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From Classical Mechanics to Statistical Mechanics

In this chapter and the following one, the main concepts of statistical physics of equi-

librium systems will be derived from a dynamical perspective that focuses on the

observation of a single system over the course of time. With a few assumptions and

facts, this approach will lead us to the mean values of fluctuating observables and,

moreover, to their distributions. We will obtain microscopic expressions for naive

concepts like temperature and pressure and for more sophisticated ones like chem-

ical potential and entropy, which characterize macroscopic systems within classical

thermodynamics. A further main virtue of this approach emphasizing trajectories

is that it can be extended quite naturally to systems undergoing nonequilibrium

processes, which will become the main focus of stochastic thermodynamics.

1.1 Histograms from Trajectories: Mesoscopic and Macroscopic

Observables

In this section, we introduce three paradigmatic systems that highlight the differ-

ence between mesoscopic observables that refer to systems coupled to a much larger

macroscopic system or embedded into one, and genuine macroscopic observables.

1.1.1 Brownian Motion of a Suspended Microsphere in Air

A classical example of a trajectory of a single particle is the erratic motion of

micron-sized particles first observed on a qualitative level by Robert Brown in 1827.

A quantitative experimental analysis of this phenomenon, later called Brownian

motion, was achieved by Perrin in 1907. Since a discussion of the original Brownian

motion goes beyond the concepts formulated in this introduction, we postpone its

analysis to Chapter 9.

About 100 years after Perrin’s experiments, it became possible to analyze

not only the position of a Brownian particle but also its velocity, which can

indeed serve as a paradigm for a mesoscopic observable. In this experiment by
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2 From Classical Mechanics to Statistical Mechanics

Figure 1.1 Measurements of Brownian motion of a microsphere in air at room temperature.
Left panel: Sketch of a micron-size sphere in an optical trap undergoing collisions with
air molecules. Middle panels: Trajectories of position (A,B) and velocity (C,D) of the
microsphere. (A,C) are taken at atmospheric pressure (99.8 kPa), (B,D) at a much lower
pressure (2.75 kPa). Right panel: Histogram of the velocity. The Gaussian distribution is
independent of the pressure. Middle and right panels from T. Li et al., Science 328 1673
(2010). Reprinted with permission from AAAS.

Li et al. (2010), a microsphere is trapped in air by an effectively harmonic poten-

tial created with modern laser technology; see Figure 1.1.

Collisions of the colloidal particle with the surrounding air molecules generate

an apparently random trajectory along one Cartesian coordinate, X(t), leading to

a velocity V (t). Due to this random character, the particular value of V (t) at a

certain time t is not informative. More interesting is the histogram1

pexp(V ) =
1

T

∫ T

0

dtδ(V (t)− V ) (1.1)

that can be extracted from such experimental data.2 For sufficiently large observa-

tion time T , such an experimental histogram becomes stationary, i.e., independent

of T .

This histogram can be interpreted as a probability distribution. Given such a tra-

jectory V (t) recorded over a total time T and a time t chosen randomly in the int-

erval 0 ≤ t ≤ T , the probability that V (t) lies in the interval V ≤ V (t) ≤ V +dV is

p(V ≤ V (t) ≤ V + dV ) ≈ pexp(V )dV (1.2)

for small dV .

The important experimental observations that have to be explained by theory

are, first, that the histogram for the velocity becomes a Gaussian, with, second, a

width, i.e., a variance, that is independent of the density of the surrounding air.

1 Strictly speaking, the notion of a histogram requires binning of the data. We will work with the
idealized limit of an infinitesimal bin size, which renders the histogram continuous.

2 Readers not familiar yet with the delta and the theta functions should consult Appendix A.1 first.
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Figure 1.2 Brownian particle under gravity with a typical trajectory for the height Z(t)
and the corresponding histogram pexp(Z).

1.1.2 Brownian Particle in the Gravitational Field

Another variant of such a system is a Brownian particle that is slightly denser than

the surrounding liquid; see Figure 1.2. In an idealized experiment, the histogram

for the height Z would become roughly exponential (as we will derive in Section

2.2.2). One characteristic of such a histogram is that its most likely value Ẑ, i.e.,

the peak of the histogram, differs from its mean value 〈Z〉 ≡
∫
dZpexp(Z)Z.

1.1.3 Macroscopic Observables

Observables characterizing a macroscopic system show a quite different behavior.

For a paradigmatic system, consider a homogeneous fluid of N particles in an

isolating box of volume V . Under these conditions, the total energy E of the fluid

is constant. The partitioning between kinetic energy and potential energy, however,

will fluctuate as a function of time. Even though such a measurement cannot be

realized, we anticipate that if it could, a typical trajectory Ek(t) of the kinetic

energy would lead to an extremely narrow histogram for which the most likely

value Êk and the mean value 〈Ek〉 would practically be the same. Likewise, if one

could measure the instantaneous number Nl(t) of particles in the left half of the box,

its histogram would exhibit similar characteristics, i.e., tiny fluctuations around the

most likely value N̂l = N/2. We will later show that the relative fluctuations of such

extensive macroscopic observables are of the order 1/
√
N ' 10−12 for samples with

the size of centimeters.

The two observables just discussed may sound somewhat contrived. For a more

accessible macroscopic observable, consider the same fluid but now with the top

plate movable under a mass subject to gravity that exerts an external pressure on

the confined fluid; see Figure 1.3. In equilibrium, the position Z of this top plate

may appear constant. In fact, however, it is subject to tiny fluctuations δZ(t) ≡
Z(t)− 〈Z〉, which will be shown to be of relative order 1/

√
N .
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Figure 1.3 Container with a fluid confined by a mass under gravity. The height Z(t) shows
tiny fluctuations and a very narrow histogram pexp(Z).

1.2 Foundations

We will build a theory for calculating the histograms obtained from such trajectories

on a few basic assumptions and facts. This approach will work for both types of

observables: for mesoscopic ones that show broad histograms, and for macroscopic

observables for which these are extremely narrow.

1.2.1 Classical Mechanics for the Total Isolated System

We assume that any of the systems we have just introduced, consisting of molecules

in a liquid or gas phase, additional colloidal particles, i.e., Brownian ones, and,

possibly, a macroscopic weight, can be considered to be fully isolated, i.e., not

interacting with any further dynamical degrees of freedom (like, e.g., a radiation

field). Interaction with a static external potential arising from gravity or an elec-

tric field is allowed. Furthermore, we assume that the total system obeys classical

mechanics rather than quantum mechanics. While the intermolecular forces are cer-

tainly determined by quantum-mechanical effects, it should be consistent to assume

these forces to be given and then to let the molecules move classically under their

action. We thus assume a classical Hamiltonian H(ξ), where ξ refers to all degrees

of freedom, momenta and positions, i.e., to a point in the huge phase space of the

total system.3

The dynamical trajectory ξt ≡ ξ(t) then is, at least in principle, uniquely deter-

mined by the unknown (and unobservable) initial phase point ξ0, i.e., ξt = ξt(ξ0).

By following this theory, the histogram for any variable A(ξ) becomes

pthe(A|T, ξ0) ≡ 1

T

∫ T

0

dtδ(A(ξt)−A), (1.3)

where we have made the dependence on the initial point and the length T of the

trajectory explicit.

3 For a brief summary of Hamiltonian dynamics, see Appendix B. An excellent textbook is
Jose and Saletan (1998).
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1.2.2 The Fundamental Principle

From a theoretical perspective, it is tempting to focus on the limit T → ∞. This

limit eliminates the dependence on T , which leaves the dependence on the initial

phase point ξ0.4 We write for this long-time limit

pthe
∞ (A|ξ0) ≡ lim

T→∞
pthe(A|T, ξ0). (1.4)

The framework of statistical physics follows by exploring the consequences of the

one fundamental hypothesis that for physical observables A this histogram (in this

long-time limit) is independent of the initial point ξ0 taken from the energy shell

at fixed E. Since E is a constant of motion in an isolated system, it is obvious that

the latter dependence is relevant and must be kept. We write this hypothesis in the

form

pthe
∞ (A|ξ0)→ p(A|E) (1.5)

for all ξ0 with H(ξ0) = E.

As an intuitive justification for this hypothesis, assume, in a thought experiment,

that for the system with the Brownian particle we have just discussed the initial

velocities and positions of a few fluid particles (and possibly even those of the

Brownian particle) are modified slightly at fixed E. It is hard to imagine that such

a change would affect the experimental histogram in the long-time limit. In fact,

repeating the experiment, which necessarily implies starting from a different initial

phase point, yields the same experimental Gaussian histogram for the velocity.

Still, this hypothesis has not yet been proven for a generic many-body system.

In fact, it is known not to hold true for small isolated systems with only a few

degrees of freedom for which typically the energy shell contains regions that confine

the trajectories starting there.5 Consequently, in such systems, the initial state

matters for the long-time histogram. For a large system and for a small system

coupled to or embedded into a much larger one, there may still exist extremely tiny

regions in phase space that confine trajectories starting there. However, the resulting

violations of the fundamental hypothesis will be negligible, i.e., unobservable for all

reasonable mesoscopic and macroscopic observables A(ξ) in a genuine many-particle

system.

Indeed, the consequences derived by assuming this hypothesis to be true agree

with experimental and numerical data for observables of many systems. We will

therefore elevate the hypothesis to the fundamental principle of statistical physics

within this dynamical approach.

4 The existence of this limit has been proven rigorously by Birkhoff; see, for example, the
presentation in Khinchin (1949).

5 See, for example, Dumas (2014).
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1.2.3 Microcanonical Distribution

By invoking this fundamental principle, a simple prescription for calculating the

distribution p(A|E) can be derived as follows:

p(A|E) =

∫
dξ0δ(H(ξ0)− E)pthe

∞ (A|ξ0)/Ω(E)

=

∫
dξ0δ(H(ξ0)− E)

[
lim
T→∞

1

T

∫ T

0

dtδ(A(ξt)−A)

]
/Ω(E)

= lim
T→∞

1

T

∫ T

0

dt

∫
dξtδ(H(ξt)− E)δ(A(ξt)−A)/Ω(E). (1.6)

The first equality exploits the assumption that the histogram is the same for any

initial point ξ0 on the energy shell. Thus, we can equally well average over this shell,

which is achieved by introducing the delta function that characterizes it, and then

integrate over the phase space of the many-body system. The size of the energy

shell, called the structure function,

Ω(E) ≡
∫
dξ0δ(H(ξ0)− E), (1.7)

provides the normalization. In the second line, we have inserted (1.4) with (1.3).

In the third line, after exchanging the limit with the integration over the shell, we

have exploited that the energy is conserved, H(ξt) = H(ξ0), and that the Jacobian

for the transformation from dξ0 to dξt is unity (due to Liouville’s theorem; see

Appendix B). The dependence on t thus becomes obsolete and we are left with an

integration over the energy shell leading to

p(A|E) =

∫
dξδ(H(ξ)− E)δ(A(ξ)−A)/Ω(E). (1.8)

As a consequence of the main assumption, codified in the fundamental principle,

we have thus found that, in the long-time limit, the histogram resulting from such

a trajectory is given by the so-called microcanonical distribution for this ob-

servable. This result eliminates any need for dealing with the impossible tasks of

knowing the initial phase point and of solving the dynamics explicitly. Introducing

the microcanonical probability (density) for a microstate ξ

p(ξ|E) ≡ δ(H(ξ)− E)/Ω(E), (1.9)

we can write this distribution as

p(A|E) =

∫
dξp(ξ|E)δ(A(ξ)−A). (1.10)

The microcanonical average of any such variable becomes

〈A|E〉 ≡ 〈A(ξ)|E〉 ≡
∫
dAAp(A|E) =

∫
dξp(ξ|E)A(ξ). (1.11)
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1.3 Total Kinetic Energy and Structure Functions 7

As a special case, we will sometimes need the joint distribution for a subset ξ1

of the microscopic degrees of freedom. With ξ = (ξ1, ξ2), we get

p(ξ1|E) =

∫
dξ2δ(H(ξ1, ξ2)− E)/Ω(E). (1.12)

This relation, which results from integrating out the second set of degrees of free-

dom, holds for any splitting of ξ into two subsets.

It is crucial to prevent a possible misunderstanding of p(ξ|E). For a small element

∆ξ′ on the energy shell around a specific ξ′, it would be misleading to consider

p(ξ|E)∆ξ′ as a measurable probability to find the system in this small element.

The histogram of the corresponding variable A(ξ), with A(ξ) = 1 if ξ ∈ ∆ξ′ and

A(ξ) = 0 otherwise, will depend on the initial value ξ0 for times far longer than any

numerically or experimentally accessible time T . The notation p(ξ|E) and concomi-

tant parlance (“in equilibrium, each microstate occurs over the course of time with

equal probability”) should be understood as a procedure for how to determine the

distribution of more coarse-grained observables A(ξ) to which a huge number of

microstates contribute. Note that even variables referring to a single degree of free-

dom like the position of a colloidal particle or its velocity are legitimate observables

since many microstates made up by the unobserved particles of the surrounding

gas or liquid contribute to their distribution. This property justifies calling such

observables mesoscopic rather than microscopic.

The physical justification for focusing on the histogram and on its theoretical

counterpart, the microcanonical distribution, lies in the fact that if one performs a

measurement of the observable A at an arbitrary (random) time after the system

has reached equilibrium, i.e., has lost its dependence from the initial phase point

ξ0, a result in the interval [A,A+dA] will be measured with probability p(A|E)dA.6

Hence, repeated (uncorrelated) measurements will finally produce the histogram.

For an isolated system, we thus know, in principle, how to calculate the dis-

tribution for any observable by using (1.10). This prescription is often called the

microcanonical ensemble. The notion of an ensemble should not be taken liter-

ally. What is typically observed is one system over the course of time rather than

an ensemble of weakly interacting copies of the system as sometimes insinuated in

the older literature.

1.3 Total Kinetic Energy and Structure Functions

As a first example, we will calculate the probability distribution of the total kinetic

energy of a simple fluid, which will turn out to be an extremely narrow Gaussian.

Even though such a quantity cannot be measured experimentally, several important

notions and concepts can be introduced with this example. It is therefore worthwhile

6 It is highly nontrivial to estimate the time necessary to reach this equilibration for an observable
A(ξ), given a Hamiltonian H(ξ).
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to go through this calculation in some detail. Moreover, the distribution of this

variable is representative for other macroscopic variables consisting of a sum of

single-particle contributions.

1.3.1 Model

We consider a fluid of N spherical particles of mass m confined in a box of volume

V . The degrees of freedom, i.e., the momenta and positions, are denoted by ξ ≡
{ξi} ≡ {(pi,qi)}, where i = 1, ..., N labels the particles. Equivalently, ξ can be

ordered as ξ ≡ (p,q) with p ≡ {pi} and q ≡ {qi}. The Hamiltonian reads

H(ξ) =
3N∑
j=1

p2
j/2m+ Φ(q), (1.13)

where the potential energy Φ(q) includes external fields like gravity, interactions

with the confining box, and intermolecular interactions. The index j runs over the

3N Cartesian components.

By applying the general expression (1.8), the probability distribution for the

kinetic energy,

Ek(ξ) ≡
3N∑
j=1

p2
j/2m, (1.14)

can be written in the form

p(Ek|E) =

∫
dξ δ

 3N∑
j=1

p2
j/2m− Ek

 δ(H(ξ)− E)/Ω(E)

=

∫
dp δ

 3N∑
j=1

p2
j/2m− Ek

∫ dq δ(Φ(q)− (E − Ek))/Ω(E)

≡ Ωk(Ek)Ωc(E − Ek)/Ω(E). (1.15)

The following analysis of this expression will lead to several crucial generic features

that will be used later in the further development of the theory.

1.3.2 Kinetic and Configurational Structure Functions

The kinetic structure function is

Ωk(Ek) ≡
∫
dp δ

 3N∑
j=1

p2
j/2m− Ek

 = E
3N/2−1
k m3N/2CN . (1.16)
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The right-hand side follows by first pulling out a factor of Ek from the delta function

and then rescaling all 3N integration variables. The dimensionless constant CN is

not required explicitly at this stage and is given in Appendix A.5.

It will be relevant to formulate the energy dependence of this integral in a gen-

eralizable form as follows. We define a kinetic beta function

βk(Ek) ≡ ∂Ek
Ωk(Ek)/Ωk(Ek) (1.17)

that quantifies how the size of this shell varies with kinetic energy. For large N , we

can approximate it with (1.16) as

βk(Ek) ≈ 3N/2Ek. (1.18)

Thus, βk(Ek) turns out to be one half of the inverse of the kinetic energy per kinetic

degree of freedom. We will also need its derivative:

β′k(Ek) ≡ ∂Ek
βk(Ek) ≈ −3N/2E2

k . (1.19)

The energy dependence of the size of this shell around any base value Ek can

then be expressed as7

Ωk(Ek + ∆Ek) = Ωk(Ek) exp

∫ Ek+∆Ek

Ek

dE′kβk(E′k)

≈ Ωk(Ek) exp
[
βk(Ek)∆Ek + β′k(Ek)(∆Ek)2/2

]
. (1.20)

Note that with (1.19) the expansion parameter is of order ∆Ek/Ek. So whenever the

increment ∆Ek is small compared to the base energy Ek, the exponential truncated

after the first term is an excellent approximation. The second-order term will be

required only if further factors lead to a cancellation of the linear term. If one

had expanded Ωk(Ek + ∆Ek) naively as Ωk(E + ∆Ek) ≈ Ωk(Ek) + ∆EkΩ′k(Ek),

truncation of the series would require βk(Ek)∆Ek ∼ N∆Ek/Ek � 1, which, for

large N , is a tremendously more restrictive condition.

Likewise, the size of the energy shell associated with the configurational degrees

of freedom, i.e., the configurational structure function, is defined as

Ωc(Ec) ≡
∫
dq δ(Ec − Φ(q)). (1.21)

In contrast to the kinetic one, it cannot be evaluated explicitly for any realistic

interacting system. For an ideal gas, i.e., for point-like particles confined to a volume

7 In this and similar expressions in the math that follows, one should not confuse the prime at the
beta function, which indicates a derivative with respect to the energy argument, with the prime at
the dummy variable indicating the energy integration.
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V and Φ(q) = 0 in (1.13), it is formally given by V Nδ(Ec). For the general case,

we define a configurational beta function

βc(Ec) ≡ ∂EcΩc(Ec)/Ωc(Ec) (1.22)

leading to the exponential approximation

Ωc(Ec + ∆Ec) ≈ Ωc(Ec) exp
[
βc(Ec)∆Ec + β′c(Ec)(∆Ec)2/2

]
. (1.23)

1.3.3 Gaussian Approximation and Its Justification

The probability p(Ek|E) (1.15) peaks at a value Êk that, using (1.17) and (1.22),

is determined by

βk(Êk) = βc(E − Êk), (1.24)

which will make this most likely value a function of the total energy, i.e., Êk =

Êk(E). Inserting this relation and the exponential expansions (1.20) and (1.23)

around Êk into (1.15) leads to a Gaussian distribution for the kinetic energy

p(Ek|E) ≈ (2πσ2
Ek

)−1/2 exp
[
−(Ek − Êk)2/2σ2

Ek

]
(1.25)

with the variance

σ2
Ek
≡
∫
dEk(Ek − Êk)2p(Ek|E) = −[β′c(E − Êk) + β′k(Êk)]−1 (1.26)

that determines the posterior normalization.

This Gaussian approximation to the full distribution is a sensible one, provided we

can show that it is indeed sharply peaked, i.e., that its variance is small compared to

Ê2
k . By applying a derivative with respect to E to (1.24), we get a relation between

the slopes of the two beta functions as follows:

β′c(E − Êk) = β′k(Êk)
∂EÊk

1− ∂EÊk

. (1.27)

Inserting this into (1.26) and using (1.19) for the derivative of the kinetic beta

function, we get

σ2
Ek
/Ê2

k = (1/N){2[1− ∂EÊk(E)]/3}. (1.28)

For a large system, we have thus derived that the relative fluctuations of the

kinetic energy, (σ2
Ek
/Ê2

k)1/2, are of the order 1/
√
N .8 The scaling ∼ 1/

√
N is indeed

typical for the relative fluctuations of any observable that is the sum of one-particle

observables in a macroscopic system.9

8 A trivial exception from this scaling occurs for the ideal gas for which this distribution is singular
with p(Ek|E) = δ(Ek − E), i.e., Êk = E and hence ∂EÊk(E) = 1.

9 This fact is usually argued to follow from the central limit theorem, which, however, cannot naively
be applied in the presence of a constraint, such as here given by the conserved total energy.
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1.3.4 Structure Function Revisited

In a Gaussian approximation, the structure function (1.7) can be evaluated as

Ω(E) =

∫ E

0

dEkΩk(Ek)Ωc(E − Ek) ≈ Ωk(Êk)Ωc(E − Êk)(2πσ2
Ek

)1/2 (1.29)

where we use (1.20) and (1.23) with Ek = Êk and Ec =E − Êk, respectively. Its

logarithmic derivative10 becomes

β̄(E) ≡ ∂EΩ(E)/Ω(E)

≈ βk(Êk(E))∂EÊk(E) + βc(E − Êk(E))[1− ∂EÊk(E)]

= βc(E − Êk(E)) = βk(Êk(E)). (1.30)

The first approximation arises from ignoring the E-dependence of σ2
Ek

in leading

order in N . The third line follows with (1.24). This relation shows that for large

systems the values of the three β-functions at the corresponding arguments become

the same. Consequently, with (1.18) and (1.30), the important and far-reaching

physical interpretation of β̄(E) is that this quantity corresponds to one-half of the

inverse of the mean kinetic energy per degree of freedom for an isolated system

with total energy E.11 In the next chapter, we will see that this quantity is the only

relevant property of a heat bath to which a system of interest is weakly coupled to

or embedded in.

For later reference, we state the exponential representation for the structure

function as

Ω(E + ∆E) = Ω(E) exp

∫ E+∆E

E

dE′β̄(E′) ≈ Ω(E) exp[β̄(E)∆E + β̄′(E)(∆E)2/2],

(1.31)

similar to (1.20) and (1.23).

1.4 Thermodynamic Limit

Characteristic for most systems described in statistical mechanics is the fact that

their properties become, in a well-defined sense, independent of the size of the sys-

tem if the latter becomes big. For a one-component system, this thermodynamic

limit is defined as N →∞, with the energy and volume per particle,

ε ≡ E/N and v ≡ V/N, (1.32)

respectively, kept fixed. We distinguish two classes of quantities depending on their

scaling with N in this thermodynamic limit.

10 Since Ω(E) is not dimensionless, writing β̄(E) ≡ ∂E ln Ω(E) would be somewhat sloppy, even
though a constant with physical dimension would not affect a derivative.

11 The reason for introducing a bar in β̄(E) will become clear in the next chapter.
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The mean of an extensive macroscopic variables A(ξ) scales as

〈A|E, V,N〉 ≈ Na(ε, v), (1.33)

with a(ε, v) = O(1) in this thermodynamic limit.12 Examples of extensive macro-

scopic variables are the mean total kinetic energy as discussed in the previous

section or the mean number of particles in the left half of a container. The quan-

tity a(ε, v), which characterizes a property per particle, thus becomes an intensive

variable that depends only on the energy and volume per particle.

Mesoscopic observables lead to a second class of variables, which are neces-

sarily intensive. These variables, denoted here as B(ξ), include the momentum of

a fluid particle or of a colloidal one, the number of fluid particles in a fixed neigh-

borhood of the center of a colloidal particle, and, for short-range interactions, the

total interaction energy between fluid and an individual colloidal particle. In these

cases, only a bounded number of the degrees of freedom of the fluid, i.e., of the

embedding macroscopic system, contributes to such a variable at any given time.

Since this number does not scale with an increasing system size, we can expect that

the mean of such variables becomes independent of system size, i.e.,

〈B|E, V,N〉 ≈ b(ε, v), (1.34)

with b(ε, v) = O(1).

Finally, we anticipate that there is a further class of intensive variables, like

temperature and pressure, that characterize macroscopic systems. These variables,

denoted for the moment generically as c(ε, v), also depend on these two parameters.

As a consequence of these assumptions, the derivatives of extensive and inten-

sive variables with respect to the macroscopic parameters E, V , and N show a

characteristic scaling that we will often exploit in the following. Specifically,

∂E〈A|E, V,N〉|V,N ≈ ∂εa(ε, v)|v = O(1) (1.35)

and, for intensive variables,

∂E{a, b, c}|V,N = (1/N)∂ε{a, b, c}|v = O(1/N). (1.36)

For derivatives with respect to V and N analogous relations hold true with the

same scaling in N . In particular, a derivative of an intensive variable with respect

to either E, V , or N , with the other two fixed, vanishes in the thermodynamic limit.

The existence of these scalings in the thermodynamic limit can be proven rigor-

ously for Hamiltonians with short-ranged interactions.13

12 We use this O-notation to indicate the dependence on N even if a quantity like a(ε, v) still carries a
physical dimension. Here, we also make the dependence of the averages on V and N explicit that we
have so far notationally suppressed, as we will often do so later on.

13 See,for example, Mazur and Van der Linden (1963) and the advanced monograph Ruelle (2007).
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1.5 Pressure and Temperature and Their Microscopic Identification

1.5.1 A Technical Master Relation

We first need a technical master relation that will be used repeatedly in this and

the next chapter. For a mesoscopic variable h(ξ), we have∫
dξδ(H(ξ) + h(ξ)− E) =

∞∑
n=0

(−1)n

n!
∂nE

∫
dξhn(ξ)δ(H(ξ)− E)

=
∞∑
n=0

(−1)n

n!
∂nE〈hn(ξ)|E〉Ω(E), (1.37)

based on a formal Taylor expansion of the delta function. Since, for all n, the

power hn(ξ) is still a mesoscopic variable, the derivative of its mean vanishes in the

thermodynamic limit as do derivatives of the intensive variable β̄(E), recall (1.36).

Hence each derivative in the series (1.37) generates a factor of β̄(E),

∂nEh
n(ξ)|E〉Ω(E) ≈ 〈hn(ξ)|E〉[β̄(E)]nΩ(E) = 〈[h(ξ)β̄(E)]n|E〉Ω(E). (1.38)

Inserting this expression into (1.37) and then summing the series leads to an expo-

nential, and, hence,∫
dξδ(H(ξ) + h(ξ)− E) ≈ 〈exp[−β̄(E)h(ξ)]|E〉Ω(E). (1.39)

In the trivial case of a constant h, this result corresponds to (1.31) truncated to

the first term in the exponent.

1.5.2 Pressure from a Generic Model

We consider a system under the constant pressure exerted by a piston with mass

M applied on a cross section A under gravity as shown in Figure 1.3 in Section

1.1.3. The dynamical degrees of freedom will be denoted by ξ ≡ (ξf , P, Z), where

ξf denotes all degrees of freedom of the fluid (gas or liquid). The piston with mass

M has momentum P and a position Z in the gravitational field with strength g.

At a fixed position of the piston, the fluid has the structure function

Ωf (E, V,N) ≡
∫
dξfδ(Hf (ξf |Z)− E) (1.40)

with the available volume14

V = AZ. (1.41)

The Hamiltonian of the fluid Hf (ξf |Z) includes the kinetic energy of the fluid

particles, their potential energy due to gravity, their mutual interaction, and their

14 Since the dependence on V and N will become crucial, we now promote these variables to explicit
arguments in the structure function of the fluid.
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14 From Classical Mechanics to Statistical Mechanics

interaction with the piston. The latter leads to the Z-, i.e., volume dependence of

Hf . The Hamiltonian for the isolated total system reads

Htot(ξf , Z, P ) = Hf (ξf |Z) + P 2/2M +MgZ. (1.42)

From the microcanonical distribution in the form (1.12) with ξ1 = Z and ξ2 =

(P, ξf ) applied to the total system with energy Etot, we obtain for the probability

of observing the height Z in equilibrium

p(Z|Etot) =

∫
dξf

∫
dPδ(Htot(ξ)− Etot)/Ωtot(Etot)

=

∫
dPΩf (Etot − P 2/2M −MgZ,AZ,N)/Ωtot(Etot)

≈
∫
dP exp[−β̄fP 2/2M ]Ωf (Etot −MgZ,AZ,N)/Ωtot(Etot)

= [2πM/β̄f ]1/2Ωf (Etot −MgZ,AZ,N)/Ωtot(Etot). (1.43)

For the second line, we have integrated out the degrees of freedom of the fluid

at fixed P,Z. For the third line, we have used the exponential expansion (1.31)

for Ωf with ∆E = −P 2/2M and β̄f ≡ β̄f (Etot −MgZ,AZ). The final Gaussian

integration over P is trivial.

The most likely value Ẑ for the position of the piston follows from maximizing

this distribution with respect to Z, or, equivalently, with respect to the volume at

fixed A, by solving[
−dβ̄f/dV

2β̄f
− Mgβ̄f

A
+
∂V Ωf (Etot −MgZ, V,N)

Ωf (Etot −MgZ, V,N)

]
Z=Ẑ

= 0. (1.44)

The first term in the square bracket can be ignored since, as a derivative of an inten-

sive variable with respect to a macroscopic one, it vanishes in the thermodynamic

limit.

We identify the thermodynamic pressure P̄ of the fluid by equating it with

the external one induced by the weight, which is Mg/A. Solving (1.44) for Mg/A

thus leads to the identification

P̄(E, V,N) =
∂V Ω(E, V,N)

β̄(E, V,N)Ω(E, V,N)
. (1.45)

Since this result holds for any macroscopic system, we have dropped the indexf .15

Thus knowledge of Ω(E, V,N) allows one to calculate the thermodynamic pressure

of a macroscopic system in equilibrium.

15 Moreover, we identify the energy of the fluid with E = Etot −MgẐ, which seems to miss the
(mean) kinetic energy of the piston. We will find in the next chapter that the latter is of order 1/β̄f
and thus negligible on the scale of Etot and MgẐ, which both are macroscopic, i.e., of order N .
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1.5.3 Ideal Gas and Relation to Temperature

At this point, it is instructive to specialize the fluid to an ideal gas.16 Modeling the

piston as a hard wall, we can neglect the interaction potential between piston and

gas particles.

For an ideal gas, there is no configurational energy. With (1.16), the structure

function becomes

Ω(E, V,N) = Ωk(E, V,N)V N = E3N/2−1m3N/2CNV
N . (1.46)

Inserted into (1.45), we get for the pressure

P̄(E, V,N) = N/β̄(E, V,N)V. (1.47)

Comparing with the conventional ideal gas law

P̄V = NkBT, (1.48)

with the Boltzmann constant kB, we get the crucial relation

β̄ = 1/kBT (1.49)

between β̄(E, V,N) and the temperature T. We will show next that this identifi-

cation holds for any macroscopic system. In the remainder of this book, we will set

kB = 1. Consequently, temperature T has the dimension of an energy.

1.5.4 Two Large Systems in Contact

For two large systems in contact, the Hamiltonian becomes

Htot(ξ1, ξ2) = H1(ξ1) +H2(ξ2) +Hint(ξ1, ξ2). (1.50)

For a clean derivation, the last term describing the interaction is assumed to be

localized, i.e., Hint(ξ1, ξ2) is a mesoscopic variable.17 The total system is isolated,

which implies that the total energy Etot is conserved. The (unnormalized) prob-

ability distribution for system 1 to have an energy E1, i.e., more precisely, the

probability for H1(ξ1) to have the value E1, follows from (1.10) as

p(E1|Etot) ∝
∫
dξ1

∫
dξ2δ(H1(ξ1)− E1)δ(H2(ξ2) +Hint(ξ1, ξ2)− (Etot − E1))

≈
∫
dξ1δ(H1(ξ1)− E1)〈exp[−β̄2(E2)Hint(ξ1, ξ2)]|E2〉Ω2(E2)

=
〈
〈exp[−β̄2(E2)Hint(ξ1, ξ2)]|E2〉|E1

〉
Ω1(E1)Ω2(E2),

(1.51)

16 Strictly speaking, an ideal gas in a box with hard walls does not fulfill the fundamental principle
from Section 1.2.2 since the initial kinetic energy of each particle is conserved. One should therefore
introduce a tiny interaction between the particles and then consider the limit in which this
interaction vanishes.

17 In fact, it is sufficient to assume that Hint(ξ1, ξ2) scales less than linearly with the energy of the
total system.
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V2V1

M

Figure 1.4 Two systems that can exchange volume through the motion of a separating
piston with mass M .

with E2 = Etot − E1. For the first approximation, we have used (1.39) for system

2 with h(ξ2) = Hint(ξ1, ξ2), where ξ1 can be treated as a fixed parameter. In the

final equality, the outer average is the microcanonical one for system 1 at energy

E1. If the E1-dependence of this term could be ignored, the probability p(E1|Etot)

would be sharply peaked at Ê1 given by

β̄1(Ê1) = β̄2(Ê2)|Ê2=Etot−Ê1
. (1.52)

In fact, for localized interactions between the two systems, the term in angular

brackets is a mesoscopic variable that leads to a relative shift in the peak position

of O(1) in N that indeed can be ignored on the scale of Ê1; see Appendix A.3.

Still, a small but finite coupling is necessary since without any coupling the two

systems could not exchange energy. The combined system with its two conserved

quantities E1 and E2 would thus violate the fundamental principle. As an aside,

note that, conceptually, the relation (1.52) is similar to what we have encountered

in the balance between kinetic and configurational energy within one system in

(1.30).

Thus, for two macroscopic systems in thermal contact, the two β̄-functions as-

sume the same value after equilibration, i.e., the mean kinetic energy per particle

becomes the same in both systems. We now invoke the naive concept that two

systems in thermal contact ultimately should reach the same temperature T. By

choosing one of these systems as an ideal gas for which we have established the re-

lation between β̄ and T in (1.49), it is clear that the equality of the beta functions

in (1.52) implies that this relation holds for any macroscopic system.

For two large systems that can exchange not only energy but also volume (subject

to the constraint V1 + V2 = V with constant V ) a Hamiltonian model system with

a movable piston with mass M is sketched in Figure 1.4. A calculation similar to

the preceding ones will show that the most likely values for individual energy and

volume fulfill the conditions β̄1(Ê1, V̂1) = β̄2(Ê2, V̂2) and P̄1(Ê1, V̂1) = P̄2(Ê2, V̂2),

respectively.18 Hence, inverse temperature and pressure equalize for macroscopic

systems that can exchange energy and volume.

18 Exercise
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1.6 Particle Exchange and Chemical Potential

So far, we have considered isolated systems for which the number of particles is

constant. In this section, we allow for exchange of particles between subsystems.

We will find that two important amendments should be made to the structure

function. As a motivation and preparation, consider Figure 1.5 showing particles

confined in a container with two parts that are connected by a narrow constriction.

The energy of the whole system can be written in the form

H(ξ) = H1(ξ) +H2(ξ) (1.53)

where H1(ξ) contains kinetic, potential, and interaction energies of the particles

in the left part and H2(ξ) the energy of those in the right part. For simplicity,

we assume that there is no interaction among particles in different parts. Still, the

two parts interact because particles can cross the constriction, in which case they

switch from being included in H1(ξ) to being included in H2(ξ) and vice versa. At

any time t, there is a fluctuating number N1(ξt) of particles in the left part and

N2(ξt) = N−N1(ξt) of them in the right part. Total energy E and particle number

N are conserved.

The joint probability distribution for the observables N1 and E1 follows with the

trivial generalization of (1.10) to two observables as

p(N1, E1|E, V,N) =

∫
dξδ(H1(ξ)− E1)δN1(ξ)N1

δ(H2(ξ)− (E − E1))/Ω(E, V,N)

=
N !

N1!(N −N1)!

Ω1(E1, V1, N1)Ω2(E − E1, V2, N −N1)

Ω(E, V,N)
. (1.54)

The integration runs over the phase space of N particles. The combinatorial factor

counts in how many different ways the N1 particles can be selected from the total

pool of N particles. Each specific selection, which will occur repeatedly along a long

trajectory, contributes similarly to this probability. Once a set of N1 particles is

selected, the integral over the respective phase space of the two subsystems yields

the corresponding structure functions. For macroscopic systems, this probability

will peak at the most likely values Ê1 and N̂1, with Ê1 following from β̄1 = β̄2 as

previously.

H2H1

Figure 1.5 Two overall isolated systems characterized by Hamiltonians H1 and H2 that
can exchange particles through a narrow constriction
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The attempt to calculate the most probable splitting of the total number of

particles into the two subsystems faces the problem that N1 is a discrete variable.

Treating N1 as a continuous variable, the most likely value N̂1 follows from

d

dN1

[
Ω1(Ê1, V1, N1)

N1!

Ω2(E − Ê1, V2, N −N1)

(N −N1)!

]
N1=N̂1

= 0. (1.55)

Applying the product rule for the derivative is problematic, since each Ωi (i = 1, 2)

carries a dimension (Js)3Ni/J, which depends on Ni. Consequently, a derivative

with respect to Ni generates a factor ∝ ln(Js) that is, strictly speaking, ill-defined.

The arguably cleanest way out of this dilemma is to divide each structure function

by a quantity with the dimension of (Js)3Ni . We use h3Ni , where h is an arbitrary

quantity (independent of Ei, Vi, and Ni) with the dimension of an action. For

classical systems, physical observables must not (and will not) depend on the specific

value chosen for h.

Finally, the crucial appearance of the factorials in (1.54) and (1.55) suggests

including a factor N ! in the structure function, leading to the definition

Ω̃(E, V,N) ≡ Ω(E, V,N)

h3NN !
=

∫
dξ

h3NN !
δ(H(ξ)− E). (1.56)

This scaling affects neither the value of the (inverse) temperature (1.30) nor that of

the pressure (1.44) if both are evaluated by using Ω̃ rather than Ω since logarithmic

derivatives with respect to E and V are the same for both variants. The most likely

distribution of particles then follows from

∂N1
Ω̃1(Ê1, V1, N1)

Ω̃1(Ê1, V1, N1) |N1=N̂1

=
∂N2

Ω̃2(Ê2, V2, N2)

Ω̃2(Ê2, V2, N2) |N2=N̂2=N−N̂1

. (1.57)

In analogy with (inverse) temperature and pressure, this equality motivates the

definition of a quantity called chemical potential as

µ̄(E, V,N) ≡ − ∂N Ω̃(E, V,N)

β̄(E, V,N)Ω̃(E, V,N)
, (1.58)

which acquires the same value in two (weakly) interacting systems that can ex-

change energy and particles. Including the β̄-factor in the definition analogously to

the identification of pressure in (1.45) makes the dimension of the chemical poten-

tial an energy. The minus sign ensures that a larger chemical potential corresponds

to a larger energy, as we will see. The thus defined chemical potential is an intensive

quantity. This can be checked explicitly for the ideal gas where

µ̄(E, V,N) = −[1/β̄(E, V,N)] ln{(E3/2V/N5/2)(4πm/3h2)3/2]} (1.59)

as derived in Appendix A.5.

The two amendments to the structure function made in this section arise for

different reasons. First, the factorials occur in (1.54) as an inevitable consequence of
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the dynamical approach in conjunction with the fundamental principle from Section

1.2.2 without the need to invoke a (quantum-mechanical) indistinguishability of

identical particles. Their subsequent inclusion in (1.56) allows us to determine the

most likely splitting of energy and particle numbers in two interacting systems

coherently through equalizing a corresponding intensive quantity.

Second, if the aim was just to get a criterion for equilibration with respect to

energy and particle exchange of two large systems, one could get away without

explicit factors of h by arguing that in (1.55) the ln(Js) terms would ultimately

cancel. However, such an argument would only postpone this issue, since, as we

will see in Section 2.8 where we will derive the grand-canonical distribution, we

will need to expand the N -dependence of the structure function in an exponential

fashion as we did in (1.31) with the energy dependence. Indeed, with (1.58) we get

Ω̃(E, V,N + ∆N) ≈ exp[−β̄(E, V,N)µ̄(E, V,N)∆N)]Ω̃(E, V,N). (1.60)

Such an expansion becomes possible only after eliminating the N -dependent di-

mension in Ω by introducing an h.

The significance of the elementary phase space volume h is often argued to arise

from quantum mechanics. Indeed, if the preceding formalism is applied to genuine

quantum systems, h should be chosen as Planck’s constant. However, classical sta-

tistical physics is entirely consistent without introducing explicitly discrete states,

i.e., without a specific choice of h.

1.7 Entropy: A First Encounter

1.7.1 Entropy Postulate in Classical Thermodynamics

At this point, we can make contact with phenomenological thermodynamics. In

its axiomatic formulation, the existence of an extensive, monotonically increasing,

and concave entropy function S(U , V,N), where U is the internal energy, is

postulated. Moreover, for a collection of subsystems, the total entropy

S(U , V,N) =
∑
i

Si(Ui, Vi, Ni) (1.61)

is postulated to be additive in the subsystems labeled by the index i.

If, upon contact, previously separated subsystems can exchange energy, with the

total energy being conserved, the final equilibrium state is postulated to maximize

the total entropy. This condition implies that

βi ≡ ∂UiSi (1.62)

acquires the same value in each subsystem.

Likewise, if the systems are allowed to exchange energy and volume, additionally

the pressure

Pi ≡ (1/βi)∂ViSi (1.63)
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becomes the same in each of them. Finally, if energy and particles can be exchanged

(keeping the subvolumes fixed), the chemical potentials

µi ≡ −(1/βi)∂NiSi (1.64)

acquire the same values.

These partial derivatives enter the Gibbs fundamental form,19

dS = βdU + βPdV − βµdN. (1.65)

1.7.2 Microcanonical Entropy and Gibbs Volume Entropy

In our dynamical approach, there has been no need to postulate the existence of

an entropy function with the properties just stated. A posteriori, however, there

is a natural candidate for such an identification, since, obviously, the derivatives

∂XΩ̃/Ω̃ fulfill the same requirements as ∂XS (X = E, V,N), with U = E, if they are

evaluated at the most likely values. If Ω̃ was dimensionless, we could identify S with

ln Ω̃. However, Ω̃ still carries a dimension of 1/J. There are several ways of rendering

Ω̃ dimensionless while keeping all crucial relations. The two most prominent ones

are as follows.

First, by introducing a no further specified “thickness” of the energy shell δE,

assumed to be independent of E, V,N , one can introduce a microcanonical

entropy

S̄(E, V,N) ≡ ln[Ω̃(E, V,N)δE]. (1.66)

Its partial derivatives obviously yield inverse temperature (1.30), pressure (1.44),

and chemical potential (1.58) (with the bars). These quantities then obey the barred

version of the Gibbs fundamental form (1.65) with U replaced by E,

dS̄ = β̄dE + β̄P̄dV − β̄µ̄dN. (1.67)

A second option is to consider the phase space volume bounded by the energy

shell

Ω̃G(E) ≡
∫

dξ

h3NN !
θ(E −H(ξ))

=

∫ E

Emin

Ω̃(E′)dE′ = Ω̃(E)

∫ E

Emin

dE′ exp

[
−
∫ E

E′
dE′′β̄(E′′)

]
, (1.68)

where Emin is the minimal possible energy of the system. By expanding the last

exponent to second order as in (1.31), we get

19 In fact, in classical thermodynamics, the Gibbs form is written as
dS = (1/T)dU + (P/T)dV − (µ/T)dN with an entropy that has the physical dimensions of kB.
Recall that throughout the book we set kB = 1, which makes entropy dimensionless (and
temperature an energy).
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Ω̃G(E) ≈ Ω̃(E)

∫ E

Emin

dE′ exp{−β̄(E)[E − E′] + β̄′(E)(E − E′)2/2}

= [Ω̃(E)/β̄(E)]

∫ β̄(E)[E−Emin]

0

du exp[−u− |β̄′(E)|u2/2β̄(E)2]

≈ Ω̃(E)/β̄(E). (1.69)

For the last approximation, we use that for E−Emin � 1/β̄(E) the integral becomes

1 up to a correction that is of relative order 1/N . In leading order, all the volume

underneath the energy shell is thus concentrated in a thin layer of width 1/β̄(E).

The Gibbs volume entropy is identified with

S̄G(E, V,N) ≡ ln Ω̃G(E, V,N) = S̄(E, V,N)− ln[β̄(E, V,N)δE] +O(1/N). (1.70)

If δE is chosen of the order of 1/β̄ then the microcanonical entropy and the Gibbs

volume entropy differ only by a term of order 1. Likewise, since ∂E,V,N β̄ ∼ 1/N , the

corresponding inverse temperature, pressure, and chemical potential (β̄G, P̄G, µ̄G),

obtained through the logarithmic derivatives of Ω̃G, differ by only O(1/N) from

their counterparts without subscriptG.20

Our dynamical approach together with the fundamental principle introduced in

Section 1.2.2 has thus led to a quantity (or, rather, two of them) with the properties

of the entropy of classical thermodynamics without the necessity of ever postulating

the existence of an entropy. Obviously, the microscopic identification of the entropy

of classical thermodynamics is not unique, since at least two, and, in fact, several

functions fulfill the defining properties, with, however, different finite-N corrections.

A definite choice between S̄ and S̄G would require an additional principle, which,

at this point, arguably would look somewhat contrived.21

Often, the thickness of the energy shell is introduced with the argument that

energies can be measured only up to a certain precision δE. While this is true,

it cannot be the relevant issue since one should distinguish, at least in classical

physics, objective reality from subjective knowledge or capabilities of an observer

or experimentalist.

1.8 Notes

The statistical physics of equilibrium systems, and, in particular, the micro-

canonical and the canonical distribution (see the following chapter), is more com-

prehensively discussed in any textbook on statistical physics. Excellent classic and

modern ones include Reif (1985), Ma (1985), Peliti (2011), and Kardar (2007a,b),

respectively. Classical thermodynamics is systematically presented in Callen

(1985). Textbooks interweaving thermodynamics and statistical physics include

20 Exercise
21 Merits and shortcomings of different versions of entropy for an isolated system are discussed in

Hilbert et al. (2014).
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Baierlein (1999), Schroeder (2000), and, more advanced, Gould and Tobochnik

(2010) and Swendsen (2012).

While all approaches lead to the same essential definitions and relations, the mo-

tivation and justification of the basic principles as well as the order of presentation

can differ significantly. The dynamical approach that we have emphasized here is

less common. Even though the fundamental hypothesis in Section 1.2.2 becomes

technically equivalent to postulating the equality of time averages with ensemble

averages, our approach arguably is conceptually somewhat different since it does not

require the notion of an ensemble as a crucial input for formulating the fundamental

principle.

The foundations of statistical mechanics are discussed further inter alia in the

monographs Khinchin (1949), Gallavotti (1999), and Castiglione et al. (2008).
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