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Collisionless shocks undergo structural changes with the increase of Mach number.
Observations and numerical simulations indicate development of time-dependent
rippling. It is not known at present what causes the rippling. However, effects of such
rippling on the field pattern and ion motion and distributions can be studied without
precise knowledge of the causes and detailed shape. It is shown that deviations of the
normal component of the magnetic field from the constant value indicate certain spatial
dependence of the rippling. Deviations of the motional electric field from the constant
value indicate time dependence. It is argued that whistler waves should propagate towards
upstream and downstream regions from the rippled ramp. It is shown that the downstream
pattern of the fields and ion distributions should follow the rippling pattern, while
collisionless relaxation should be faster than in the stationary planar case.
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1. Introduction

Collisionless shocks are among the most fundamental strongly nonlinear phenomena
in space plasmas. The unfading interest regarding collisionless shocks and the ongoing
research during the last six decades is determined by the fact the these shocks are the
most efficient accelerators of charged particles in plasmas (Axford, Leer & Skadron
1977; Krymskii 1977; Bell 1978; Blandford & Ostriker 1978; Vasilev, Toptygin & Chirkov
1978; Toptyghin 1980; Jokipii 1982; Drury 1983; Blandford & Eichler 1987). The highest
energies are achieved at supernova remnant (SNR) shocks (Vink 2020). Acceleration
processes depend on the shock structure, which makes understanding of the latter the
key issue in shock physics. All information about the SNR shocks is obtained remotely via
the electromagnetic emission coming from the particles which are heated and accelerated
by the shocks. In situ observations of collisionless shocks are possible only in the
heliosphere. Supernova remnant shocks are believed to be high-Mach number shocks
(Reynolds 2004; Vink 2004b, a; Jones 2011; Raymond 2018). Heliospheric shocks with
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Mach numbers possibly approaching the Mach numbers of SNR shocks are observed at
outer planets (Masters et al. 2013; Sulaiman et al. 2015; Madanian et al. 2021). Most
shock observations have been and are being performed at the Earth bow shock. As a result
of these observations and theory development, it seems that at present the structure of
low-Mach-number shocks is thoroughly studied observationally and understood rather
well (Greenstadt er al. 1980; Russell et al. 1982; Mellott & Greenstadt 1984; Jones
& Ellison 1987; Gosling, Winske & Thomsen 1988; Farris, Russell & Thomsen 1993;
Gedalin 1996b; Balikhin et al. 2008; Gedalin, Friedman & Balikhin 2015; Gedalin et al.
2022) (see, however, Wilson et al. (2017)). With the increase of Mach number the shock
front undergoes structural changes, developing rippling and time dependence (Bale et al.
2005; Moullard et al. 2006; Lobzin et al. 2008; Krasnoselskikh ef al. 2013; Burgess
et al. 2016; Hao et al. 2016). These changes do not appear abruptly when the Mach
number exceeds some critical value but gradually become more and more pronounced
when the Mach number increases (Ofman & Gedalin 2013). Rippling and time dependence
(reformation), as well as generation of the propagating upstream whistlers (Wilson et al.
2009; Hull et al. 2012; Ramirez Vélez et al. 2012; Wilson et al. 2012, 2017) may be
interrelated (Burgess er al. 2016; Gingell et al. 2017; Umeda & Daicho 2018; Omidi
et al. 2021). At present, it is not quite clear what causes rippling. One of the plausible
explanations is an instability of the waves propagating along the shock surface (Lowe &
Burgess 2003; Burgess & Scholer 2007; Burgess et al. 2016). Such surface modulations
should affect the processes at the shock front, among them ion reflection (Johlander
et al. 2016, 2018). In this paper we study the implications of weak time-dependent
rippling on the shock ramp and the adjacent upstream and downstream regions. We
propose an analytical model of the magnetic and electric fields inside a weakly rippled
shock transition layer, and analyse the consequences which can be verified with numerical
simulations and applied to observations to estimate the rippling parameters.

2. Weak non-stationary rippling: a model

In the absence of a good theory we model rippling as spatial and temporal
dependence localized within the ramp. We start with a monotonic magnetic profile of a
low-Mach-number shock ramp which we model using the following expressions (Gedalin

et al. 2015):
B R+1 R-1 3
s M tanh -, @.1)
B, sinf 2 2 D
B, = B, cosf, (2.2)
B, =k dB, (2.3)
y — B dx ) .
E,=V,B,sin0, E =0, (2.4a,b)
d dB
E =— ONIF = ke 2.5)
dx dx

Here, subscript u refers to the upstream region, 6 is the angle between the shock normal
and the upstream magnetic field vector, B, is the upstream magnetic field magnitude, E|
is the motional electric field, E, is the cross-shock electric field, B, is the non-coplanar
component of the magnetic field, D is the ramp width and R is the ratio of the downstream
to upstream B,. The shock normal is along the x-direction and the non-coplanarity
direction is y. The analysis is done in the normal incidence frame (NIF), where the
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upstream plasma flow is along the shock normal. The coefficients kg, kp are obtained from
— / E,dx = ¢air = swir(m, V2 /2e), (2.6)

— / (E, + V,tan0B,) dx = ¢ur = sur(m,V>/2e), 2.7)

where ¢y and ¢y are the cross-shock potentials in the NIF and the de Hoffman—Teller
frame (HT), respectively. In the HT frame the upstream plasma flow is along the upstream
magnetic field. The relations for B, and E, are approximations derived from the two-fluid
plasma model for low-Mach-number shocks, both subcritical and supercritical (Goodrich
& Scudder 1984; Gosling et al. 1988; Gedalin 1996b). Within this approximation
kg = ccos 6 /Muw,; is the whistler length. Here, M = V,,/V} is the Alfvén Mach number,
c/w,y; is the ion inertial length, w, = \/4nn,e*/m,, V4 = B,/ /4nn,m, is the Alfvén
speed, n, is the upstream proton number density and m,, is the proton mass. For simplicity,
the plasma is assumed to consist of protons and electrons only. For brevity, in what follows
we write down expressions for the fields using ¢ = 1. The speed of light may be easily
restored at the end using dimension arguments. Let us introduce the vector and scalar
potentials, as follows:

A, = A(x) + B, cos 0z — V,B, sin 01, (2.8)
dA
Az - kga, (29)
dA
¢ = kEa, (2.10)
so that
0A,
B, = —, (2.11)
0x
0A,
B, = — = B,cos0, (2.12)
0z
B, = 04, (2.13)
T :
0
E, = ——¢, (2.14)
0x
0A, .
E,=——=V,B,sin6b, (2.15)
’ Jt
0A,
: » (2.16)

Let us now introduce rippling, as follows. Let X = x +f, f(x,y, z, 1) = a¥ (y, z, Hg(x),
g(x — F00) =0, (dg/dx)(x — £oo) =0, where a is the amplitude (dimensions of
length), while ¥ and g are dimensionless. Consider a vector potential and a scalar potential

A, =AX) + B, cos0z — V,B,sin0t, 2.17)
A, =k oA (2.18)
z BaX’ .
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¢ =kp—. 2.19
Eax (2.19)

Note that it is always possible to choose the gauge where one of A components vanishes.
The fields are now

B, = B, sin6B(1 + f,), (2.20)

B, = B, sin6 (cot0 — Bf, + kzBxf,) , (2.21)

B, = —kgB, sin0Bx(1 + 1), (2.22)

E, = —kgB, sin 0By (1 + f,), (2.23)

E, = V,B,sin6 — B, sin0Bf, — kgB, sin 0 Bxf,, (2.24)
E, = —B, sin0kgBxf, — kgB, sin O Bxf.. (2.25)

The details of the derivation and the definitions of By, f;, f, f, and f; are given in the
Appendix (A).
3. Implications for the fields in the ramp

In what follows we analyse what could be the signatures of the weak rippling in
observations and simulations. In the first order on derivatives f;, f, f,, /%, fu. One has

oB
5 * = B,sin@ (Bx(1 + 2f.) + Bf.) (3.1
X
dB, )
= B, sin 0 Bxf,, (3.2)
dy
0B, 0B,
= =0, (3.3)
ay 0z
dB, )
= —kpB, sin O (Bxx(1 + 2f.) + Bxf«) » (3.4
0B, )
a— = _kBBu S QBX)C]CZ (35)
Z

The most notable distinction from the stationary planar shock is that B, and E, are no
longer constant throughout the ramp, and E, # 0. If k3 is also small, the major deviations

are
8B, ~ —B, sin0Bf,, (3.6)
SE, ~ —B, sinOBf, — kpB, sin OByf,, (3.7)
SE, ~ —kgB, sinOByf.. (3.8)

As an example, consider ripples localized within the ramp and propagating along the shock
front, of the form ¥ = sin(k,y + k,z — wt). Then there is no phase difference between §B,,
SE, and §E,, and

SE. = —2sp. 4 %sr (3.9)
y - kz X ky 79 .
SE. By
X 3.10
3B. Eg (3.10)
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FIGURE 1. A visual comparison of the main magnetic component (a) B, for a stationary planar
shock, (b) B; for a rippled shock, (¢) By for a rippled shock and (d) E, for a rippled shock.
Parameters are given in text.

Figure 1 illustrates the effect of rippling on the components of the fields. Figure 1(a,b)
provides a visual comparison of the main magnetic component B, for a stationary shock
and its rippled counterpart. Figure 1(c,d) shows the field components for which the
effect is especially pronounced. For this visualization the following parameters were
used: M =2.5, 0 =65° B;/B, =22, sx\ig =0.5, sur =0.1, D =c/wy,;, k,V,/2, =
27, k\V, /82, =7/2, w = $2,, a =0.3(c/w,;), where 2, = eB,/m,c and (By/B.)?* =
R?sin” 6 4 cos? 0. The localizing function is g(x) = cosh™?(x/D). The rippling amplitude,
a and the wavelength along the z direction 27 /k, are taken to be similar to what was
found numerically by Ofman & Gedalin (2013), albeit for slightly higher Mach numbers.
The profiles are shown for y = 0 and ¢# = 0. Note that the rippling amplitude is rather
small but the effect is quite noticeable, especially in the components B, and E,. Thus,
even if rippling may be difficult to recognize by the main magnetic component or the
magnetic field magnitude, the two mentioned components easily disclose non-planarity
and/or time dependence. For the chosen model of rippling B, deviates from the constant
value mainly because of the spatial dependence on z, while E, deviates from the constant
value due to the temporal dependence and the spatial dependence on y. Figure 1(c,d)
suggest that the rippling parameters can be estimated from observations by comparing the
variations of the components of the fields. For example, §E, + (w/k.)éB, and 6B, seem
to not overlap, which suggests that minimization of [(8E, + A8B,)3B, dx, where 1 is a
variable parameter, may provide an estimate of w/k.

There is an overshoot with max(|B|/B,) = 2.73, and the magnetic field magnitude
drops to below the upstream value, min(|B|/B,) = 0.76. The normal component of the
magnetic field varies in the range —0.99 < B, /B, < 1.84 while without rippling one has
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FIGURE 2. Close-up on the magnetic field magnltude illustrating changes of the local normal
direction along the rippled shock front.

B, /B, = 0.42. For all practical purposes the local normal can be defined as the direction
of V|B| in the region where the magnitude of the gradient is maximum. For the chosen
model rippled profile the deviations of this direction from X reach values > 30°, as can
be seen from figure 2. Thus, for a weakly rippled shock the observational determination
of the shock normal using magnetic coplanarity or minimum variance might have a +30°
error depending on the spacecraft trajectory across the shock.

Shocks which exhibit rippling typically have overshoots. An overshoot is not included
in (2.1) and in the visualization. The generality of the expressions, however, is limited only
by the model (2.17)—(2.19). An overshoot can be easily incorporated in the model profile,
for example, as in Gedalin, Pogorelov & Roytershteyn (2021).

4. Implications for upstream and downstream waves close to the ramp

The rippled ramp is acting as a boundary which is perturbed according to ¢ =
sin(kyy + k.z — wt). These boundary perturbations should generate waves propagating
towards upstream and downstream. The only low-frequency electromagnetic wave which
can propagate towards upstream is the whistler wave which has the Doppler shifted

dispersion relation
k2 4 k2 4 k2 (k, cos € + k. sin6)
o=w—kV,= - Va, (4.1)
Wpi

where @ is the whistler frequency in the frame of the upstream plasma flow and k, < 0.
The relation (4.1) determines k,. Note that for k, = k, = 0 and @ = 0 this relation reduces
to the phase-standing whistler for a planar stationary shock. In this interpretation the
time-dependent rippled shock surface is the source of the whistlers propagating into the
upstream region. The inverse should be also true: if whistlers are constantly escaping
from the shock front they should leave a corresponding imprint at the front itself. Thus,
the rippling pattern at the shock front and the whistler pattern in the upstream region
can be expected to be mutually consistent. For the upstream whistler cos 6y ; = |k.|/k
and cos Oy g, = (k,cos6 + k,sin6)/k, where 0y ; and 6, p, are the angles between the
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propagation direction of the whistler and the shock normal and the upstream magnetic
field, respectively. For the parameters chosen for the above visualization k,V,/$2, =~
—3.86, Orin = 57°, ek,B,‘ ~ 57°.

In the downstream region the dispersion relation for the whistler changes accordingly,

kG . K2 4 k2 (ky 5 €08 64 + k. sin 6,)
4.2)

w — kd,xvd,x - kzvd,z = VA,d>s
Wpi,d

where V,, and V, . are the components of the downstream flow velocity, 6, is the angle
between the shock normal and the downstream magnetic field, w,;, is the ion plasma
frequency calculated with the downstream ion density and v, 4 is the Alfvén speed in the
downstream region. Note that in the downstream region waves propagate from the ramp
into the downstream and the corresponding &, , > 0. In numerical simulations capable of
resolving whistlers two sets of fronts would be observed diverging from the ramp (Yuan
et al. 2009; Riquelme & Spitkovsky 2011). If whistler waves are not resolved properly,
small pieces of such diverging fronts may be still observed. Diverging waves should
remove energy from the ramp, thus providing an additional channel of the redistribution of
the energy of the directed flow of the incident ions. The amplitude of the diverging waves
and the amplitude of the rippling depend on the mechanism which causes rippling and
further sustains it. This mechanism is not known at present and is the subject of intensive
studies (Lowe & Burgess 2003; Burgess & Scholer 2007; Johlander et al. 2016, 2018;
Omidi et al. 2021).

5. Two-fluid hydrodynamics within the rippled shock

The two-fluid approach was used in attempts to describe the shock front of a laminar
(low Mach number, low B) oblique shock (see, e.g. Gedalin 1998). Although a shock-like
profile was not obtained, some useful estimates of the scales were derived. Here we
outline a semiquantitative extension of the two-fluid description with the above modelled
rippling. The two-fluid model has to be adapted separately to the different conditions
inside the ramp and downstream of the ramp. There are no changes in the upstream
region in comparison with the standard description (Gedalin 1998). The ramp width is
substantially smaller than the ion convective gyroradius in supercritical and even laminar
subcritical shocks (Russell er al. 1982; Mellott & Greenstadt 1984; Farris et al. 1993;
Newbury & Russell 1996; Bale et al. 2005; Hobara et al. 2010; Krasnoselskikh et al. 2013).
Therefore, it is more appropriate to treat the ions kinetically. The collisionless Vlasov
equation which simply states that the distribution function is constant along the particle
trajectory, f;(#;, v;, ) = fo(ro, Vo, to), where r; and v; are the solutions of the equations of
motion

dl‘,‘ dv,- e v;
“=v, —=—(E+>xB), (5.1a.b)

dr dr m, c

with the initial conditions r;(t = o) = ry, v;(f = ty) = v,. The equations of motion inside
the ramp are not integrable even in the stationary planar case. It was shown that a
reasonable solution can be derived in the following approximation: (a) the ramp is narrow;
and (D) the ratio of the upstream thermal speed to the flow speed is small, v;r/V, < 1
(Gedalin 1997, 2021). Here vy = /T,,/m,, T, being the temperature of the incident ion
distribution. In this approximation

Vie =1/ Vi = 2epnie/my, Viy =V, =0, (5.2a,b)
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n,V,

+\/ V:,% — 2€¢N[F/mp ’

where n; is the ion number density and V; is the bulk (hydrodynamical) velocity of the
ions. The main effect is the deceleration by the cross-shock electric field as given by
(5.2a,b)-(5.3).

The electron velocity V', can be obtained from

(5.3)

n;, =

d7en

(v—-V, =V xB, 54
c

where quasineutrality n; = n, = n is assumed. Neglecting ion velocity in the y and z
directions inside the ramp one has

B, sin6

Ver = Vi,x - (BX}(; + kBBXsz) ’ (55)
dmtne
B, sin6
Vo = (Bx(1 + 2f,) + Bf.) » (5.6)
dmtne
B, sin6
Ve, = (kpBxx (1 + 2f.) + kpBxfx) » (5.7
dtne

where V, = \/V? — 2e¢ /m and we restricted ourselves with the lowest and first order only.
In the lowest order the electron velocity is

VY = Vi, (5.8)
o _ ¢Bu sin 6
VY = S By (5.9)
B, sin 6
VO = S kB, (5.10)

as in the stationary planar case. In the approximation of massless cold electrons one has
E + V, x B/c = 0 which eventually gives

d Ve 1 d
i( ¢NIF) n _ g G.11)
m, \ dX ) \JV2 —2epyip/m,  8mm,dX
B — B
Vi=Viy =, (5.12)
' &nn,V,m,
Vix _ | b1 b=B/B (5.13)
Vu - 2M2 9 - us .
po e ol L Ve B (5.14)
—_ — = — = . .
n o 2M? M2V, 2m?

This expressions are identical to the expressions obtained for the stationary planar
shock with the only replacement x — X (Gedalin 2021). The above means that in the
lowest-order approximation the ramp structure and the ion velocity remain the same as in
the stationary planar case, only the position of the ramp edges depend on y, z, ¢. This has
important implications for the ion motion and the ion distribution just behind the ramp.
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The main correction to the electron velocity due to the rippling is that V,, # V,, which
probably may be observable in spacecraft measurements. In a quasi-perpendicular shock,
where kj is small, this velocity difference is directly related to the spatial variations in the
y direction. For simplicity, we write down the expression E + V', x B/c = 0forcosf =0

and ky = 0 as
B,
—keBx(1 + 1) + B (Bx(1 + 3f,) + Bf..) =0, (5.15)
d7tne
B,
V, — Bf, — kgBxf, — B (Vx — (Bxf, + kBBXXfZ)> =0, (5.16)
4mne
B,
—kgBxf, — BBxf. = 0. (5.17)
d7tne
In the lowest order we have
Bu
— kg + B=0, V,—-V,,B=0. (5.18a,b)
dmtne

Both mean n/B = const., as should occur in a perpendicular shock. The first-order
corrections add the following constraints:

—keBxf + g (3Bxfy) + Bf.) =0, (5.19)
47mtne
B

4mne

For f = g(x) sin(k,y + k,z — wt) the equations take the form

B,
—kgBxg: + ——B (3Bxg.) + Bg.) =0, (5.21)
dmtne

u

wB — kkgBx + 34 (kyBx + k-kzBxx) = 0. (5.22)

Ttne

Note that in (5.22) all variables depend only on X and all derivatives are with respect
to X. It is tempting to interpret (5.22) as a consistence condition for k, k., kg, kz and
B = (X), while (5.21) may be interpreted as an equation for viable g(x). However, at this
stage using (5.21) and (5.22) to place restrictions on the model parameters is premature,
given the number of approximations made to separate the first-order corrections. These
two equations only show that there are no gross inconsistencies in the proposed model of
the rippling.

Two-fluid hydrodynamics in the downstream region requires taking into account the
non-gyrotropy of the ion distribution and its slow gyrotropization. It is more convenient to
replace the two-fluid approach with the conservation laws together with the collisionless
relaxation principles (Gedalin et al. 2015).

6. Implications for downstream collisionless relaxation

Upon crossing the ramp ions begin to gyrate. In a stationary planar shock the
total downstream ion pressure p; is a function of the distance from the ramp L. The
total pressure includes the dynamic pressure nmV;V; and the kinetic pressure Py, p; =
nmV;V; + P;, where V; is the bulk flow velocity. As a result of the kinematic collisionless
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relaxation, the kinetic pressure P; gradually gyrotropizes and further isotropizes, while the
dynamic pressure tensor reduces to three components only: nmV;; nmV? and nmV, V.. In a
stationary planar shock the total downstream ion pressure depends on the distance x,; from
the downstream edge of the ramp, p; = p;;(x,). In the approximation of a small amplitude
rippling this dependence may be replaced with the dependence on x, = x; + a¥ (y, z, 1).
In a more general way, the ion distribution function becomes dependent on . Therefore,
all other moments, such as the bulk velocity vector, are also functions of . For ¢ =
sin(kyy + k.z — wt) this would mean a spatially periodic pattern propagating along the
shock front. Such a pattern should be easily observed in simulations but is difficult to
identify even with four-spacecraft measurements. One immediate implication of the new
dependence is that weak spatial and/or temporal averaging results in smearing out the peak
values of the moments. In particular, the minimum value of averaged p,, is larger than the
minimum value of p,, in the case if the shock were stationary and planar. Accordingly, the
maximum value of averaged p,, decreases. The conservation laws read

no+ Y (nVy); =0, (6.1)
Jj=x3.z
(nmVy), + Y (py+ My); =0, (6.2)
J=x5.z
1 2
m; = a(B 8;j — 2B:B)). (6.3)

Averaging over y, z, t we arrive at the conservation laws in the form

(nV,) = const., (6.4)
(pix) + (I1;,) = const., (6.5)

where (---) means averaging. Smearing out the peak values of the pressure means a
reduction of the amplitude of the downstream magnetic field oscillations. In this way
rippling enhances kinematic collisionless relaxation. Figure 3 illustrates the dispersion
of ion trajectories caused by the rippling. For this purpose figure 3(b) shows x versus v,
for an ion moving from upstream with the velocity of the flow, v;yia = (V,, 0, 0), in the
shock without rippling with the above chosen profile. Figure 3(a) shows x versus v, for
ions with vya = (Vy, 0, 0) starting at randomly chosen 0 < z < V,,/§2, and the same
Xinitial- FOT figure 3(a) the shock is rippled with the parameters mentioned above but k, = 0
and w = 0. The blue dotted line shows the magnetic field magnitudes corresponding to
the positions x of all ions, independently of y and z.

Since the incident ions cross the ramp in different positions because of rippling,
it can be expected that the downstream heating parameters, averaged over y, z and ft,
would differ from those which are achieved in a stationary planar shock with the same
parameters. In order to compare the parallel and perpendicular heating in a rippled shock
with its stationary counterpart, 40 000 initially Maxwellian distributed ions with §; = 0.2
were traced across the shock in both cases and parallel and perpendicular temperatures
were calculated well downstream of the transition region. The normalized upstream
temperature in both cases is T,/m,V? = 0.016. The distributions behind the shock
are strongly anisotropic. Without rippling the temperatures are T, /m,V* = 0.016 and
T, 1/m,V? = 0.178. No parallel heating occurs. With rippling we obtained T, /m,V? =
0.018, T, 1 /m,V? = 0.182, which means weak parallel heating and lower anisotropy.
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2/ (Vo))

FIGURE 3. Trajectories, x versus vy, for ions entering the shock with the velocity of the
upstream flow at different initial z: (a) the rippled shock; (b) no rippling. The blue dotted line
shows the magnetic field magnitudes corresponding to the positions x of all ions.

Corrections to the averaged conservation laws may be obtained by replacing
8[ = Cll/fiax, i=t, ., 2 (66)

which gives

3, (an + > mﬁ,nV,-) =0, (6.7)

i=1,y,z

ax [awlnmvi +pxx + Hxx + Z Cle(Pi/‘ + Hz])i| =0. (68)

J=y:z

Thus, for example, nV, and p,, + I1,, are no longer constant throughout the shock but the
deviations are proportional to the small amplitude of the rippling.

The above analysis was done in the lowest-order approximation which describes the
rippling as a simple shift of the position of the ramp of the kind Ax = ay(y, z, ). Beyond
this approximation, the maximum magnetic field and the cross-ramp potential also change
with the shift, which further affects the ion motion and can be expected to cause more
efficient relaxation. As a result, the spatial scale of the gyrotropization and isotropization
downstream of the ramp should be smaller than the corresponding scale in a stationary
planar shock. In the present study we model rippling with a monochromatic wave. Even
multispacecraft observations provide information only about a small part of the shock
surface. Simulations (Umeda & Daicho 2018; Omidi er al. 2021) show that rippling is
only approximately monochromatic. Finite width of the spectrum would further enhance
gyrotropization and isotropization by adding randomness in the gyrophases of the ion
which are mixed at a fixed spatial position behind the ramp.

7. Discussion

At present, there is no theory of the rippling development, and we do not know what
the rippling parameters should be and how they depend on the shock parameters, such
as Mach number and the angle between the shock normal and the upstream magnetic
field. Therefore, our study focused on the implications of a time-dependent rippling for
the pattern of the electric and magnetic fields inside the ramp and in the upstream and
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downstream regions adjacent to the ramp, as well as for the ion motion and distributions in
the rippled structure. It is clear that the functional dependence of the vector potential on the
coordinates and time may be different from the model adopted in this study. Accordingly,
the field profiles may differ in detail from those shown in the figures. However, the general
conclusions about the deviations from the stationary planar fields are rather independent of
the particular shape. Upstream and downstream whistlers diverging from the ramp may not
propagate far from the shock, and possibly only traces of such whistlers with the footprints
at the rippled ramp would be observed. The downstream pattern should be induced by the
ion distributions following the rippling pattern, and the relaxation to thermal equilibrium
should be faster because of the enhanced mixing. Waves which cross the shock and
instabilities in the foreshock, foot and downstream region would affect the ion motion and
also change the observed fields. Yet, we expect that the main effect would be produced
by the macroscopic fields of the rippled shock front. All numerical illustrations in this
study were done with a rather modest rippling and for shock parameters which essentially
excluded ion reflection. In supercritical shocks, reflected ions play an important role in
the formation of downstream distributions and contribute significantly to ion heating. Ion
reflection will be also affected by the rippling. The effect may be expected to be stronger
since a reflected ion crosses the ramp up to three times (Gedalin 1996a, 2016; Balikhin &
Gedalin 2022). Detailed study of the ion motion and distributions in a supercritical rippled
shock, together with the dependence on the rippling parameters, will be performed later.

8. Conclusions

We modelled rippling of the shock front as a monochromatic wave propagating along
the shock front but localized within the ramp. Such rippling causes similar patterns in the
fields inside and around the ramp. The most prominent observable changes of the fields
inside the ramp are variations of the normal component of the magnetic field and of the
motional component of the electric field. The rippling should cause whistlers diverging
from the ramp. The whistlers should propagate obliquely to the shock normal and to the
ambient magnetic field. The downstream magnetic field pattern should roughly follow
the pattern of the rippling. The amplitude of the magnetic field oscillations should be
smaller than in the stationary planar shock with the same parameters. Gyrotropization
and isotropization should occur at smaller scales than what would happen in a stationary
planar shock with the same shock parameters. Our conclusions can be verified with
numerical simulations and used to determine the rippling parameters from observations.
The objective of this study was to show that even weak rippling has clear effects on the
observable fields and particle distributions in the shock front. We defer for future studies
analysis of more realistic rippling in supercritical shocks with significant ion reflection.
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Appendix A
One has
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Here
dB d’B

By = x’ Byx = Ik (A 20a,b)

, _dg ,
&= f=—avyg, fe=—ag¥e, §=y21, (A 2la—d)

d

0, = (1 )—, 0 =fr— A 22a.,b
( +f)dX E fEdX ( a,b)

are all localized. The normalized coefficients remain the same as in one-dimensional
stationary case (see (2.6) and (2.7)),

SNIF
kp = ———, A23
ES3R-1) (A23)
ky = (SHT_— SNIF) €OS 0 (A24)
2sinf(R — 1)

Each differentiation of X with respect to x, y, z, t adds a small multiplier. The derivatives
fis fes fys for fux are of the first order. The terms f7, £7, f2, fuys fezs fyvs frzo» fz are of the second
order. We shall restrict ourselves with the first order only. Meanwhile we do not make
assumptions about kp.
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