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Abstract

We study properties of the simply connected sets in the complex plane, which are finite unions of domains
convex in the horizontal direction. These considerations allow us to state new univalence criteria for
complex-valued local homeomorphisms. In particular, we apply our results to planar harmonic mappings
obtaining generalisations of the shear construction theorem due to Clunie and Sheil-Small [‘Harmonic
univalent functions’, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3–25].
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1. Introduction

Let D = {z : |z| < 1} denote the open unit disc in the complex plane C. A function
f : D→ C is said to be harmonic in D if both Re f and Im f are real harmonic, that is,
they satisfy the Laplace equation. It is well known that, since D is simply connected,
f can be written in the form

f (z) = h(z) + g(z), z ∈ D,

where h and g are analytic in D. The Jacobian J f of f in terms of h and g is given by

J f (z) = |h′(z)|2 − |g′(z)|2, z ∈ D.

It is known that if f is harmonic in D and J f (z) , 0 for all z ∈ D, then f is locally
one-to-one. Moreover, if J f > 0 for all z ∈ D, then f is locally one-to-one and sense-
preserving. For more information about harmonic functions see, for example, [2].

Clunie and Sheil-Small in [1] gave the following theorem, known as the shear
construction.

Theorem 1.1. A function f = h + g harmonic in D with positive Jacobian is a one-to-
one sense-preserving mapping of D onto a domain convex in the direction of the real
axis if and only if h − g is an analytic one-to-one mapping of D onto a domain convex
in the direction of the real axis.
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The shear construction has many applications as a univalence criterion and as a
method of constructing harmonic mappings (see, for example, [3–11, 13–15]).

In this paper we generalise the theorem of Clunie and Sheil-Small and extend our
previous results given in [12]. In Section 2 we prove some topological properties
of simply connected sets. In Section 3 we use results from Section 2 to give new
univalence conditions for complex-valued local homeomorphisms. Finally, we apply
these conditions to planar harmonic mappings in Section 4.

2. Topological properties

Let D be a nonempty domain in the complex plane and let P(D) be the orthogonal
projection of the set D onto the imaginary axis. For a given real number a put

Da := D ∩ {z ∈ C : Im z = a}.

If Da is nonempty and has a finite number of connected components, then by Na(D) we
denote the number of connected components of Da. If Da = ∅, then we set Na(D) = 0.
If Da has an infinite number of connected components, then we set Na(D) =∞.

We consider domains D which can be represented as a finite union of domains D j,
j = 1, . . . , n, convex in the horizontal direction. To study the properties of Na(D), it
is convenient to extend the sets D j, j = 1, . . . , n, in the following manner. For each
j = 1, 2, . . . , n, let the maximal horizontal extension D′j of the set D j be defined by

D′j =
⋃
a∈R

D j(a), j = 1, . . . , n, (2.1)

where

D j(a) :=


∅ if Na(D j) = 0,
Da if Na(D) · Na(D j) = 1,
the connected component of the set Da

with a nonempty intersection with D j if Na(D) · Na(D j) > 1.

The extension D′j inherits some properties of the set D j. It is clear from the definition
that D′j is a domain convex in the horizontal direction and the inclusion D j ⊂ D′j holds.
Moreover, D =

⋃n
j=1 D′j =

⋃n
j=1 D j and

⋂n
j=1 D j ⊂

⋂n
j=1 D′j. The maximal horizontal

extensions D′j, j = 1, 2, . . . , n, have some additional properties (not necessarily true for
the sets D j, j = 1, . . . , n), which we prove in the following lemmas.

Lemma 2.1. Let D be a finite union of domains D j, j = 1, . . . ,n, convex in the horizontal
direction and equal to their maximal horizontal extensions defined by (2.1), that is,
D j = D′j for all j = 1, . . . , n. If I is a nonempty subset of {1, 2, . . . , n} and D̃ =

⋃
m∈I Dm,

then
∀a∈R∀ j∈I(Da

j , ∅)⇒ (Na(D̃ \ D j) = Na(D̃) − 1). (2.2)

https://doi.org/10.1017/S0004972717000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000089


[3] A generalisation of the Clunie–Sheil-Small theorem II 459

Proof. Formula (2.1) ensures that, for each j = 1, 2, . . . , n and for any real number a,
either the set Da

j is a connected component of Da, or Da
j = ∅. This property is inherited

by the subsets D̃ of D in the following sense. If ∅ , I ⊂ {1, 2, . . . , n} and D̃ =
⋃

m∈I Dm,
then, for each m ∈ I and any real a, either the set Da

m is a connected component of D̃a,
or Da

m = ∅. Hence, (2.2) follows. �

Lemma 2.2. Let D be a finite union of domains D j, j = 1, . . . ,n, convex in the horizontal
direction and equal to their maximal horizontal extensions. Then, for each real
number a,

Na(D) =

n∑
j=1

Na(D j)
max{1,

∑n
k=1 Na(D j ∩ Dk)}

. (2.3)

Proof. Fix a. We use induction on n, the number of domains whose union gives D.
First observe that if n = 1, then D is a domain convex in the horizontal direction and

in that case Na(D) ∈ {0, 1} and thus Na(D) = Na(D)/max{1,Na(D)}.
Let n > 1. Assume the hypothesis holds for every positive integer m < n, that is,

Na(D̃) =

m∑
j=1

Na(D j)
max{1,

∑m
k=1 Na(D j ∩ Dk)}

for D̃ =
⋃m

j=1 D j, and let D =
⋃m+1

j=1 D j, where each of the domains D j is convex in the
horizontal direction. We prove that

Na(D) =

m+1∑
j=1

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}
.

Observe that Na(D) − 1 ≤ Na(D̃) ≤ Na(D), since D̃ ⊂ D, (D \ Dm+1) ⊂ D̃ and (2.2)
holds for every D j, j = 1, 2, . . . ,m + 1. We consider three cases.

Case 1. If Na(Dm+1) = 0, then Na(D) = Na(D̃) = Na(D̃) + Na(Dm+1), since D̃a = Da.

Case 2. If Na(Dm+1) = 1 and Na(D j ∩ Dm+1) = 0 for all j = 1, 2, . . . ,m, then by (2.2),

Na(D) = Na(D̃) + 1 =

m∑
j=1

Na(D j)
max{1,

∑m
k=1 Na(D j ∩ Dk)}

+ Na(Dm+1)

=

m∑
j=1

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}
+

Na(Dm+1)
max{1,

∑m+1
k=1 Na(Dm+1 ∩ Dk)}

=

m+1∑
j=1

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}
.

Case 3. If Na(Dm+1) = 1 and there exists an index j ∈ {1, 2, . . . , m} such that
Na(D j ∩ Dm+1) = 1, then Da

m+1 = Da
j by (2.1), and consequently Na(D) = Na(D̃). Let

I ⊂ {1, 2, . . . ,m} be the set of all such indices j for which Na(D j ∩ Dm+1) = 1 and
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denote by I′ = {1, 2, . . . ,m} \ I the set of all indices j for which Na(D j ∩ Dm+1) = 0.
Then, denoting by |I| the number of elements in I,

Na(D) = Na(D̃) =

m∑
j=1

Na(D j)
max{1,

∑m
k=1 Na(D j ∩ Dk)}

=
∑
j∈I

Na(D j)∑m
k=1 Na(D j ∩ Dk)

+
∑
j∈I′

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}

=
∑
j∈I

Na(D j)
|I|

+
∑
j∈I′

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}

= 1 +
∑
j∈I′

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}

=
∑

j∈I∪{m+1}

Na(D j)
|I ∪ {m + 1}|

+
∑
j∈I′

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}

=
∑

j∈I∪{m+1}

Na(D j)∑m+1
k=1 Na(D j ∩ Dk)

+
∑
j∈I′

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}

=

m+1∑
j=1

Na(D j)

max{1,
∑m+1

k=1 Na(D j ∩ Dk)}
.

This completes the proof of (2.3). �

The proof of Theorem 1.1 of Clunie and Sheil-Small relies on the following lemma.

Lemma 2.3. Let D be a domain convex in the direction of the real axis and let p be a
continuous real-valued function in D. Then the mapping D 3 w 7→ w + p(w) is one-to-
one in D if and only if it is locally one-to-one. In this case the image of D is convex in
the direction of the real axis.

To generalise Lemma 2.3 (see Section 3) we need the following auxiliary results.
Let D = D1 ∪ D2, where D1,D2 are domains convex in the horizontal direction, and

let q : D→ C be a continuous, locally one-to-one function such that Im q(z) = Im z for
all z ∈ D. Clearly, P(D1 ∩ D2) = P(q(D1) ∩ q(D2)) if and only if Na(D) = Na(q(D)) for
all real numbers a. In the following lemma we prove a less obvious result.

Lemma 2.4. Let D = D1 ∪ D2, where D1, D2 are domains convex in the horizontal
direction, and let q : D→ C be a continuous, locally one-to-one function such that
Im q(z) = Im z for each z ∈ D. Then for any real number a the following are equivalent:

(i) Na(D) = Na(q(D));
(ii) Na(D1 ∩ D2) = Na(q(D1) ∩ q(D2)).

Proof. Let a be a fixed real number. By Lemma 2.3 we know that q(D1) and q(D2) are
convex in the horizontal direction.
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We first show that (i)⇒ (ii). If Na(D1 ∩ D2) = 1, then Na(q(D1) ∩ q(D2)) = 1,
by the continuity of q. On the other hand, if Na(D1 ∩ D2) = 0, then by the equality
Na(D) = Na(q(D)) and the continuity of q, we have Na(q(D1) ∩ q(D2)) = 0.

We now prove that (ii)⇒ (i). If Na(D) = 0, then clearly Na(q(D)) = 0. If Na(D) = 2,
then Na(D1 ∩ D2) = 0, and by the equality Na(D1 ∩ D2) = Na(q(D1) ∩ q(D2)) and the
continuity of q, we get Na(q(D)) = 2. Finally, if Na(D) = 1, then again by the equality
Na(D1 ∩ D2) = Na(q(D1) ∩ q(D2)) and the continuity of q, we get Na(q(D)) = 1. �

We now generalise Lemma 2.4 for the case of open sets in the complex plane which
can be represented as a finite union of domains convex in the horizontal direction.

Lemma 2.5. Let D be a finite union of domains D j, j = 1, . . . ,n, convex in the horizontal
direction and equal to their maximal horizontal extensions. Let q : D → C be a
continuous, locally one-to-one function such that Im q(z) = Im z for each z ∈ D. Then
for any real number a the following conditions are equivalent:

(i) Na(D) = Na(q(D));
(ii) Na(D j ∪ Dk) = Na(q(D j) ∪ q(Dk)) for all indices j, k ∈ {1, 2, . . . , n};
(iii) Na(D j ∩ Dk) = Na(q(D j) ∩ q(Dk)) for all indices j, k ∈ {1, 2, . . . , n}.

Proof. Let a be a fixed real number. By Lemma 2.3 we know that q(D j) is a domain
convex in the horizontal direction for all j = 1, 2, . . . , n.

The condition (ii) is equivalent to (iii) by Lemma 2.4. We prove that the condition
(i) is equivalent to (iii).

We first show (i)⇒ (iii). Assume Na(D) = Na(q(D)). From the continuity of q,
Na(D j ∩ Dk) ≤ Na(q(D j) ∩ q(Dk))

for all j, k ∈ {1, 2, . . . , n}. If there exist indices j, k ∈ {1, 2, . . . , n} such that
0 = Na(D j ∩ Dk) < Na(q(D j) ∩ q(Dk)) = 1,

then a ∈ P(D j) = P(q(D j)) and thus

max
{
1,

n∑
k=1

Na(D j ∩ Dk)
}

=

n∑
k=1

Na(D j ∩ Dk)} ≥ 1.

Consequently,

max
{
1,

n∑
k=1

Na(D j ∩ Dk)
}

=

n∑
k=1

Na(D j ∩ Dk) <
n∑

k=1

Na(q(D j) ∩ q(Dk))

= max
{
1,

n∑
k=1

Na(q(D j) ∩ q(Dk))
}
.

Moreover, by the continuity of q, we have Na(D j) = Na(q(D j)) and

Na(D) =

n∑
j=1

Na(D j)
max{1,

∑n
k=1 Na(D j ∩ Dk)}

>

n∑
j=1

Na(q(D j))
max{1,

∑n
k=1 Na(q(D j) ∩ q(Dk))}

= Na(q(D)).
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This gives a contradiction with the assumption that Na(D) = Na(q(D)). Thus we have
Na(D j ∩ Dk) = Na(q(D j) ∩ q(Dk)) for all j, k ∈ {1, 2, . . . , n}.

The converse (iii)⇒ (i) follows from the continuity of q and Lemma 2.2. �

3. Main results

We are now ready to prove our main results.

Theorem 3.1. Let D be a finite union of domains D j, j = 1, . . . , n, convex in the
horizontal direction and equal to their maximal horizontal extensions. Let q : D→ C
be a continuous, locally one-to-one function such that Im q(z) = Im z for each z ∈ D.
Then the following are equivalent:

(i) q is one-to-one in D;
(ii) Na(D) = Na(q(D)) for each real number a;
(iii) Na(D j ∩ Dk) = Na(q(D j) ∩ q(Dk)) for all indices j, k ∈ {1, 2, . . . , n} and for each

real number a;
(iv) Na(D j ∪ Dk) = Na(q(D j) ∪ q(Dk)) for all indices j, k ∈ {1, 2, . . . , n} and for each

real number a.

Proof. By Lemma 2.3 we know that q(D j) is a domain convex in the horizontal
direction for all j = 1, 2, . . . , n. Since q is continuous, it is clear that (i)⇒ (ii). We
show that (ii)⇒ (i).

Assume that for every real number a the equality Na(D) = Na(q(D)) holds. By
Lemma 2.5, this implies that the equality Na(D j ∪ Dk) = Na(q(D j) ∪ q(Dk)) holds for
every real a and all j, k ∈ {1, 2, . . . , n}. Thus P(D j ∩ Dk) = P(q(D j) ∩ q(Dk)) for all
j, k ∈ {1, 2, . . . , n}. Now, using [12, Lemma 2.2], we see that q is one-to-one in D j ∪ Dk

for all j, k ∈ {1, 2, . . . , n}, and therefore q is one-to-one in D.
The equivalence of (ii), (iii) and (iv) follows from Lemma 2.5. �

Theorem 3.2. Let D be a simply connected domain in the complex plane which is
a finite union of domains D j, j = 1, . . . , n, convex in the horizontal direction with a
nonempty intersection. Let q : D→ C be a continuous, locally one-to-one function
such that q(D) is simply connected, and Im q(z) = Im z for each z ∈ D. Then q is one-
to-one in D.

Proof. Without any loss of generality we can assume that the sets D j, j = 1, 2, . . . , n,
are equal to their maximal horizontal extensions. By Theorem 3.1, q is one-to-one in
D if and only if Na(D) = Na(q(D)) for each real number a. Therefore, we prove the
latter statement.

Clearly, Na(D) = Na(q(D)) for a ∈ P(
⋂n

j=1 D j), since q is one-to-one in the domain⋃
a∈P(

⋂n
j=1 D j)

Da,

by Lemma 2.3.
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To prove that Na(D) = Na(q(D)) for an arbitrary a, fix a0 ∈ P(
⋂n

j=1 D j). We show
that Na(D) = Na(q(D)) for all a > a0. The proof for a < a0 is analogous.

Let D+ :=
⋃

a>a0
Da. Clearly, the domain D+ satisfies all the assumptions on D

in the theorem, that is, D+ is a simply connected domain in the complex plane such
that D+ =

⋃n
j=1 D+

j , where D+
j =

⋃
a>a0

Da
j , j = 1, 2, . . . , n, are domains convex in the

horizontal direction and
⋂n

j=1 D+
j , ∅. In addition, each of the sets D+

j is equal to its
maximal horizontal extension. Moreover,

q(D+) = q(D)+ = q(D) ∩ {w ∈ C : Im w > a0}

is simply connected. Obviously, Na(D) = Na(D+) and Na(q(D)) = Na(q(D+)) for a > a0.
For all j, k = 1, 2, . . . , n define

a j,k :=

inf{a > a0 : Da
j ∩ Da

k = ∅} if {a > a0 : Da
j ∩ Da

k = ∅} , ∅,

a0 if {a > a0 : Da
j ∩ Da

k = ∅} = ∅,

and let

A :=
n⋃

j,k=1

{a j,k}.

Then A has a finite number of elements and |A| ≤ n2. Put µ := |A \ {a0}| and define a
sequence {0, 1 . . . , µ + 1} 3 m 7→ am as follows:

a0 := a0,

a1 := min(A \ {a0}),
. . .

aµ := min(A \ {a0, a1, a2, . . . , aµ−1}),
aµ+1 :=∞.

Observe that Na(D+), as a function of a variable a, is a step function (constant on the
intervals [am, am+1), m = 0, . . . , µ). Since D+ is simply connected and the sets D+

j ,
j = 1, 2, . . . , n, are convex in the horizontal direction, the points am, m = 1, . . . , µ, are
the only ones for which Na(D+) may be discontinuous.

Using induction on m, we show that Na(D+) = Na(q(D+)) for all a ∈ [am, am+1). We
already know that Na(D+) = Na(q(D+)) for all a ∈ [a0, a1), since [a0, a1) ⊂ P(

⋂n
j=1 D j).

Now, assume that Na(D+) = Na(q(D+)) for a ∈ [a0, am). We show Na(D+) = Na(q(D+))
for any a ∈ [am, am+1) in two steps. First, we show that Nam (D+) = Nam (q(D+)), and
then we prove the equality for all a ∈ (am, am+1).

From the continuity of q, we have Na(D+) ≥ Na(q(D+)) for all a ∈ [am, am+1).
Assume that Nam (D+) > Nam (q(D+)). Then there exist points z,w ∈ (D+)am such that
q(z) = q(w). Since q is (an open mapping) continuous and locally one-to-one, there
exist a ∈ [am−1, am) and points u, v ∈ (D+)a such that q(u) = q(v). Now we consider two
cases. If there exists j ∈ 1, 2, . . . , n such that u, v ∈ (D+

j )a, then we get a contradiction
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with Lemma 2.3. Otherwise, there exist j, k ∈ {1, 2, . . . , n} such that u ∈ (D+
j )a,

v ∈ (D+
k )a with (D+

j )a ∩ (D+
k )a = ∅ and q((D+

j )a) ∩ q((D+
k )a) , ∅. But, by Lemma 2.5,

this is a contradiction with the assumption that Na(D+) = Na(q(D+)) for all a ∈ [a0,am).
Thus we get Nam (D+) = Nam (q(D+)).

We now show that Na(q(D+)) = Nb(q(D+)) for every a, b ∈ [am, am+1), that is,
Na(q(D+)) is constant on the interval [am, am+1) as a function of a. By Lemma 2.5 it is
enough to show that Na(q(D+

j ) ∩ q(D+
k )), as a function of a, is constant on the interval

[am, am+1) for all j, k ∈ {1, 2, . . . , n}. To this end, we show that for all j, k ∈ {1, 2, . . . , n}
we have Na(q(D+

j ) ∩ q(D+
k )) = Na(D+

j ∩ D+
k ). Obviously, from the continuity of q, for

all j, k ∈ {1, 2, . . . , n}, we have

Na(q(D+
j ) ∩ q(D+

k )) ≥ Na(D+
j ∩ D+

k )

for all a ∈ (am, am+1) and

Nam (q(D+
j ) ∩ q(D+

k )) = Nam (D+
j ∩ D+

k ).

Moreover, by Lemma 2.5, Na(D+
j ∩ D+

k ) is constant on [am, am+1).
Assume that there exist j, k ∈ {1, 2, . . . , n} and ã ∈ (am, am+1) such that

1 = Nã(q(D+
j ) ∩ q(D+

k )) > Nã(D+
j ∩ D+

k ) = 0. (3.1)

Then 0 = Nam (q(D+
j ) ∩ q(D+

k )) = Nam (D+
j ∩ D+

k ), and consequently there exists a point
ξ = xξ + iam such that ξ < q(D+). Additionally, the inequality

min{Re q(z),Re q(w)} < xξ < max{Re q(z),Re q(w)}

holds for all z ∈ (D+
k )am and w ∈ (D+

j )am . By formula (3.1), there exists

η = xη + iã ∈ q(D+
j ) ∩ q(D+

k ),

and by the induction assumption, there exists

θ = xθ + ia0 ∈ q(D+)a0 = q(D+
k )a0 ∩ q(D+

j )a0 .

Therefore, since q(D+
k ) and q(D+

j ) are simply connected, there are curves γk ⊂ q(D+
k )

and γ j ⊂ q(D+
j ) joining θ with η. Consequently, there exists a curve γ consisting of

γk and γ j which is a closed curve and the point ξ is encircled by γ. Hence the
complement of q(D+) in the extended complex plane is not connected, which gives
a contradiction with the assumption that q(D+) is simply connected. Thus we have
Na(q(D+

j ) ∩ q(D+
k )) = Na(D+

j ∩ D+
k ) for all j, k ∈ {1, 2, . . . , n} and for all a ∈ [am, am+1).

This completes the proof by Lemma 2.5. �

4. Applications to harmonic mappings

In this section we apply the results obtained in the previous section to the theory of
harmonic mappings.
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Theorem 4.1. Let f = h + g be a harmonic, locally one-to-one function in D. If

Na((h − g)(D)) = Na( f (D)) (4.1)

for each real number a, then the following statements are equivalent:

(i) f is a one-to-one mapping and f (D) is a finite sum of domains convex in the
horizontal direction with a nonempty intersection;

(ii) h − g is a one-to-one analytic mapping and (h − g)(D) is a finite sum of domains
convex in the horizontal direction with a nonempty intersection.

Proof. (i)⇒ (ii). Assume f (D) =
⋃n

j=1 D j, where D j, j = 1, 2, . . . , n, are domains
convex in the horizontal direction with a nonempty intersection and equal to their
maximal horizontal extensions. Since f is one-to-one in the unit disc, there exists
f −1 :

⋃n
j=1 D j→ D and the composition q := (h − g) ◦ f −1 is a well-defined continuous

function in
⋃n

j=1 D j. Moreover, q(w) = (h − g)( f −1(w)) = w − 2Re g( f −1(w)) for all
w ∈

⋃n
j=1 D j. Thus q satisfies the assumptions of Theorem 3.1. Additionally, by (4.1),

Na

( n⋃
j=1

D j

)
= Na

(
q
( n⋃

j=1

D j

))
(4.2)

and, in consequence, q is a one-to-one function by Theorem 3.1. Hence h − g is one-
to-one in D, since f is. Obviously, the sets q(D j), j = 1, 2, . . . , n, are domains convex
in the horizontal direction, by Lemma 2.3, and their intersection is not empty by (4.2).

The proof of (ii)⇒ (i) is essentially the same as that of (i)⇒ (ii). �

Theorem 4.2. Let f = h + g be a harmonic, locally one-to-one function in D. If f (D)
and (h − g)(D) are nonempty simply connected domains, then the following statements
are equivalent:

(i) f is a one-to-one mapping and f (D) is a finite sum of domains convex in the
horizontal direction with a nonempty intersection;

(ii) h − g is a one-to-one analytic mapping and (h − g)(D) is a finite sum of domains
convex in the horizontal direction with a nonempty intersection.

Proof. (i)⇒ (ii). Assume that f (D) =
⋃n

j=1 D j, where D j, j = 1, 2, . . . , n, are domains
convex in the horizontal direction with a nonempty intersection and equal to their
maximal horizontal extensions. Then the function

n⋃
j=1

D j 3 w 7→ q(w) := (h − g)( f −1(w)) = w − 2Re g( f −1(w))

is well defined and continuous in
⋃n

j=1 D j, since f is one-to-one in D. Since (h − g)(D)
and f (D) are simply connected domains, the desired result follows from Theorems 3.2,
3.1 and 4.1.

The proof of (ii)⇒ (i) is essentially the same as that of (i)⇒ (ii). �
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If in Theorem 4.2 one omits the assumption that both f (D) and (h − g)(D) are simply
connected, then the theorem is no longer true (see [12]).

Remark 4.3. Recall that Theorem 1.1 can be reformulated and remains valid for a
function convex in any fixed direction. Our results can also be rewritten in this fashion.
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