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An outstanding unsolved problem in the theory of rings is 
the existence or non-existence of a simple nil r ing . Such a 
ring cannot be locally nilpotent as is well known [5]. Hence, if 
a simple nil ring were to exist, it would follow that there exists 
a finitely generated nil ring which is not nilpotent. This seemed 
an unlikely situation until the appearance of Golod's paper [ l ] 
where a finitely generated, non-nilpotent ring is constructed 
for any à >_ 2 generators over any field. 

In this paper we prove a few elementary proper t ies of 
simple nil r ings other than non-local-nilpotency. 

LEMMA 1. A non-nilpotent ring R is a simple ring if 
and only if RxR = R for every non-zero x in R. 

Proof. Suppose RxR = R for every non-zero x in R. 
Let A be a non-zero ideal of R. Let x be non-zero in A. 
Then R = RxRCA. Hence A = R and R is s imple. 

Conversely, let R be s imple . Let A ={x in R j RxR = 0} . 
A is an ideal of R. Hence A = 0 or A = R . But A = R 

3 
implies R = 0 , contrary to hypothesis, so it follows that 
A = 0. This means that for every non-zero x in R we have 
that RxR is a non-zero ideal of R, which by the simplicity 
of R, is all of R. Hence the lemma is proved. 

THEOREM 1. Let P be a property of rings such that 
every homomorphic image of a P- r ing is also a P - r i ng . Then, 
if there exists a simple ring R which contains a non-nilpotent 
P-subr ing of the form xRy, then there exists a simple P - r i n g . 

Proof. Let A = xRy be a non-nilpotent P- r ing , Then 
yx f 0 since A is not nilpotent. Hence, by Lemma 1, we have 

(xRy) = x(RyxR)y = xRy. Define B = {z in A jyzx = 0 } . 
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Then B is a proper ideal of A. For , if u is a rb i t r a ry in A, 
then u = xu'y for some u1 in R. Hence for any z in B we 
have 0 = yzx = yzxu'yx = y(zu)x and 0 = yzx = yxu'yzx = y(uz)x. 
Hence zu and uz are in B. That B is a proper ideal of A 

2 2 
follows from the fact that B = 0 and A - A ^ 0. We claim 
that A/B is a non-nilpotent simple P - r i n g . F i r s t , since A is 
not nilpotent and B is, A/B is not nilpotent. A/B is a 
P-r ing by our choice of P . Finally, our choice of B and 
Lemma 1 establish that A/B is s imple. 

COROLLARY 1. If there exists a simple ring R 
containing a non-nilpotent nil r ight or left ideal or a non-
nilpotent nil subring of the form xRy, then there exists a 
non-nilpotent, simple nil r ing . 

Proof. In Theorem 1 take P as the proper ty of being 
nil and note that a non-nilpotent r ight or left ideal of R 
contains a non-nilpotent nil subring of the form xRy. 

The above corol lary suggests that in order to obtain the 
resu l t for one-sided ideals, the par t icu lar proper ty P employed 
requ i res that the proper ty be inherited to sub- r ings . However, 
this is not the case, as Theorem 1 could have been proved in 
much the same way using direct ly the assumption that R contain 
a non-nilpotent left or r ight P - idea l . 

In order to prove Theorem 2 we need the following 
proper ty of non-nilpotent, simple nil r i ngs . 

LEMMA 2. If R is a non-nilpotent, simple nil r ing, 
then there exist elements x and y of R such that neither 
x R C y R nor y R C x R . 

Proof. Suppose to the contrary that for all s and t 
in R either s R C t R or t R C s R . Let s and t be fixed but 
a rb i t ra ry in R. Suppose that s R ^ tR. Then s i 0. Hence 

k+1 k 
there exists a positive integer k such that s R C t R C s R 

k+1 
because s is nilpotent. Thus stR C_s R C tR. This means 
that for all s and t in R either sR_CtR or stR C_ tR. This 
means tR is an ideal of R for every t in R. Hence tR = 0 
or tR = R. Both possibi l i t ies are impossible since R is nil 
and not nilpotent. Thus the lemma is proved. 
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T H E O R E M 2 . If t h e r e e x i s t s a non-n i lpo ten t , s i m p l e 
n i l r i ng R, then t h e r e e x i s t s one which i s the s u m of two 
p r o p e r r i g h t (left) i d e a l s . 

P roo f . By L e m m a 2 t h e r e e x i s t x and y in R s u c h 
that xR ÇfyR and yR £ x R . Let A = xR + yR. We p r o v e tha t 
an a p p r o p r i a t e fac to r r ing of A i s the d e s i r e d r i n g . Define 
B = ( z in A j zx = zy = 0} . C l e a r l y B i s an idea l of A and 

2 2 
B = 0 . F u r t h e r , A = A b e c a u s e xR and yR a r e i d e m -
po ten t , n o n - z e r o r i g h t i d e a l s of R. Hence B i s a p r o p e r i dea l 
of A and A / B is i d e m p o t e n t . We p r o v e A / B is s i m p l e . 
L e t x r + y r be in A and not in B . Then (xr + y r )x ^ 0 
or (xr + yr )y ^ 0. Suppose the f o r m e r . Then 

A(xr 1 + y r 2 ) A = (xR + yR) (xr + yr ) (xR + yR) = 

= xR(xr + y r 2 ) x R + y R ( x r l + y r )xR + (. . . )yR = 

= xR + yR + (. . . )yR = A + (. . . )yR = A. 

S i m i l a r l y , if (xr + y r )y i 0, then A(xr + yr )A = A. 

Hence , by L e m m a 1, it fol lows tha t A / B is s i m p l e . It 
r e m a i n s to show tha t x R / B and y R / B a r e p r o p e r r i g h t i dea l s 
of A / B . It suff ices to show tha t xR/B(£ y R / B and y R / B £ x R / B . 
Suppose x R / B C_ y R / B . Then for a l l r in R, t h e r e e x i s t s an 
r f in R such that x r = y r l (mod B) . Hence (xr - y r ' ) x = 
(xr - y r ' ) y = 0. Thus x R x C y R x , and so xR = x R x R C y R x R = yR, 
c o n t r a r y to our choice of x and y . S i m i l a r l y , y R / B çZxR/B . 
Th i s c o m p l e t e s the proof of the t h e o r e m . 

Kege l [3] has i nves t i ga t ed r i n g s which a r e s u m s of two of 
i t s s u b r i n g s . Al though he does c o n s i d e r the ques t ion of 
s i m p l i c i t y for such r i n g s , i t i s not c l e a r how his r e s u l t s could 
be appl ied to the r ing c o n s t r u c t e d in T h e o r e m 2 . 
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