SCALE MIXTURES DISTRIBUTIONS IN
INSURANCE APPLICATIONS

BY

S.T. Boris CHOY AND C.M. CHAN

ABSTRACT

In this paper non-normal distributions via scale mixtures are introduced into
insurance applications. The symmetric distributions of interest are the Student-
t and exponential power (EP) distributions. A Bayesian approach is adopted
with the aid of simulation to obtain posterior summaries. We shall show that
the computational burden for the Bayesian calculations is alleviated via the
scale mixtures representations. Illustrative examples are given.
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1. INTRODUCTION

Klugman (1992) addressed the role of Bayesian methods in insurance appli-
cations. One of the insurance problems is the credibility analysis which involves
the calculation of insurance premiums. The premium charged to an individual
insured depends on his/her past claim records and the overall average of all
insureds. A Bayesian approach provides an ideal way to strike a balance between
the specific and overall claim experiences. Past claims of an individual insured,
however, may be widely spread from year to year and the claims from a par-
ticular class of insureds can be very different from those of other classes, so
much so that the conventional assumption of normality becomes inappropriate.
To tackle these problems we consider alternative symmetric distributions for
modelling individual and class-specific claims. The proposed models can
identify those insureds who have experienced unfavourable claims in previous
years, but will not penalize them for the excessive claims. While Klugman
considers a number of models, the key here is the modelling of kurtosis, that
is the heaviness of tails. Klugman does not consider this aspect of modelling
claims.
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Bayesian robustness is an important topic in Bayesian analysis but is a
largely neglected area in insurance applications. Although normality is assumed
in many applications, it is well-known that the normal distribution does not
provide a robust analysis, i.e. catering for outliers. A way to achieve robustness is
to model the data with heavy-tailed distributions. Landsman and Makov (1998,
1999) consider the exponential dispersion family to provide a more flexible choice
of tails for insurance claims while Young (1997, 1998) adopts a nonparametric
approach for the prior determination. In this paper, we highlight the use of two
classes of scale mixtures distributions to achieve Bayesian robustness in insur-
ance context. For more details about Bayesian robustness, see Berger (1994).

Conventional numerical methods and analytic approximations have become
unattractive for computations of sophisticated models within a Bayesian frame-
work. The computer-intensive sampling methods, such as Markov chain Monte
Carlo (MCMC) methods (see Smith and Roberts, 1993 and Tierney, 1994),
provide an efficient alternative for handling complicated Bayesian calculations.
In particular, the Gibbs sampling approach (see Gelfand et al., 1990) enables
us to simulate posterior samples from a set of iteratively updated conditional
distributions. Choy and Smith (1997) make use of normal scale mixtures rep-
resentations for the Student-¢, symmetric stable and exponential power EP
densities in Bayesian hierarchical modellings, and Landsman and Makov (1999)
consider these distributions for insurance claims . In this paper, we shall use a
new scale mixtures representation for the EP distribution which simplifies
the simulation algorithm. If one or more of the conditional distributions to
be sampled is difficult and can not be done directly, then a possible resource
is the Metropolis-Hastings algorithm. However, this is potentially slow, requires
a certain amount of time consuming tuning and can “get stuck”, in that there
could be a part of the Markov chain output which is fixed at one point.
The algorithm here avoids the need for a Metropolis chain and all conditional
distributions to be sampled can be done directly.

The structure of this paper is as follows. Section 2 shows how the z-distri-
bution and exponential-power distribution can be expressed into two different
scale mixtures forms. Section 3 illustrates how a full Bayesian model is for-
mulated for a specific insurance problem, details of model implementation
using MCMC methods are also presented. Section 4 presents some simulation
results. Finally, a concluding remark is given in Section 5.

2. SCALE MIXTURES REPRESENTATIONS
2.1. Normal scale mixtures for the Student-¢
To speed up the efficiency of the MCMC algorithms, the Student-¢ density

with location 6, scale o* and degrees of freedom « is always expressed by the
following normal scale mixtures form (Andrews and Mallows, 1974; Choy and

Smith, 1997)
ta(x‘H,az)zj;mN<x -~

60—2>G(/1‘%,%)d/1
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where N(-|') and G(-|') are normal and gamma densities, respectively, Using this
representation, the random variable X, conditional on 4, has a normal N(©, ‘772

a o

distribution with A having a gamma G( 3 ) mixing distribution, i.e.

X

2
2 g a o
9,0,/1~N(9,7> and /1~G<§,7>.

2.2. Uniform scale mixtures for the EP

Another class of symmetric distributions of interest is the £P distribution whose
density function is given by

EP(x|0,0,B) = %exp{—

12 -1 2Ip
¢, o (x—b’)‘ , —0o<x<oo,

where
12
C

. _T G2 __ %
“=T@R): 9~ BLENR)

and f € (0, 2] is the kurtosis parameter. The EP family offers a range of sym-
metric distributions from the uniform shape (f — 0) to the double-exponential
shape (f=2). Tails can be more platykurtic (f < 1) or more leptokurtic (5> 1)
than the normal distribution (f=1). The EP distribution has been studied by Box
and Tiao (1992) for statistical modelling and for robustness considerations.
Recently, Choy and Smith (1997) adopted a normal scale mixtures form for the
EP density, but this is restricted to the leptokurtic members and expertise in
numerical and simulation techniques is essential for practitioners of this normal
scale mixtures representation. See Choy and Smith (1997) for technical details.
In this paper, a new and more remarkable scale mixtures form, known as the uni-
form scale mixtures, is proposed for the EP density function which is given by

2’

EP(X|9,G,ﬁ):fOMU[x 0-—2—u", o+-2 uﬁ”](;(u

where U(: | a, b) is the uniform density function with support (a, b). This mix-
tures form implies that

1+ 8 2‘“’)’) du

X|0 ~Ulog-—2— /" g+, /"
10,0, p,u [ /Zcou , —/260u

and
U~ G(l + g 2‘1“).

This mixtures form was proposed by Walker and Gutierrez-Pena (1999) and
is valid for the entire range of f values (from 0 to 2). It also simplifies the
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computational procedures for Bayesian calculations, which will be illustrated
in the subsequent parts of this article. See also Choy (1999) for a comparative
study on Bayesian computation of the uniform scale mixtures form with normal
scale mixtures form of the EP density in a simple Bayeisan hierarchical analysis.

3. MODELLING INSURANCE PREMIUM

An insurance problem of interest comes under the name of credibility. This
problem is related to the setting of insurance premiums to insureds according
to their past claim records and the overall average of the insureds. A simple
model for this problem has been studied by Bithlman and Straub (1972) and
Meyers (1984). Other models for insurance claims can be found in Klugman
et al. (1998). Let Y; be the claim size of the jth policyholder in category/class i.
The claim size is defined as the ratio of the actual loss to the total exposure.
A natural model for the claim is a three-stage hierarchical model given by

i

1

2
0,6 ~ N(é).,%) i=1,...k j=1,..n
g

0,

,u,rz ~ N(,u,fz)
10,0° .7 ~ N (1,,v*) IG (ay. by) IG (ay, by)

where p; are known values proportional to the exposures that produce the
observations. IG(a, b) is the inverse gamma distribution with arguments a > 0,
b>0 and mean b/(a—1). Conditional independence within and between groups
are assumed in the first two stages. In the third stage of the hierarchy, we assign
a normal prior distribution for x and inverse gamma prior distributions for > and
72 and assume that these prior distributions are independent and the hyperparame-
ters are known. In many situations, however, the assumption of normality for data
and the prior specification may not be appropriate. In fact, data may come from
a flat-tailed distribution. In addition, this model with normal component is non-
robust in the sense that inference is highly sensitive to outliers appearing in the
first two stages. Therefore, we shall modify the distributions in the first two stages.

Here we consider a Student-f sampling distribution with known degrees of
freedom « and an EP prior distribution with kurtosis parameter  which can
either be fixed or assigned a prior density p(ff). By using the scale mixtures rep-
resentation of the Student-7 and EP distributions, the modified model is given by

Yij

2
0,6, ~ N(Hl., p“i ) i=1,.,n, j=1,..k

2
0;| by, 0~ U oo Ui M

v o v o

u—

T ()’/2 + T u [f/2]

b l/, 1

R u'~N(,uo,vz)IG(al,bl)IG(az,bz)G(%, %)G(l+£ 21//3)
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where ;s and u;’s are the mixing parameters of the Student-7 and EP distribu-
tions, respectively.

To implement this modified model, both analytic and numerical methods
are inefficient, but the simulation-based Gibbs sampling approach (see Roberts
and Smith, 1993) provides a good alternative to perform the necessary Bayesian
calculations. When the kurtosis parameter f§ is known, the system of full con-
ditional distributions for the Gibbs sampler is given by

ni
ijlpyigyy s ,u—fuiﬂ/2 ,u+ruim]

[0, rest] = N0, = —. o
2Pty 25 Py

22 a0
.

2c

o

<f. <
J/2¢, ! /2¢,

l\)l

[az‘rest] = IG(a1 +%§ni, b, +

[1| rest] = N(uo,vz)l[max[ﬁi— < 1 < min

B2
0 +
i \/Z_CD

7| rest| = IG al+&,b2 1(7*>max(2¢,u;” (0,- u)’
2

[ L+ pij<yii_0f>2

+1
T 2|¢ 2
[, | rest] = Exp<2_ﬁ>l<uf> 2¢,77 (0, - u)z)

ag

where [-|] denotes a conditional density function, ‘rest’ denotes the observed
data and the set of all parameters excluding the one of interest, the index i
extends from 1 to k whereas j ranges from 1 to n; for each i. We note that all
these conditional distributions are of standard forms in which case we have no
difficulty in generating random variates from them. In addition, if a vague
prior is assumed for the population parameter x, then the corresponding full
conditional distribution is reduced to a uniform distribution, i.e.

uh? uh?
max|0, — —— |, min|0, + —||.
J 26 J 26,

4. ILLUSTRATIVE EXAMPLE

[p|rest] = U

4.1. The data

Klugman (1992, Data Set 3, p. 197-207) contains data of total workers’ com-
pensation and exposure of 124 different occupation classes over a seven-year

period without any inflation adjustment. The loss ratio y; of class i in year j
is defined by
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— ml]
¥y = 1000 x

where m;; (in 107) and Pij (in 107) are the total compensatlon to workers and
the exposure of class i in year j, respectively. That is, the observation is the pure
premium charged per $1000 of compensation for a particular class in a specific
year. For easy computatlon both m;; and p; are divided by 107 to a reasonable
scale. Note that in the model specification, the variance of the pure premium
depends on exposures.

In the data set, three occupation classes contain some missing values and
are discarded for analysis. Klugman (1992) analyses the first six-year data of
the 121 classes using a normal-likelihood-normal-prior model (normal-normal
model) in which Bayesian calculations are done through numerical methods.
Thus, this high reliance on numerical methods makes the extension for normal
family to other families of symmetric distributions impossible in analysis.
In this example, we reconsider all seven-year data of the 121 occupation classes
using the Student-7 sampling distribution and the EP prior distribution.
The Klugman’s normal-normal model is in fact a special case of our model.
Our proposed simulation-based approach will be more computationally efficient
than the numerical methods.

4.2. Parameter estimation

In order to obtain Bayes estimates and other posterior quantities of the para-
meters of interest, we use Gibbs sampling scheme of the Markov chain Monte
Carlo methods. The Gibbs sampler was run for a single series of 12000 itera-
tion in which the first 2000 iterations were discarded as the ‘burn-in’ period.
We then pick up values at every 10th value to mimic a random sample of size
1000 from the joint posterior distributions. Convergence of the simulated
Markov chains can be assessed by plotting the ergodic average for each parameter.
Here the ergodic average of a parameter is the running averages of the outputs
from the Markov chain. In the simulations, a vague prior is assigned to v,
i.e. ft — oo, and non-informative priors are assumed for ¢ and 7% i.e. ;= b, =
a, = b2 =

Tables l, 2 and 3 exhibit the posterior means and standard deviations of g,
o and 7 for different degrees of freedom « and kurtosis parameter f5. For a fixed
S, the standard deviation of the sampling distribution, o, increases significantly
when « increases. This means that the heavier the tails of the sampling distri-
bution, the smaller the estimate of ¢ will be. In other words, the outliers within
each occupation class can be captured by the heavy-tailed distribution so that
the error variance is reduced. If we inspect the data set in detail, we may find
that some occupation classes have made unusually large claims in one or two
years during the seven-year period which can be considered possible outliers.
When a normal sampling distribution is assumed, the pure premium charged
to these occupation classes will be substantially increased. An insurance com-
pany adopting this normal-normal model in its premium calculation may be
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less competitive than those who adopt the flat-tailed alternatives. In fact, the
use of the heavy-tailed distribution will automatically downweigh or even
“ignore” the possible outliers within each class and the overall analysis of the
class parameter 6, is protected from the distorting effect of the outliers. Com-
paratively, the estimates of u and 7 are less volatile when « increases because
the second stage parameters are less remarkedly affected by the first stage dis-
tribution.

For the choice of prior distribution for the pure premium 6;, the exponen-
tial power distribution provides platykurtic to leptykurtic shapes when f varies
from 0 to 2. When « is fixed, the inference of u is protected even when the tails
of the EP distribution become heavy. Estimates of 7 seem to be rather insen-
sitive to both changes in f§ and «. Finally, the effect of different choices of «
and f on the variance ratio t2/o? is clearly illustrated in Table 4.

TABLE 1

POSTERIOR MEAN (WITH STANDARD ERROR IN PARENTHESES) OF /i FOR DIFFERENT COMBINATIONS (a, f5).

a\p 025 0.50 0.75 1.00 1.25 1.50 175 2.00
1 1699  15.90 15.16 14.58 13.99 13.67 13.04 1289
0.92)  (0.87) (095  (0.98)  (0.96)  (1.02)  (0.99)  (0.91)

3 1758 16.99 16.15 15.66 15.23 14.76 1460  14.18
091)  (093) (097  (1.01)  (0.97)  (093)  (1.09)  (0.95)

5 18.16 1743 16.66 15.90 15.39 15.06 1496  14.63
0.96)  (0.99)  (1.02)  (0.97)  (0.97) (095  (1.05)  (0.90)

10 1871 17.86 17.02 16.38 15.85 15.65 1537 1496
091)  (1.02)  (1.02)  (1.00)  (0.96)  (0.97)  (0.90)  (0.98)

oo 1951 1875 17.77 17.03 16.79 16.36 1593 15.64

0.96)  (1.05)  (1.12)  (0.96)  (1.08)  (L.11)  (L04)  (0.99)

TABLE 2

POSTERIOR MEAN (WITH STANDARD ERROR IN PARENTHESES) OF 0 FOR DIFFERENT COMBINATIONS (a, ﬂ)

a\p 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1 5.35 5.32 5.29 5.27 5.26 521 5.22 5.20
029) (029  (029)  (0.29)  (0.29)  (0.28)  (0.28)  (0.29)

3 9.31 9.31 9.29 9.26 9.23 9.21 9.19 9.18
036)  (0.37)  (036)  (0.37)  (0.37)  (0.36)  (0.35)  (0.37)

5 1097 1092 10.91 10.88 10.88 10.88 1085  10.84
0.38)  (0.38)  (0.39)  (0.39)  (0.39)  (0.37)  (0.39)  (0.38)

10 1267 12.65 12.65 12.66 12.63 12.61 12.61 12.61
039) (039  (0.38)  (0.39)  (0.39)  (0.40)  (0.39)  (0.39)

oo 1609 1611 16.10 16.10 16.07 16.05 16.04 1601

(0.43) (0.43) (0.42) (0.41) (0.42) (0.41) (0.43) (0.43)
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TABLE 3

POSTERIOR MEAN (WITH STANDARD ERROR IN PARENTHESES) OF T FOR DIFFERENT COMBINATIONS (a, ﬂ)

a\p 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1 9.78 9.53 9.52 9.61 10.05 10.73 10.99  11.56
0.59)  (0.61)  (0.65  (0.78)  (0.85)  (1.00)  (1.06)  (1.09)

3 9.85 9.67 9.67 9.93 10.21 10.25 1093 1114
0.57)  (0.64)  (0.71)  (0.80)  (0.86)  (0.91)  (L.06)  (1.14)

5 1008  10.08 9.88 9.89 9.96 10.17 1048 10.88
0.63)  (0.69)  (0.70)  (0.84)  (0.87)  (091)  (L12)  (L.1I)

10 1045  10.18 9.9 9.91 10.14 10.43 10.58 1102
0.57)  (0.63)  (0.74)  (0.79)  (0.81) (095  (1.07)  (1.22)

o 1084  10.54 10.34 10.31 10.61 11.01 1124 12.30

(0.66) (0.72) (0.86) (0.86) (0.91) (1.06) (1.09) (1.34)

TABLE 4

POSTERIOR MEAN OF T2/ @2 FOR DIFFERENT COMBINATIONS (g, f3).

a\p 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1 3.39 3.26 3.28 3.38 3.73 4.32 4.53 5.03
3 1.13 1.09 1.09 1.17 1.24 1.26 1.43 1.50
5 0.86 0.86 0.83 0.84 0.85 0.89 0.95 1.02

10 0.68 0.65 0.63 0.62 0.65 0.69 0.71 0.78

oo 0.46 0.43 0.42 0.41 0.44 0.48 0.50 0.60

4.3. Outlier diagnosis

One important feature of the scale mixtures distributions is that the posterior
means of the mixing parameters can be used as global indicators of possible
outliers. For the Student- distribution, outlying observations are associated
with small A values, whereas for the EP distribution, outlying observations
are associated with large u values. To identify possible unusual claims made by
a particlar occupation class, we inspect the posterior means of the 4;’s. In order
to have a better graphical presentation, we plot the negative values of the loga-
rithm of the posterior means of the 4;’s in Fig. 1 for a -EP model with a =35
and S = 1.5. Four obvious outlying observations are identified from occupation
classes 44, 57, 75 and 85. This finding is consistent with Klugman (1992, p. 141)
who identifies the outliers from the residuals. The choice of « and f values here
is for illustration purpose and, of course, other @ and f values can be used.
Posterior estimates of i, g, 7, 044, 047, 075 and O35 under a normal-normal and
a Cauchy-Laplace models are given in Table 5. First of all, we notice that there
is a significant improvement on the estimation of x and ¢ while 7 seems to be quite
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t(5)-EP(1.5) Model
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FIGURE 1: Plot of —In(E[/;|y]) against occupation class for a t(5)-EP(1.5) model.
Large values correspond to the outlying observations.
Boxplots for u : Normal-Normal Model
IS il e
5 10 15 2 25 30 35 5 60 5 70 75 80 85 90 95 100 105 110 115 120
Class i
Classi

FIGURE 2: Boxplots of the uniform mixing parameter ;s for the (i) normal-normal,
(ii) normal-Laplace, (iii) Cauchy-normal and (iv) Cauchy-Laplace models.
Outliers can be clearly identified using the mixing parameter.
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insensitive. Occupation classes 75 and 85 give the two most extreme observations
and the effects of these observations are almost ignored or being downweighed
substantially by the Cauchy component, significantly different estimates for
6,5 and 65 are thus observed. We also find that occupation class 44 does not
provide very unusual observations, but rather the whole class tends to have a
large claim size when compared to other occupation classes.

In fact, when we look at the sample means of the pure premium y; for each
occupation class, the sample values for classes 6, 27, 76, 78, 86 and 108 are
40.94, 34.46, 43.32, 44.48, 124.16 and 42.01 respectively, while for classes 44, 57,
75 and 85, sample values are 31.12, 17.12, 38.10 and 41.64. This result contra-
dicts with the findings of Klugman (1992). Fig. 2 displays the boxplots of u;’s
for the normal-normal, normal-Laplace, Cauchy-normal and Cauchy-Laplace
models and the six outlying classes can be easily identified from the large values
of u;’s. After removing observations from these six classes, posterior estimates
of u, o and 7 are presented in Table 6. A more robust analysis on x and 7 is
then obtained. Therefore, these six occupation classes are found to belong to the
high risk classes and should be analysed separately from the other occupation

classes.
TABLE 5
POSTERIOR MEANS (WITH STANDARD ERRORS IN PARENTHESES) OF U, 0, T AND
KLUGMAN’S OUTLYING ;'S FOR NORMAL-NORMAL AND CAUCHY-LAPLACE MODELS
Model u [ T 044 057 075 085

Normal-Normal 1703 1610 1031 3124 1266 3390  29.40
0.96)  (0.41)  (0.86)  (0.90)  (1.12)  (6.50)  (9.19)
Normal-Laplace 1564 1599 1230 3126 1283 3711  34.82
0.98)  (0.43)  (1.34)  (0.90)  (1.64)  (7.90)  (14.20)
Cauchy-Normal 14.57 5.26 9.60 31.67 1065 12.55 9.41
0.97)  (027)  (0.78)  (2.98)  (1.21)  (4.64)  (5.65)
Cauchy-Laplace 12.89 5.20 1156 3144 1073 12.17 9.49
(091) (029  (1.09  (3.12)  (L.16)  (4.09  (5.34)

TABLE 6

POSTERIOR MEANS (WITH STANDARD ERRORS IN PARENTHESES) OF [{, G AND T FOR NORMAL-NORMAL,
NORMAL-LAPLACE, CAUCHY-NORMAL AND CAUCHY-LAPLACE MODELS WHEN THE OBSERVATIONS
FROM OUTLYING CLASSES, 6, 27, 76, 78, 86 AND 108, ARE DISCARDED.

Model y/; c T

Normal-Normal 15.58 (0.90) 15.59 (0.44) 8.62 (0.68)
Normal-Laplace 15.11 (0.86) 15.57 (0.41) 9.88 (1.18)
Cauchy-Normal 13.26 (0.76) 5.09 (0.28) 8.02 (0.61)
Cauchy-Laplace 11.99 (0.94) 5.09 (0.29) 9.64 (1.03)
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5. CONCLUDING REMARKS

In this article, we introduce the Student-z and exponential power distributions
via scale mixtures representation to insurance applications. As mentioned by
Klugman (1992) and Herzog (1996), Bayesian hierarchical models arise natu-
rally in many actuarial and insurance problems such as in credibility analysis.
The use of Student-z and EP distributions provides a flexibility for statistical
modelling in which modelling with normal distribution can be a special case.
The scale mixtures forms of the Student-7 and EP distributions allow the Gibbs
sampling scheme for conjugate normal-normal models to extend straightfor-
wardly to non-conjugate models without substantial increase in computational
effort. In addition, analysis can be protected from the distorting effects of
possible outliers at different stages of the models via the use of robustifying
distributions. These outliers are easily identified by the mixing parameters of
the scale mixtures distributions and can be suitably modelled by the heavy-
tailed distributions.

A final remark is that in this article we attempt to illustrate the computing
efficiency of using scale mixtures distributions within a Bayesian framework.
We do not claim that the analysis for the insurance example studied in Section 4
is the most appropriate because some other factors such as inflation, linearity
and autoregressive structure of the year-to-year claims, etc. have not been
taken into account. However, our work has provided a starting point for actu-
arial practitioners to use heavy-tailed distributions via scale mixtures distri-
butions.
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