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Abstract. Let R be a commutative Noetherian ring, a is an ideal of R and M is
an R-module. We intend to establish the dual of Grothendieck’s Vanishing Theorem
for local homology modules. We conjecture that Ha

i (M) = 0 for all i > magRM. We
prove this in several cases.
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1. Introduction. Throughout this paper, R is a commutative Noetherian ring with
non-zero identity, a is an ideal of R and M is an R-module.

The theory of local cohomology has developed much in six decades since its
introduction by Grothendieck. But, its dual theory, the theory of local homology has
not developed much. The theory of local homology was initiated by Matlis [9] in 1974.
The study of this theory was continued by Simon in [15] and [16]. A new era in the
study of local homology has started after Greenlees and May [7] and Alonso Tarrı́o
et al. [1]; see for instance [5, 4, 6, 11, 14].

The most essential vanishing result for the local cohomology modules Hi
a(M) is

Grothendieck’s Vanishing Theorem, which asserts that Hi
a(M) = 0 for all i > dimRM.

There is no satisfactory dual of this result for local homology modules. To have
such a dual, one should first have an appropriate dual notion of Krull dimension.
There are two dual notions in literature: Noetherian dimension, NdimRM, and
magnitude, magRM; see [12] and [17]. There are two partial duals of Grothendieck’s
Vanishing Theorem. If M is linearly compact with NdimRM = d, then by [5,
Theorem 4.8], Ha

i (M) = 0 for all i > d. Also, by [11, Proposition 4.2] if M is
either finitely generated or Artinian, then Ha

i (M) = 0 for all i > sup{dim R/p|p ∈
CosuppRM}.

When R is complete local, we show that magRM ≤ NdimRM with the equality
if M �= 0 and it is either N-critical or semi-discrete linearly compact. So for having a
sharper upper bound for vanishing of the local homology modules Ha

i (M), magRM
could be a better candidate. In fact, we conjecture that Ha

i (M) = 0 for all i > magRM.
Our investigation on this conjecture is the core of this paper. We show this conjecture
in several cases.

Namely, we prove that if
CoassRM = AttRM, or
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M is finitely generated, Artinian or Matlis reflexive, or
M is linearly compact, or
R is complete local and M has finitely many minimal co-associated prime ideals,

or
R is complete local with the maximal ideal m and mnM is minimax for some integer

n ≥ 0, then Ha
i (M) = 0 for all i > magRM.

Zöschinger [19] has conjectured that any module over a local ring has finitely many
minimal co-associated prime ideals. Thus, by fourth case, over a complete local ring R,
Zöschinger’s conjecture implies our conjecture.

2. The results. In what follows, we denote the faithful exact functor
HomR(−, ⊕

m∈MaxR
E(R/m)) by (−)∨. Let M be an R-module. A prime ideal p of R

is said to be a co-associated prime ideal of M if there is an Artinian quotient L of M
such that p = (0 :R L). The set of all co-associated prime ideals of M is denoted by
CoassRM. Also, AttRM is defined by

AttRM := {p ∈ SpecR| p = (0 :R L) for some quotient L of M}.

Clearly, CoassRM⊆AttRM and the equality holds if either R or M is Artinian.
More generally, if M is representable, then it is easy to check that CoassRM =
AttRM. If 0 −→ M −→ N −→ L −→ 0 is an exact sequence of R-modules and
R-homomorphisms, then it is easy to check that

CoassRL ⊆ CoassRN ⊆ CoassRL ∪ CoassRM

and

AttRL ⊆ AttRN ⊆ AttRL ∪ AttRM.

Also, if R is local, then one can see that CoassRM = AssRM∨.

LEMMA 2.1. Let M be an R-module. Then AttRM = AttRM∨∨.

Proof. Let p be a prime ideal of R and X, Y are two R-modules. There are natural
isomorphisms (X/pX)∨ ∼= (0 :X∨ p) and (0 :Y p)∨ ∼= Y∨/pY∨. Hence, (X/pX)∨∨ ∼=
X∨∨/pX∨∨. Since (−)∨ is a faithfully exact functor, we deduce that

AnnR(X/pX) = AnnR((X/pX)∨∨) = AnnR(X∨∨/pX∨∨).

On the other hand, one can easily check that p ∈ AttRX if and only if p = AnnR(X/pX).
This yields that AttRM = AttRM∨∨, as required. �

Let a be an ideal of R and C0(R) denote the category of R-modules and
R-homomorphisms. It is known that the a-adic completion functor

�a(−) := lim←−
n

(R/an ⊗R −) : C0(R) −→ C0(R)

is not right exact in general. For any integer i, the ith local homology functor with
respect to a is defined as ith left derived functor of �a(−). For an R-module M, set
cdaM := sup{i|Hi

a(M) �= 0}. By [7, Corollary 3.2], Ha
i (M) = 0 for all i > cdaR.
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LEMMA 2.2. Let a be an ideal of R and M an R-module. Then Ha
i (M) = 0 for all

i > sup{dim R/p|p ∈ AttRM}.

Proof. For any R-module N, let dN := sup{dim R/p|p ∈ AttRN}. If dN ≥ cdaR,
then [7, Corollary 3.2] implies that Ha

i (N) = 0 for all i > dN . Hence, it is enough to
show that for any R-module N with dN < cdaR, one has Ha

i (N) = 0 for all dN < i ≤
cdaR + 1. We do decreasing induction on i. Clearly, the claim holds for i = cdaR + 1.
Now assume that dN < i < cdaR + 1 and that the claim holds for i + 1. We have to
show that Ha

i (N) = 0. We have an exact sequence

0 −→ N −→ N∨∨ −→ C −→ 0,

which yields the long exact sequence

· · · −→ Ha
i+1(N∨∨) −→ Ha

i+1(C) −→ Ha
i (N) −→ Ha

i (N∨∨) −→ · · · .

By [7, Lemma 3.7] one has Ha
j (N∨∨) ∼= Hj

a(N∨)∨ for all j ≥ 0. It is easy to see that
AssRN∨ ⊆ AttRN∨∨, and so by Lemma 2.1, dimRN∨ ≤ dN . Thus, by Grothendieck’s
Vanishing Theorem, one has

Ha
i+1(N∨∨) = 0 = Ha

i (N∨∨),

and so Ha
i+1(C) ∼= Ha

i (N). From the above short exact sequence and Lemma 2.1, one
has AttRC ⊆ AttRN. Hence, dC ≤ dN < i + 1, and so by induction hypothesis,

Ha
i (N) ∼= Ha

i+1(C) = 0.

Thus, the claim follows by induction. �
Next, we recall the definitions of NdimRM and magRM.

DEFINITION 2.3. Let M be an R-module.
(i) (See [12]) The Noetherian dimension of M is defined inductively as follows:

When M = 0, put NdimRM = −1. Then by induction, for an integer d ≥ 0,
we put NdimRM = d if NdimRM < d is false and for every ascending
sequence M0 ⊆ M1 ⊆ . . . of submodules of M, there exists n0 such that
NdimRMn+1/Mn < d for all n > n0.

(ii) (See [17]) The magnitude of M is defined by magRM := sup{dim R/p|p ∈
CoassRM}. If M = 0, we put magRM = −∞.

(iii) (See [11]) The co-localization of M at a prime ideal p of R is defined by

pM := HomRp
((M∨)p, ERp

(Rp/pRp)).

Then CosuppRM is defined by CosuppRM := {p ∈ SpecR|pM �= 0}.
(iv) (See [3]) M is said to be N-critical if NdimRN < NdimRM for all proper

submodules N of M.

It becomes clear from the definition that NdimRM = 0 if and only if M
is a non-zero Noetherian R-module. If 0 −→ X −→ Y −→ Z −→ 0 is an exact
sequence of R-modules and R-homomorphisms, then [3, Proposition 5] yields
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that NdimRY = max{NdimRX, NdimRZ}. Also, it is easy to verify that magRY =
max{magRX, magRZ}.

Next, we compare NdimRM and magRM. Recall that an R-module M is said to
be Matlis reflexive if the natural homomorphism M −→ M∨∨ is an isomorphism.

LEMMA 2.4. Let M be an R-module.
(i) Suppose R is complete local. Then magRM ≤ NdimRM and equality holds if

M �= 0 and it is either N-critical or Matlis reflexive.
(ii) magRM ≤ sup{dim R/p|p ∈ CosuppRM} and equality holds if R is local.

Proof. (i) Let p ∈ CoassRM. Then there is an Artinian p-secondary quotient
M/N of M such that p = AnnRM/N. By [3, Proposition 5], we have NdimRM =
max{NdimRN, NdimRM/N}. On the other hand, for any Artinian R-module A,
[17, Theorem 2.10] asserts that magRA = NdimRA. (Note that the argument of [17,
Theorem 2.10] is not correct without the completeness assumption on R.) Since p is
the only co-associated prime ideal of M/N, it turns out that

dim R/p = magRM/N = NdimRM/N ≤ NdimRM.

Thus,

magRM = sup{dim R/p|p ∈ CoassRM} ≤ NdimRM.

Now assume that M �= 0. Let M be N-critical and let p and N be as above. Then
the NdimRN < NdimRM, and so

NdimRM = max{NdimRN, NdimRM/N}
= NdimRM/N
= magRM/N
≤ magRM.

Next, let M be Matlis reflexive. Then by [2, Theorem 12] there is a finitely generated
submodule N of M such that M/N is Artinian. Clearly, we may suppose that M �= 0.
Then,

NdimRM = max{0, NdimRM/N} = max{0, magRM/N} ≤ magRM.

(ii) It suffices to show that CoassRM ⊆ CosuppRM. Let p ∈ CoassRM. There is an
Artinian quotient L of M such that p = AnnRL. Set E := ⊕m∈MaxRE(R/m). Since L is
Artinian, we may assume that L ⊆ Er for an integer r ≥ 0. Let f : M −→ Er denote the
composition of the natural epimorphism M −→ L and the natural monomorphism
L −→ Er. Then p = (0 :R f )(:= {a ∈ R|af : M −→ Er is the zero homomorphism}),
and so

p ∈ AssR(HomR(M, Er)) = AssRM∨ ⊆ SuppRM∨.

Hence, (M∨)p �= 0, and so pM �= 0. This means that p ∈ CosuppRM.
Now assume that R is local. Since CosuppRM = SuppRM∨, [17, Lemma 2.2 a)]

implies that magRM = sup{dim R/p|p ∈ CosuppRM}. �
Recall that an R-module M is said to be semi-Artinian if every proper submodule

of M contains a minimal submodule; see for example [13].
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EXAMPLE 2.5. Let M be an R-module.
(i) Suppose that M is semi-Artinian with finitely many associated prime ideals.

Then by [19, Bemerkung after Satz 2.9], one has CoassRM = AttRM. But, in
general, the containment CoassRM ⊆ AttRM may be strict. To this end, let p

be a non-maximal prime ideal of R and set M := R/p. Then CoassRM =
V(p) ∩ MaxR and AttRM = V(p), and so CoassRM � AttRM.

(ii) The inequality in Lemma 2.4 (i) may be strict. To see this, let (R,m) be a
local ring and M := ⊕i∈�R/m. Then CoassRM = {m}, and so magRM = 0.
But, as M is not a Noetherian R-module, we have NdimRM > 0.

(iii) In Lemma 2.4 (i), the completeness assumption on R cannot be skipped. To
see this, let (R,m) be a two-dimensional local domain such that R̂ possesses
a one-dimensional embedded prime ideal q; see [10, Appendix, Example 2].
Let A := (0 :E(R/m) q). Then magRA = 2 and

NdimRA = NdimR̂A = magR̂A = 1.

LEMMA 2.6. Let (R,m) be a complete local ring, a is an ideal of R and M is an
R-module. Then Ha

i (M) = 0 for all i > magRM∨∨.

Proof. The proof is similar to the proof of Lemma 2.2. We use decreasing induction
on i. For i ≥ dim R + 1, the claim holds by [7, Corollary 3.2]. Note that magRM∨∨ ≤
dim R. Now assume that magRM∨∨ < i < dim R + 1 and that the claim holds for i + 1.
We have an exact sequence

0 −→ M −→ M∨∨ −→ C −→ 0,

which yields the long exact sequence

· · · −→ Ha
i+1(M∨∨) −→ Ha

i+1(C) −→ Ha
i (M) −→ Ha

i (M∨∨) −→ · · · .

By [7, Lemma 3.7], one has Ha
j (M∨∨) ∼= Hj

a(M∨)
∨

for all j ≥ 0. Since

i > magRM∨∨ = dimRM∨∨∨ ≥ dimRM∨,

Grothendieck’s Vanishing Theorem implies that

Ha
i+1(M∨∨) = 0 = Ha

i (M∨∨).

Hence, Ha
i+1(C) ∼= Ha

i (M). Also, from the above short exact sequence, we deduce that

magR(M∨∨∨∨) = max{magRM∨∨, magRC∨∨}.
On the other hand, [18, Lemma 2.9 and Folgerung 2.10] yields that CoassR(M∨∨∨∨) =
CoassR(M∨∨), and so

magRC∨∨ ≤ magR(M∨∨∨∨) = magRM∨∨.

Now, since magRC∨∨ < i + 1, by induction hypothesis, it turns out that

Ha
i (M) ∼= Ha

i+1(C) = 0.

Thus, the claim follows by induction. �
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LEMMA 2.7. Let (R,m) be a complete local ring and M is an R-module. Assume
that M has finitely many minimal co-associated prime ideals. Then magRM∨∨ =
magRM.

Proof. Let {p1, p2, . . . , pn} be the set of all elements of CoassRM which are minimal
with respect to inclusion in CoassRM. By [18, Satz 2.6], for any prime ideal p̃ of R,
p̃ ∈ CoassRM∨∨ if and only if p̃ = ⋂

p∈� p for some subset � of CoassRM. In particular,
one has CoassRM ⊆ CoassRM∨∨, and so magRM ≤ magRM∨∨. Also, it follows that

any prime ideal p̃ ∈ CoassRM∨∨ contains
n⋂

i=1
pi.

Let q ∈ CoassRM∨∨ be such that dim R/q = magRM∨∨. Then q is minimal in

CoassRM∨∨. Since q ⊇
n⋂

i=1
pi, there is 1 ≤ j ≤ n such that q ⊇ pj. But pj ∈ CoassRM∨∨,

and so q = pj. Thus, q ∈ CoassRM, and so magRM∨∨ ≤ magRM. �
At this point, we are ready to present our main result. But we first recall some

definitions which are needed in its statement.
We begin by recalling the definition of linearly compact modules from [8]. Let M be

a topological R-module. Then M is said to be linearly topologized if M has a base M
consisting of submodules for the neighbourhoods of its zero element. A Hausdorff
linearly topologized R-module M is said to be linearly compact if for any family F of
cosets of closed submodules of M, which has the finite intersection property, the inter-
section of all cosets in F is non-empty. A Hausdorff linearly topologized R-module M
is called semi-discrete if every submodule of M is closed. The class of semi-discrete
linearly compact modules is very large, it contains many important classes of modules
such as the class of Artinian modules, or the class of finitely generated modules over a
complete local ring.

An R-module M is called minimax if it has a finitely generated submodule N such
that M/N is Artinian. By [18, Lemma 1.1], over a complete local ring R, an R-module M
is minimax if and only if M is semi-discrete linearly compact and if and only if M is
Matlis reflexive.

THEOREM 2.8. Let a be an ideal of R and M an R-module. Assume that either
(i) CoassRM = AttRM,

(ii) M is N-critical,
(iii) M is finitely generated, Artinian or Matlis reflexive,
(iv) M is linearly compact,
(v) R is complete local and M has finitely many minimal co-associated prime

ideals; or
(vi) R is complete local with the maximal ideal m and mnM is minimax for some

integer n ≥ 0.
Then Ha

i (M) = 0 for all i > magRM.

Proof. (i) Follows from Lemma 2.2.
(ii) By [3, Proposition 2], M is a secondary module. This implies that CoassRM =

AttRM, and so (ii) follows from (i).
(iii) For a finitely generated R-module N, one has magRN ≤ 0 and [15

Proposition 3.2] yields that Ha
i (N) = 0 for all i > 0. When M is Artinian, the claim

follows from (i). Now assume that M is Matlis reflexive. We may and do assume that
M is non-zero.
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By [2, Theorem 12], there is a finitely generated submodule N of M such that M/N is
Artinian. Then

magRM = max{magRN, magRM/N} = max{0, magRM/N}.

Thus, the claim follows by the following long exact sequence

· · · −→ Ha
i+1(M/N) −→ Ha

i (N) −→ Ha
i (M) −→ Ha

i (M/N) −→ · · · .

(iv) Let M be a base consisting of submodules for the neighbourhoods of the zero
element of M. Then by [8, 3.11], M ∼= lim←−

U∈M
M/U . By [5, Proposition 3.4], it turns out

that Ha
i (M) ∼= lim←−

U∈M
Ha

i (M/U). Note that for each U , M/U is a semi-discrete linearly

compact R-module with magRM/U ≤ magRM. So we only need to prove the claim
for the case M is a semi-discrete linearly compact R-module. Let M be a semi-discrete
linearly compact R-module. Then [20] implies that M is Matlis reflexive. Thus (iii)
completes the proof of this part.

(v) Follows by Lemmas 2.6 and 2.7.
(vi) By [13, Theorem 3.3] and [20, Lemma 2.2 (d)], there is a submodule N of M

such that CoassRN ⊆ {m} and the quotient module M/N is Artinian. Hence, CoassRM
is finite, and so (v) yields the conclusion. �

Let (R,m) be a local ring. Zöschinger [19] conjectured that any R-module M has
finitely many minimal co-associated prime ideals. Clearly, this is equivalent to, say that
for any R-module M, SuppRM∨ is a Zariski-closed subset of SpecR.

REMARK 2.9. Let M be an R-module and in the first three parts, suppose that R is
local.

(i) By [19, Folgerung 1.5] if CoassRM is countable, then M has finitely many
minimal co-associated prime ideals. Hence, if R is countable, or SpecR is
finite (e.g. dim R ≤ 1), or M is Matlis reflexive, or M is representable (e.g.
injective), then M has finitely many minimal co-associated prime ideals.

(ii) Let {Mλ}λ∈� be a family of R-modules such that for each λ, Mλ has finitely
many minimal co-associated prime ideals. Then both

⊕
λ∈� Mλ and

∏
λ∈� Mλ

have finitely many minimal co-associated prime ideals; see [19, Satz 2.6] and
[18, Satz 2.8 (b)].

(iii) If CoassRM = AttRM, then by [19, Lemma 3.1] M has finitely many minimal
co-associated prime ideals. Hence, for any infinite index set � and any R-
module X , the R-modules X (�) and X� have finitely many minimal co-
associated prime ideals; see [19, Bemerkung after Satz 2.4].

(iv) In view of Lemma 2.4 (ii), clearly Theorem 2.8 (iii) extends [11,
Proposition 4.2].
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