501 + 235(32)1/[(—%CZZ - clu)

Sy(2) = (uz*dcr + 2°8¢2) (=3 2z — zeyu + 1)

2.2. In order to take (6y — 9y )(x) on U N V it is necessary to find ,(x). On U NV,
x=u/z, y=1/z, u=x/y, and z = 1/y. So dy(x) = oy (u/z) which is equal to

5 — ud
M = —(udey + zdex)u.

Then substituting gives

xocy + 0¢2)x
Sy(x) = _%.
y
Therefore, the difference (6y — oy )(x) is

(x8c1 + dcr)(4e? + 6x%c; — 9xcy) N (xdcy + der)x
A 2

and the corresponding element in H'(E, O) is the class of the function

1 ((xder + dex)(4ef 4 6x%¢1 — 9xca) N (xdcy + dex)x
y A »? '

The normal form of this function is

<4c%502 — 6¢1¢50¢] N 6c1501y> N x(écz N —2c38¢; — 9cz5cz>+

yA A » YA
) —9¢38¢1 + 6016
+X2<%+ cyoc) + 6c¢y Cz)
y YA

https://doi.org/10.1023/A:1017536003747 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017536003747

26 CHRIS HURLBURT

and f 4, the coefficient of x?/y, in this normal form is then exactly as given in
Theorem 1.6.

As seen in this section, the computation of f . for usual derivations is relatively
straightforward. The basic procedure is the same for p-derivations, but many of
the steps are more complicated due to the more complex axioms of p-derivations.

3. Computation of f, . for p-Derivations

Let 6: M° — M be the unique p-derivation that sends ¢y, ¢, into dcy, dc, where p is a
prime number greater than three. Then by definition f ., is the image of 5y — y in
M} under the module isomorphisms H'(Ey ® M}, F*T) ~ H'(Ey ® M}, O) ~ M|.
Also recall that the normal form of a function a € O(U N V) is the expression of
aas a4+ x> b,y"+x*Y e,)". In the previous section it was possible to write
explicitly the normal form of §y — d for usual derivations. In this section it will
be necessary to find the normal form of various parts of dy — dy and then sum
together the parts. To this end, Y,, will denote the normal form of x¢/y* and
Va4 Will be the coefficient of x2/yin Y,p.

3.1. Let U,, and U, be the open sets defined in the previous section. Then any lifting
of 0to dy: O(U) — O(U) @ M, (1] is defined by its behavior on the generators subject to
the constraint dy(f(x, y, 1)) = 0. This constraint means

20750() + pou () = 3x75u(x) = 3px Su(x)’ = pPou(x)’ — Xder — oy (x)—
Y= —(axf -0 =¥ —ax—ca)f _

p

— poy(x)dcy — dcy + 0

and is derived by applying the p-derivation axioms to the equation f(x, y, 1). Since we
are working modulo p, this constraint on the lifting of ¢ simplifies to

278u(y) + (=3x7 — Sy (x) — ¥'der — ez + CIV (o),
where

P =X —(ex)f == =¥ —ax—af

P

C,'?Oly(fu) =7

Now to find a specific lifting, first define explicitly 6y, on U, by letting dy () =0
and then

¥der + dey — CrM(fy)

0u,(x) = =3x% —
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Then define 6y, on U, by letting Jy,(x) = 0 and, hence,

xPder + d(e2) — CPM(fu)

S0, () = 2

To combine dy, and dy, into dy, the following analog of Lemma 2.1 for p-derivations
is used whose proof is again straightforward. Namely,

LEMMA 3.1. If 016,:C — D are two p-derivations lifting 6:Zplc1, cz,Afl] —
Zpler, ¢2, dct, dca, Afl] where

Zpler, e, A7 — Zyler, e, der, dea, AT

A \:
C — D

is a commutative ring diagram, if char D =p, and if by,by € D are such that
by + by =1, then b101 + b20,: C — D is a p-derivation that lifts 9.

Here the condition that char D = p is essential. To combine Jy, and dy, let
by = AP(0f Jox)’ and b, = BP(3f /dy)’ where A and B are as given in the previous
section. Then dy = b1y, + b6 U, is a p-derivation lifting  defined on U. Specifically

(Xdci + ey — C]E"ly(fy))(4c% + 6x%c1 — 9xcr)

ou(x) = A ;
5u() = (xXPdcy 4+ dcy — Cgozg?u))9yp(2xc1 -3¢y .

For the lifting 6y of é on V, the constraint modulo p is
(=22 41— 3527 p(2)+
+ (=30 — )5y (u) — 2P Sey — 205, + COV(fy),
where

(2@ —u¥ —(z—ud —ute) — Pof —wPE — 20 d)
p
Then ¢ can be lifted to dy, on V, by letting dy,(z) =0 and

CEOly(fV) —

Wz ey + 20 5¢y — C;’Oly(fy)
(=3u® — d2%)

oy, (u) =

Similarly ¢ can be lifted to dy. on V. by letting dy.(u) = 0 and

wz¥sc) + z¥5c; — Cl‘,’(’]y(fy)

0D = T dw —3d)
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Then if
r\* AN
b]:Cpl and bz:Dpl ,
ou 0z
Oy = b10y, + b2dy. is a p-derivation on V lifting 4. On u and z,
Ov(u) = (W z7der +270cy — QPN (i (=3 e2z — equf’,
Sp(2) = W'z7dc) + 278¢y — COV(f(—3 e2* — zeu+ 1Y
3.2. The next step in determining f.; for p-derivations lies in computing dy(x) =
Ooy(u/z) on UN V. The product rule for p-derivations implies
2oy (u) — P dy(z)

2

oy(u/z) =

modulo p. So in fact

wW(=302 — zeyu+ 1) Wz 8cy + 298¢y — C,},mly(fV))
z2p *
(=3 couz — cluz)p(up22p561 +2%5¢; — CEOIY(fV))

zP

oy(u/z) = —

which simplifies to
2 w’ i
5V(H/Z) = —Uu p501 — up2p56’2 +TCPO y(fV)-
z P
Then noting that when written in terms of x and y, CP°¥(fy) is the same as
(CPN(fu)) /1y,

—x¥5¢; — xPdey + xpClg’Oly(fU)

0 V(x) = yzp

PROPOSITION 3.2. The equivalence class

[a] = [M} HY(Ey ® Mé, 0)
yl’

mapped to M(]) is given by

B (xPdcy + dcr — CEOIY(/‘U))(4C% + 6x%¢c1 — 9xcrY B
= AP

—x¥dc; — xXPdcy + x”Clﬁmly(fU)

¥

a

Proof. Both dy(x) and oy (x) have been computed above. Simply take their dif-
ference and divide out by )”. [

https://doi.org/10.1023/A:1017536003747 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017536003747

ISOGENY COVARIANT DIFFERENTIAL MODULAR FORMS 29

At this point things become more complicated. Unlike in the case of usual
derivations, a simple substitution of y* — ¢;x — ¢, in for x> won’t suffice to determine
the normal form because of the ubiquitous p powers. Therefore the next section is
devoted to developing tools for determining what the coefficient of x?/y is in the
normal form.

3.3. Recall that the normal form of x“/y? will be denoted Y, and that Va.p 18 defined
as the coefficient of x*/y in Y. Also we let (}) denote the binomial coefficient with
the convention that (}) =0 if k > n.

PROPOSITION 3.3. Let o = y*> — ¢y and p = —cy, and suppose x* = o+ px. Then the
normal form of x* is

Y = 3 (Xra'k kxsu,k ,
a,0 % k ﬁ

where 3ry i + 2k + s, = a with s, € {0, 1,2} for all k.
Proof. Induction. O

COROLLARY 3.4. Let m and n be integers such that a =3m+n for n € {0, 1, 2}.
Then the coefficient of x> in Yo is

00 m+k Yer2on m—2k—2+n m—2k—2+n
Z(3k+2—n>( ) 2 i X

k=0 i=0

% (_Cz)m—Zk—2+n—iy2i

By construction, Y, 5 = (1/3*)Y,0. In particular, this means that an x?/y term exists
only if b is odd, because in the coefficient of x> in Y, all of the powers of y are even.
Therefore if b is even, y,, = 0. In the case that b is odd, there is a formula. The
formula is

) m+k m—2k—2+n bl b1
— B -1 m+k—T 3k+4+2—n m—2k—2+n—T
Vab kE:O <3k to_ n) b—1 x (=1) (c1) (c2)

2
(3.1)

Obviously because of the convention for binomial coefficients there will be integers a
and b with b odd for which y, , is 0. For example y,, ,. To see this write p = 3m + n as
prescribed. Then the question becomes are there any non-negative values of k for
which 3m +n—1<2(m+n) — 4(k + 1)? Since the answer is no, 7, , = 0. In fact
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if b>a, y,, =0 because of the binomial coefficient
m—2k—2+n
b—1

2

For a complete analysis of the equivalence class in Proposition 3.2 to be possible
using this formula, it is necessary to write C},’Oly(fU) in terms of an expression
not containing p in the denominator. Recall that for all 1 <n < p,

P\ _ P! _ (1P 2
<n>_ nl(p —n)! =D n mod p”.

PROPOSITION 3.5.

=1, 9 p=1 k-1
C},’O'y(fU)=Z( ip>+z( 1]2 (cjz)_kclka)—l—

k=1

DTy .

T S N
le=1

On the open set U,

0= (= +5 +ex+ oy

2 3 = VP
=P+ 37 +(axf +E+) +

ozl 1yt Pl 1yl )
_’_;P( k) (X3k(clx+C2)pk)+kX=l:p( k) (clx)kc’; ko

Therefore

| p—1 _y2p p—1 (—l)k_l " i
poly — -
cr (fU)—kX:l: 3 —I-; A (x(erx+ el ™)+
p—1 k—1
-1 _
PN
k=1

3.4. The preparations in the previous section can now be applied to prove

THEOREM 3.6. The class f 41 is

- =725 ,9650¢1 + 73, ,6¢] 0
def = AP +Jo,
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where fy € M{ is given by

S G ) Ll T L 2k
fo= A [6c’1’ A Vapikp — 9cf ¢y’ yp+k,p]+
k=1
p—1 p—k k
p—k\(=1)" ; ki, 2
+ ( ; > A7 cich [4C1p“/3k+i,p +6CJszp+3k+f,p—9C€Vp+3k+i,p]+
k=1 i=0
p—1 p—k k
p—k\(=D" ; i
+ ( i > k cll Cg Vp+3k+i, 3p
k=1 i=0

For an explicit expression for y,, see Equation (3.1).

Proof. The proof consists of two steps. The first step is the analysis of the terms
containing either dc; or d¢; and the second step is the analysis of the terms containing
C}f‘”y(fy). There are eight terms containing either dc¢; or dc; from Proposition 3.2 that
need to be analyzed. They are

2 2
4c'5¢y 6xXFAEScy —9xPAEder dxPeide

yPAP Ty AP Ty AP T AP
_6x3/’cf§cl —9x*hder xFdep xdey
LA 0 U A 4

The first term is in normal form and contains no x?/y terms. The second term con-
tributes a 9,, ,6c{5¢2/A” to f4.r. The third term is —955¢2/A? times x”/y? which
doesn’t contribute because 7, , = 0. The fourth term doesn’t contribute for the same
reason. The fifth term is 6¢{dc; /AP times X /37 which since we are working modulo p
and

P4 :y2p _ c’l’x” _ 027

Vipp =V0.—p — CVpp — C3Y0,p» Meaning y;, , = 0. So the fifth term doesn’t contribute.
The sixth term contributes a —y2p, p9chdci /A? to f s The seventh term doesn’t con-
tribute because the power of y in the denominator is greater than the power of x in the
numerator. Similarly the eighth term doesn’t contribute. Hence the two contributing
terms are exactly those mentioned in the theorem.

The fp term arises from the analysis of the terms containing CIEOIY(}‘U). The pro-
cedure is similar, except that in this case ranges of terms are thrown out when either
the y exponent in the denominator is greater than any of the x exponents in the
numerator or there aren’t any powers of y in the denominator. So parsing the terms
in Proposition 3.2,

1 p—l _ _2p
4¢ 4+ 6x7 ¢ — 9
(4c)” + 6x7Tc) — 9x 2)ypAka k

doesn’t contribute to fy because there aren’t any powers of y in the denominator
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when this expression is simplified. From the term

P b 1 V(=1 k p—k
(4ci” +6x7) — 9xPch) pApZ (c1)fes

comes the

V(=1 k p—k 2k
Z AP [6C€+ A apakp — 901y Vp+k,p]
part of fy. The term

1 F—l(_l)kfl
WA —=  k

(40%17 + 637 — 9x ) (x3k(c1x + Cz)p_k)

which is equal to

p—1 p—k k
e + 637 — 9P &) plAp <p k)( D el pR e
k=1 i=0 k

contributes

G (PR EDE kil
/ ( i )kAp cllcg [4C11 })3k+lp+6c€y2p+3k+i,p_9ngp+3k+i,p]

to fo. Lastly
x CPY(fy)
¥
contributes the term

”‘”’"(p k)( Dt
2 Vp+3k+l 3p

k=1 i=0

L]

to fo. This completes the analysis of all of the terms in Proposition 3.2 concluding the
second step. O

The theorem gives an explicit expression for f 4, of p-derivations and hence by
Proposition 4.6 in [1] an explicit formula for the reduction modulo p of the unique
o-modular form of weight y_, ; ;.

4. 75, p is the Hasse Invariant

The next step is to show that y,, , appearing in Theorem 3.6 equals the Hasse
invariant.
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PROPOSITION 4.1. The term v, , is isobaric of weight p — 1.

Proof. Using the standard weights 4, 6, 2, and 3 given to ¢, ¢3, X, and y respectively
on an elliptic curve, x?/y? has weight 2(2p) — 3p. The procedure for finding the nor-
mal form simply involves substituting an expression of equal weight in for x*
repeatedly. This does not however change the weight. Therefore the weight of
V2p,p 18 simply the weight of the normal form minus the weight of x?/y which is
2(2) — 3 = 1. Hence y,,, has weight of p — 1. O

PROPOSITION 4.2. The term y,, , is the coefficient of (eyz)~Vin f(x, y, 20" and
hence equals the Hasse invariant E,_;.

Proof. For the elliptic curve Ey over MJ there is the following commutative
diagram:

Mg[x;] ~ H'\(E,0) - HX P, O(—3)>:M8[;}

XYZ
F*l F*
HY(E!, 0) — H*(P?, O(-3p))
lf(X, v.zy!

2
ol X | ~ gyt g 2,2 _ 2 ~ Ag0 1
M0|:y:| ~ H (Ey),O) — H(P°,O( 3))_M0|:XYZi|

where F* is the Frobenius homomorphism that maps ()— (), f(X, Y, Z)’"! is the
map that is multiplication by f(X, ¥, Zy’~!, and ¢ is the homomorphism that takes
[x*/y] to b[1/XYZ] for b an invertible element in Mj.

On the left side of the diagram [x?/y] is mapped to [x* /)”] which is then mapped
to 12, , [xz/y]. Then mapping this across gives y,, ,b[1/XYZ]. Tracing down the right
side [x?/y] is mapped to b[1/X YZ] which is then mapped by F* to b’[1/(XYZ)"]. The
next step is multiplication by f(X, Y, Zy’~! and the image is simply b’ H[1/XYZ]
where H is the coefficient of (xyz)’~!in f(x, y, z)’~'. Therefore by the commutativity
of the diagram y,, ,b = b"H.

Now (M{)* = {JA"|) € [, n € 7} meaning that b = JA". However, since both H
and y,, , have the same weight, it follows b and 5’ must have the same weight. This
means that n must be zero since A" has weight of 127 and A has weight 12np.
Therefore b= 1 € ]F; meaning b’ = b. Ergo y,, , = H. O

The theorem in the introduction immediately follows from this latest proposition,
Proposition 4.6 in [1] which says that 4 equals the isogeny covariant differential
modular form of weight y_, ; _; times an invertible constant modulo p, and
Theorem 3.6.
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