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FINITE p-GROUPS WITH HOMOGYCLIC 
CENTRAL FACTORS 

JOSEPH A. GALLIAN 

1. If G has nilpotence class c(G) = c, let G = Li(G) > L2 (G)> . . . > 
LC+1(G) = 1 and 1 = Z0(G) < Z^G) < . . . < ZC(G) = G denote the lower 
central series and upper central series of G} respectively. When there is no 
possibility of confusion we use Lt for Lt(G) and Zt for Zt(G). Throughout the 
paper we assume that G is a finite p-group of class greater than two. Let B (c, pr) 
denote the collection of all G of class c for which LJLi+i is cyclic of order pr 

for i = 2, . . . , c and UC(c, pr) the collection of all G of class c for which 
Zi/Zi-i is cyclic of order pr for i = 1, . . . , c — 1. In Section 2 we generalize 
some of the results obtained by Blackburn in [2] about members of B(c, p) to 
the class B(c, pr) and in Section 3 we show how the two classes B(c, pT) and 
UC(c, pr) are related. We also find conditions on G which guarantee that the 
upper central series and the lower central series of G coincide. 

2. LEMMA 2.1. If G belongs to B(c, pr) and i < c — 1, then Zt P Lc_* = 
Lc-i+l-

Proof. For i = 0 the result is obvious. I t is clear that Z\ P Lc_i ^ Lc. Let 
Lc-i = (x, Lc) and suppose Z\ P Lc_i > Lc. Then Zi P Lc_i = (xph, Lc) for 
some k with 0 < k < r. For any g 6 G, [g, xp& = [g, a**] = 1 [2, p. 49]. But 
Lc = [Lc_i, G] = ([x, G]) so that exp Lc = £* with k < r. This contradicts 
the assumption that L c is cyclic of order pr. Thus the lemma holds for i = 1. 

Inductively, suppose Z^ P Lc_^ = Lc_^+i. We will showr Z i + i H Lc_j_i = 
Lc_i. If if is any subgroup of G, we let if* denote the image of H under the 
canonical mapping from G to G/Lc_i+1. Since [G, Zi+i P Lc_*_i] ^ Zt C\ 
Lc-i = Lc-i+i we have 

(Z,+1 P Lc_,_0* ^ Z(G*) P L^^xCG*). 

Because G* belongs to B(c — i, pT) we have 

ZiG^^L^iG*) =LC_,(G*) = (LC_,(G))*. 

Hence Z i + i P Lc_t-_i ^ £c-i- The other inclusion follows from a well-knowrn 
theorem [5, p. 262]. 

THEOREM 2.1. If G belongs to B(c, pr), then ZtC\ L2 = Lc+1-t for i = 0, 
l , . . . , c - 1. 
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Proof. We proceed by induction on j = c + 1 — i. For j = 2 we have i = 
c — 1 and Zc_i C\ L2 = L2 because L2 ^ Zc_i. Assume ZtC\ L2 = Lc+1_t 

holds. Clearly, L c + i- t = ZtC\ L2 ^ Z*_i C\ L2 so that Z*_i H Lc+i_i ^ 
Zf_i H L2. Thus, according to Lemma 2.1, Lc+2^t ^ Z*_i P\ 1/2- The other 
inclusion follows as before. 

We remark that Example 4.2 shows there is a class 3 p-gvoup for which 
L2/L% and L% are cyclic but Z\ C\ L2 > L3 so the requirement in Theorem 2.1 
that the cyclic factors have the same order is essential. 

Theorem 2.1 will be used in Section 3 to show how the classes B(c, pT) and 
UC(c, pr) are related and to obtain a necessary and sufficient condition for 
members of B (c, pr) to have coincident upper and lower central series. Another 
consequence of Theorem 2.1 is that many of the results which Blackburn 
obtained about members of B(c, p) can be generalized to the class B(c, pr). 
Blackburn remarks [2, p. 62] that some of his results could be generalized to 
nilpotent groups with cyclic central factors of arbitrary order, but he refrained 
from doing this because "the results are rather complicated and the price of 
generality is a very considerable loss of clarity". However, we show below that 
if one narrows his attention to the class B (c, pr) a greater number of Blackburn's 
results can be generalized and it can be done without complication or loss of 
clarity. We refer the reader to [3] for additional results of this type. 

Let C(Li\Li+2) = {x G G\[x,Li] ^ Li+2\. Also let Li* = C(L2:L±) and 
L* = Lt for i = 2, . . . , c + 1. If G belongs to B(c, pr), we say G has degree 
of commutativity greater than Oif [L*, L*] ^ Li+j+i for i, j = 1, 2, . . . , c — 1. 

THEOREM 2.2 (cf. [5, p. 363]). If G belongs to B(c} pr), then the following are 
equivalent : 

(a) [Li*, Lt*] S Li+2for i = 1, 2, . . . , c - 1; 
(b) G has degree of commutativity greater than 0; 
(c) the abelian factor groups LJLi+2{2 ^ i S c — 1) of order p2r are pair-

wise isomorphic as G-groups ; 
(d) C(L2:L4) = C(Lt:Li+2) for i = 2, 3, . . . , c - 1. 

Proof. Blackburn's proof in the case r = 1 is based on a series of lemmas 
which depend on the facts that the factors of the lower central series are cyclic 
and Zi C\ L2(G) = Lc+i_j(G) both of which are true for members of B(c, pr). 
Thus his proof, with minor modifications, is valid for the case that G belongs 
to B(c,pr). 

LEMMA 2.2. / / G belongs to B(c, pr), then there is an element s in G with the 
property that 

\sC(L2:L,)\ = p* = K(L c_x) | . 

Proof. By a result of Blackburn [2, p. 54:], G/ C (L2: L4) is cyclic of order pT so if 
C(L2:Lt) = C(Lc_i) the resultis trivial. Hence we mayassumeC(L2 ".1/4)^ C(Z/c_i). 
We claim that there is an element y in G\C(Lc_i) such that |^C(L2:L4)| = pT. 
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Let G = (x, C{Li\L±)). If x d C(Lc_i), the claim is established. Thus we may 
assume x £ C(Lc_i). By a result of Blackburn [2, p. 54], C(L2:LA) and C(Lc-i) 
have the same order so let u 6 C(L2:L4)\C(Xc_i). Let y = xu. Then 
| jC(L2 :L4) | = |x^C(L2:L4)| = |xC(L2:L4)| = prandy (? C(Lc_i). This proves 
the claim. 

If \yC(Lc-i)\ = pT, the theorem is proved. Thus we may assume that 
\yC(Lc-i)\ = pk with 0 < k < r. By suitably modifying the proof given by 
Blackburn [2, p. 55] for the case r = 1, it can be shown [3, p. 11] that 
C(LÎ\L±)/C(LI'.LZ) is cyclic of order pr, so let C(L2tL4) = (v, C(Li'.L3)). If 
CiLc-J H C(L2:L,) * CiLi.U), then 

C(L^i) H C(L2:L4) = (iT, C(Li:L3)> 

for some w with 0 < n < r. Also G = (y, v, CÇLi'.Lz)) and m = max (k, n) < r. 
Since vpn and y** belong to C(Lc_i) we have [^n, Lc_i] = [i>, L^ i ] p n = 1 and 
[y*\ Lc_x] = [y, Lc_x]^ = 1 [2, p. 49]. Therefore, since C(Li:L3) è C{L^) 
[2, p. 47] we have [G, Lc-i]

pm = 1. But [G, Lc_i] = Lc and L c is cyclic of ex­
ponent pr, a contradiction. Therefore, we may assume C(Lc_i) Pi C(L2'.LA) = 

With y and y defined as above let 5 = yz;. Then |sC(L2:L4)| = |;yC(L2:L4)| = 
£ r . Now yvr~x e CiLc-t) and 5pr"1 = y^'1 v»r~l (mod L2) so if spr~l G C(Lc-i) 
then 

vpr~' e C(Lc_0 H C(L2:LA) = C(U\Lz). 

But |«;C(Li:L3)| = Pr so that spr_1 G C(Lc_i). Thus |5C(LC_!)| = £ r also and 
the result is proved. 

Let EB(cy pT) denote the class of groups G which belong to B(c, pr) and 
have exp (G/L2) = pT. If G belongs to B(c, pr), then the minimum order of G 
is p(c+1)r. Hence we adopt the notation MB(c, pr) for members of B(c, pr) 
which have order p(c+1)r. When r = 1 members of MB(c, pr) are commonly 
called ^-groups of maximal class. 

THEOREM 2.3. Suppose G belongs to EB(c, pT) and, when c > 4, G/Lc has 
degree of commutativity greater than 0. Then G possesses a subgroup K which 
belongs to MB(c - 1, pr), and Lt*(K) = Li+1(G) for i = 1, 2, . . . , c - 1. 

Proof. By Lemma 2.2 there is an element s of G with the property that 
|sC(Lc_i)| = |sC(L2:L4)| = pr. By modifying the proofs of Blackburn for the 
case r = 1 [2, pp. 55-56], it can be shown [3, pp. 11-13] that C(Li:L3) = 
Zc_i(G) and C(L2:L4)/C(Li:Z,3) is cyclic of order pT. So let Si and ZC-\{G) 
generate C{L2(G)\L±{G)) and for i = 2, . . . , c, let st = [s*_i, s]. It follows 
from a well-known theorem [5, p. 258] that Li+i(G) and st generate Lt(G) for 
i = 2, . . . , c — 1. This is also true for i = c; for Lc_i = (sc_i, Lc) so if 
|>c_i, s]p* = 1 then [s, Lc_i?* = [sv\ Lc_x] = 1 and therefore spk is in C(Lc_i) 
so k ^ r by choice of s. 
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Now let K be the group generated by L2(G) and s. Then \K\ = pcr. Also s2 

and s are in K and [s2, s, . . . , s] = sc ^ 1. Thus c(K) ^ c — 1. Since i£ is 
generated by <> and L2(G) we have L2(K) = [K, L2(G)] ^ L3(G) [2, p. 52] and 
therefore Lt(K) ^ Li+1(G) for i ^ 2. In particular, Lc(Jf) = 1 so that 
c(K) = c — 1. Now since \sc\ = ^ r and sc is in Z,c_i(i£) we have exp 
(Z,,(20/£*n(iO) ^ £ r [2, p. 49] for i = 1, 2, . . . , c - 1. Since \K\ = pc\ 
exp (Lt{K)/Li+1{K)) ^ pr and c(X) = c - l w e must have L t(K) / L i+l(K) 
is cyclic of order pr for i = 2, . . . , c — 1. Thus for i ^ 2, |Li(i£)| = \Li+1(G)\ 
and therefore Lt(K) = Li+1(G) for i ^ 2. Also 

[L2(G), L2(X)] = [L2(G), U(G)] ^ Lb(G) = L,(K) 

so that L2(G) ^ C(L2(K):L4(K)) = Li*(i£). Since these two groups have 
the same order they are equal. Finally, since \K/L2(K)\ = p2T and 
L f(K) l'L t+i(K) is cyclic of order pr for i = 2, . . . , c — 1 we have K belongs to 
MB(c — 1, pr). This proves the theorem. 

LEMMA 2.3. Suppose G = (a) 0 <&) «Acre |a| = |fc| = pr (p ^ 2) a ^ G 
contains a subgroup C of order pr such that \aC\ = pr. Let A = (a) and B = 
(b). Then there is a cyclic subgroup D of G of order pr with the property that 
Ar\D=BC\D = Cr\D = l. 

Proof. It is not difficult to show that one of (ab) or (ab2) satisfies the con­
clusion. 

THEOREM 2.4. Suppose G belongs to EB(c, pr) and, when c > 4, G/Lc has 
degree of commutativity greater than 0. / / 3 S c ^ p, then G/Lc and L2 have 
exponent pr. If c < p, the elements of G of order at most pr form a characteristic 
subgroup of index at most pr. 

Proof. Let s be an element with the property specified in Lemma 2.2 and let 
5 be the centralizer of s in G. By modifying Blackburn's proofs [2, p. 63] it can 
be shown [3, pp. 20-22] that S f~\ L2 = Lc and that there is a subset T of S 
with the property that Zc_i = (T, L2). Then spr and for each / in T, tpr are 
elements of 5 P\ L2. Hence spr and tpr are elements of Lc. By applying Lemma 
2.3 to G/Zc-i we see that there is an element s' of G which also has the property 
specified in Lemma 2.2 and (s) P\ (sf) = 1 (mod Zc_i). Therefore, as before, 
s/pr belongs to Lc. Since (s) P\ (sf) = 1 (mod Zc_i) and L2 is contained in the 
Frattini subgroup [5, p. 272] we have G is generated by s, s' and T. Thus 
G/Lc is generated by a set of elements of order pT. Since c(G/Lc) < p, G/Lc is 
a regular ^-group and therefore G/Lc is of exponent pr. 

If c < p, G itself is regular £>-group. Thus the elements of order at most pr 

form a subgroup Er of G. Le tP r = (gpr:g 6 G). Then \G/ET\ = \PT\ [5, p. 327]. 
Since G/Lc is of exponent pT we have Pr ^ Lc and therefore \PT\ S pr> Hence 
\G/Er\ ^ p\ Finally, PT ^ Lc ^ Zx implies L2 ^ £ r [5, p. 327] so that L2 is 
of exponent pr. 
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If c = p we let K be the subgroup of G defined in Theorem 2.3. If p > 3, 
we have exp L2(K) = pr since c(K) = p — 1 satisfies 3 S c(K) < p which is 
a case handled above. If p = 3, then Lz(K) = 1 and therefore L2(K) is cyclic 
of order pr so has exponent pr. T h u s L2(K) has exponent pr for any p which 
satisfies the hypothesis and therefore, by Theorem 2.3, LZ(G) has exponent pT. 
Let G be generated by sy Si and C(Li(G) :L 3 (G) ) . Then L2{G) is generated by 
S2 = [si, ^] and Lz(G) [5, p . 258]. Le t x belong to L2(G). Then x = s2

mu where 
u belongs to L 3 (G) = L%(K). Since s2 and u belong to K, c{K) — p — \ and 
exp L2(K) = pT it follows from regulari ty t h a t xpr = (s2

m)p r . T h u s in order to 
showT exp L 2 (G) = pr it is sufficient to show t h a t s2

pr = 1. B u t 5 2 = s^s^SiS = 
(s~l)sis so t h a t s2

pr = ((s~1)ns)pr. Since (s~l)n and 5 belong to K and exp 
L2(K) = £ r we have by regulari ty 

(fa-1)'1*)*' = ( ( s - 1 ) * 1 ) ^ = (s-pr)sispr. 

By the first pa r t of the theorem s~pr is in the center of G so t h a t s2
pr = s~prspr = 

1. This proves the theorem. 

L E M M A 2.4. / / G belongs to EB(c, pr), then G has a subgroup H with the 
properties that H belongs to MB(c, pr) and Li(H) = Lt(G) for i = 2, . . . , 
c + 1. 

Proof. Le t y and v be defined as in proof of L e m m a 2.2 so t h a t 
G = (y, v, C(Li ' .L 3 ) ) . If we let H = (y, z;) we have G = HC(L1:Ld) and a 
theorem of Blackburn [2, p . 48] shows Li(H) = Lt(G) for i = 2 , . . . , c + l . 
Clearly, i / has the proper order. 

Example 4.1 shows t h a t for every choice of c, p and r there are members of 
B(c, pT) with the proper ty t h a t Lt is cyclic for all i ^ 2. T h e next theorem 
shows t h a t if any one of L2 , L3 , . . . , Lc-i is cyclic then they all are. 

T H E O R E M 2.5. / / G belongs to B(c, pT) and L c_i is cyclic, then L2 is also cyclic. 
If G belongs to EB(c, pT) then L c_x is cyclic if and only if p = 2 and r = 1. 

Proof. If L c_i is cyclic, then by Theorem 2.1 , Z 2 Pi L 2 is cyclic and we con­
clude by a result of P. Hall [5, p . 306] t ha t L2 is cyclic. If G belongs to EB (c, pr) 
L e m m a 2.4 shows we may assume G belongs to MB(c, pr). I t follows from the 
proof of Theorem 2.3 t ha t |G/Z c _i | = p2r so t h a t Z c_i = L2. 

Therefore, by Theorem 2.1 , Z 2 = Z2C\ L2 = L c _i . If L c_i = Z 2 is cyclic, 
then p = 2 and G has a cyclic subgroup of index 2 [5, p . 305]. I t follows from 
Theorems 4.4 and 4.3 in [4, pp . 191-193] t h a t r = 1. Finally, if G belongs to 
MB(c, 2) then Theorems 4.5 and 4.3 in [4, pp . 191-194] show t h a t L2 is cyclic. 

3 . T H E O R E M 3.1 [1, p . 533]. If G belongs to UC(c, pr), then [G, Z J = Z^for 
i = 1, . . . , c - 1. 

T H E O R E M 3.2. Let G belong to UC(cy pr). Then Zc+i-i ^ Lt > Zc-t for 
i = 1, . . . , c. 
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Proof. This is clearly true when i = 1. Suppose Zc+1_* ^ Lt > Zc_*. Then, 
by Theorem 3.1, Zc-i ^ L*+i ^ Zc_*_i and in any nilpotent group Li+1 ^ 
Zc-i-l* 

THEOREM 3.3. Let G belong to B(c, pr). Then G belongs to MB(c, pT) if and 
only if the upper central series and the lower central series of G coincide. 

Proof. Suppose G belongs to MB(c, pr). Clearly Zt = Lc+1^i for i = c. By 
the remark made in the proof of Theorem 2.3, C(Li:L3) = Zc_i and 
\G/C(Li'.Lz)\ = p2r. Thus Zt = Lc+1_i for i = c — 1 also. If i < c — 1, then 
Zt < Zc_i = L2 so that Zi = ZtC\ L2 = Lc+i_t by Theorem 2.1. Hence the 
two series coincide. Now assume that Zt = Lc-i-i for all i. In particular, 
Zc_i = L2. Since \G/Zc-i\ = p2r for any member of B(c} pr), it follows that G 
belongs to MB(c, pr). 

We remark that Example 4.3 shows there exists a finite ^>-group with the 
property that the upper central series and the lower central series of G coincide 
and \LJLi+i\ = p2 for i = 2, . . . , c but Li/Li+1 is not cyclic for i = 2, . . . , c. 

Theorem 3.3 shows that members of MB(c, pT) also belong to UC(c, pr). 
The next theorem shows that 

B{c,pr)r\ UC(c,ps) = MB(c,pr). 

THEOREM 3.4. A group G belongs to B(c, pr) and UC(c, ps) if and only if G 
belongs to MB(c, pr). 

Proof. If G belongs to MB(c, pr), then by Theorem 3.3 the lower central 
series of G and the upper central series of G coincide. Now suppose that G 
belongs to B(c, pr) and UC(c, ps). Then, by Theorem 3.2, L2 ^ Z\ and, by 
Theorem 2.1, Zi C\ L2 — Lc. Thus Z\ = Lc. I t follows that r = s and Li = 
Zc+i-i for i = 1, . . . , c + 1 so that G belongs to MB(c, pr). 

THEOREM 3.5. If G belongs to UC(c, pr) and Zc+i_* = Lt for some i with 
2 ^ i ^ c, then G belongs to MB(c, pr). 

Proof. By Theorem 3.1, Zc+i-j = L3- for all j ^ i. We show Zc+2-* = L*_i. 
Clearly \Lt-i/Li\ ^ |Zc+2_i/Zc+i_i|. Also 

|L<-i/X«| è exp (L^/Li) ^ exp (Lt/Li+1) 

= exp (Zc+1-i/Zc-.i) ^ exp (Z<H-2-</Z<H-i-i) 

= |Zc+2-f/Zc+i_z- | . 

Here we have used [5, Satz 2.13, p. 266]. Thus Zc+2-i = £<_i. I t follows the 
lower central series of G and the upper central series of G coincide so that, by 
Theorem 3.3, G belongs to MB(c, pT). 

THEOREM 3.6. Suppose G/Zc-i has exponent pr, \Li/Li+i\ = pT for all i with 
2 ^ i ^ c and Zc+i_;- = Ljfor somej with 2 ^ j ^ c. Then G belongs to B (c, pT). 
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Proof. First we show Zc-j — Lj+i. Since 

pr = exp (Zc/Zc_i) ^ exp (Zc+i_,-/Zc_,-) ^ |ZC+W/ZC_,-| 
^ |L,/L,+ 1 | = £', 

it follows that Zc-j = Lj+i. Repeating this argument the appropriate number 
of times we obtain Zi = Lc. Since pr rg exp Zi = expL c ^ \LC\ = pr, we have 
exp Lc = pr. Also exp (Lt/Li+i) ^ pr = \Li/Lt+i\. Thus Lt/Li+i is cyclic for 
all i ^ 2 and therefore G belongs to 2?(c, pr). 

Example 4.3 also shows that the hypotheses of Theorem 3.6 cannot be 
weakened by replacing exp (G/Zc_i) = pr by exp (G/Zc_i) ^ »̂r nor by 
replacing \Lt/Li+1\ = pr by exp (Lt/Lt+1) = pr. 

COROLLARY. Suppose G/L2 has exponent pT and \Li/Li+i\ = pr for i = 2, 
. . . , c. Then G belongs to MB (c, pr) if and only if Zc_i = L2. 

Proof. If G belongs to MB(c, pr) ,then Zc_i = Z2 by Theorem 3.3. If Zc_x = 
L2, then by Theorem 3.6, G belongs to B(c, pr) and since for any G in B(c, pr), 
\G/Zc-i\ = p2r the result follows. 

THEOREM 3.7. Suppose G/Zc_i and G/L2 have exponent p\ Lt/Li+i is cyclic 
for i = 2, . . . , c and Zc+i-j = Ljfor some j with 2 ^ j S c. Then G belongs to 
B(c,pr). 

Proof. Since exp (Zc/Zc_i) = pr we have |Z*/Z*_i| ^ pr for all i with 
U i g c . Hence |L,| = | Z C + W | ^ £(c+i-^>. Also pr = exp (G/L2) ^ exp 
(Lt/Li+1) = \Lt/Li+1\ for i ^ 2. Thus |L,| ^ £«+i- ') ' . It follows that \Lj\ = 
p(c+i~j)r a n c j |^c | = pr^ Therefore, because exp (G/L2) = exp Lc = pr we have 
exp {LJLi+i) = £ r for all i and the result follows. 

COROLLARY. Suppose G/L2 has exponent pr and Lt/Li+1 is cyclic for i = 2, 
. . . , c. Then G belongs to MB(c, pr) if and only if Zc_i = L2. 

Proof. If G belongs to M5(c, pr), then Zc_x = L2 by Theorem 3.3. If Zc.x = 
L2 then, by Theorem 3.7, G belongs to B(c, pr) and therefore, by the corollary 
to Theorem 3.6, G belongs to MB(c, pT). 

4. In this section we give an example which shows for every choice of c, 
p and r the class B{c, pr) is not empty and the two examples referred to in 
the previous sections. 

Example 4.1. Let A = (a) where \a\ = pcr. The map which sends an to 
aHi+Pr) defines an automorphism of A. Thus there exists a group G = (x, a) 
where x~*ax = a1+pr. Then Lt(G) = (ap(i~1)r) for i = 2, . . . , c + 1 and there­
fore G belongs to B(c, pr). 

Example 4.2. Let A = < a ) 0 <6) where |a| = £4 and |6| = p\ The map 
which sends anbm to âr

w+wèW2?4+w defines an automorphism of A. Thus there 
exists a finite ^-group G and an element x such that G = (x, A ) where x_1ax = 
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abpi and x~lbx = ab. Then L2 = (a, If'), L3 = <^4) and L4 = 1. Since bpA and 
a*2 belong to ZX(G) we have L2(G) C\ zi(G) > L3(G). Thus the remark follow­
ing Theorem 2.1 is verified. 

Example 4.3. Let 4 = ( a i ) © (a2) © (a3) © (a4) where |ai| = \a2\ = £2 

and |a3| = |a4| = £ with p an odd prime. The map which sends 

a1
nia2

n2az
nzai

m to ai
ni+pn3a2

n2+pn4azni+n*aA
n2+ni 

defines an automorphism of A. Thus there exists a finite ^-group G and an 
element x such that G = (x, ^4} where |x| = £>, 

x - 1aiX = aids, x~la2x = a2a±, x~1a3x = a^a*?, x~la±x = a±a2
p. 

Then L2 = (ar*\ a2
p, a3, a4), L3 = (a^, a2

p), L4 = 1 and G has the following 
properties: 

(i) exp (Lt/Li+i) = p for i = 1, 2, . . . , c\ 
(ii) |Li/L f+1 | = p2 for i = 2, . . . , c; 

(iii) Lc+i_i = Z* for i = 0, 1, . . . , c; 
(iv) LJLi+\ is not cyclic for i = 2, . . . , c. 

Hence the remarks made following Theorems 3.3 and 3.6 are valid. 
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