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Abstract

We take Abramsky's term assignment for Intuitionistic Linear Logic (the linear term calculus)
as the basis of a functional programming language. This is a language where the programmer
must embed explicitly the resource and control information of an algorithm. We give a type
reconstruction algorithm for our language in the style of Milner's "W algorithm, together with
a description of the implementation and examples of use.

Capsule Review

Since the introduction of linear logic, researchers have been investigating the possibility of
a functional programming language based on the institutionistic fragment. This paper gives
a clear explanation of how this is possible. It first considers a linear lambda calculus - the
basis of any linear functional programming language. An implementation strategy based on
the SECD machine is considered for this calculus, as well as a type inference algorithm based
on Milner's "W algorithm.

Finally, the paper considers how to extend the calculus into a usable programming language
with not only a more pleasant syntax, but also constructs for recursion and datatypes.

1 Introduction

Functional languages have their theoretical foundations in the lambda calculus;
indeed, it is the canonical form of such languages. In particular, the Curry-Howard
isomorphism establishes a tight relationship between intuitionistic propositional
logic and the simply typed A-calculus. However, the A-calculus is too abstract and
its reduction steps too 'big' to be of use directly as the basis of an implementation.

1. The 2-calculus does not provide any hint about the implementation of /?-
reduction. Indeed, the primary technique used to implement /^-reduction,
namely explicit substitutions (e.g. see Abadi et al., 1991), takes us out of
the realm of the pure A-calculus.
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2. The /l-calculus does not give us information regarding argument use; in
particular copying of arguments. Thus, one needs sophisticated techniques to
extract this information: for example, abstract interpretation (Abramsky &
Hankin, 1987):

• Strictness analysis is concerned with knowing when lazy functions can be
safely replaced by eager versions.

• In-place update analysis is concerned with knowing when it is safe to
overwrite a specific data object because it is no longer needed.

This motivates the use of proof terms of Intuitionistic Linear Logic (Girard,
1987) as the foundation of a functional programming language. The linear types
have more information about use/reuse than the intuitionistic types:

• discarding an argument corresponds to the weakening rule of the logic. Know-
ing that an argument is discarded tells us that it is not strict in that argument;

• copying an argument corresponds to the contraction rule of the logic. Knowing
that an argument is not copied tells us that we can perform in-place updates
safely.

Abramsky (1993) describes a syntax for the proof terms of Intuitionistic Linear
Logic: the linear term calculus. That paper also describes an SECD implementation
for the linear term calculus, which uses the explicit operational information inherent
in the linear term calculus.

In this paper, we concentrate on the practical issues for the linear term calculus,
where we investigate the usefulness of the extra information given by the linear
types. The main contributions of this paper are:

1. A type reconstruction algorithm for the linear term calculus, mirrored after
Milner's W algorithm, which will infer the most general linear type for a
given term. This type gives the kind of information suggested above. A similar
algorithm has been developed independently by Wadler (1991), and more
recently by Lincoln & Mitchell (1992).

2. A concrete realisation of Abramsky's linear term calculus as a programming
language, where we include data-types and recursion. We assume that the
reader is familiar with the work of Abramsky (1993), which is our primary
reference.

We will not address many of the issues regarding garbage collection and in-place
updates. In fact, we will only give a straightforward implementation based on an
SECD machine. The purpose of this work is to set up a framework and investigate
the pragmatics of the language.

Several linear functional languages have already been proposed, for example
Holmstrom (1988), Lafont (1988b), Wadler (1991), Wakeling (1990) and Chirimar,
Gunter & Rieke (1991). The work closest to ours is that of Holmstrom and Chirimar
et al., since we deal with the linear constraints fully; we do not have any non-linear
data types. For example, Lafont (1988b), Wadler (1991) and Wakeling (1990) do
not have terms corresponding to the dereliction rule of the logic. Our aim is to
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make everything explicit in the hope that we can gain some insight into the low-level
resource usage of a program.

The rest of this paper is organised as follows. Section 2 presents a brief overview of
linear logic and gives the term assignment for the Intuitionistic fragment: the linear
term calculus, which we are taking as our canonical linear functional programming
language. Section 3 gives a natural deduction presentation of intuitionistic linear
logic and defines a type reconstruction algorithm for the calculus. In section 4 we
introduce our language, Lilac. We give the syntax, implementation and examples of
use. Section 5 suggests some extensions to our ideas.

2 Linear logic and the linear term calculus

The linear term calculus is our 'A-calculus'. Work on standard functional program-
ming can use well established results about the 1-calculus so we must therefore try
to set up an equivalent foundation for our calculus. Most of this section is included
for completeness only, and is essentially taken from Abramsky (1993).

2.1 Linear logic

It is not our aim to give a treatise on linear logic. Our interests are the computational
interpretations of the intuitionistic fragment of linear logic; and besides, there are
many interesting introductions available in the literature, for example papers by
Girard (1989), Lincoln (1992), Scedrov (1993) and Lafont (1988a). However, we
would like our presentation to be in some sense complete, so we shall present a
condensed overview of the subject.

Classical linear logic (Girard, 1987) is hailed as a major breakthrough in both
computer science and logic. In logic because we have a constructive classical logic-
with ordinary classical logic there is no way of extracting an algorithm from a proof.
But, most importantly for us, in computer science because it gives an approach for
investigation into issues concerning evaluation semantics, memory organisation and
the possibility of safe side-effects in functional programming languages (Wadler
1990).

In this paper we shall deal with intuitionistic linear logic, which is a refinement of
intuitionistic logic where the structural rules weakening and contraction are removed
and re-introduced as logical rules by the use of a new logical connective-the
exponential.

The connectives of intuitionistic linear logic and their significance are stated
below:

• I : The tensor unit is the identity for the tensor product.
• A -o B : The linear function space-functions which use their arguments exactly

once. For example, a bricklayer will build you a wall if supplied with some
bricks, but the act of doing so consumes the bricks, i.e. you cannot have
two walls. In programming terms this restricts all functions to using their
arguments exactly once. A direct consequence of this is that all functions are
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now strict, indicating that we can safely use eager evaluation since we know
the argument will be used-the preferred strategy for implementing functional
languages efficiently.

• A & B : The direct product (or with) is the data constructor which places a
restriction on using either the left or the right projection; but not both. For
example, a bricklayer will offer to build a wall or a house extension if supplied
with some bricks. The choice is yours, but the construction of one utilises the
bricks necessary to build the other. A programming example of this is the
conditional, where either the consequent or the alternative will be selected; but
not both. Note that lazy evaluation is indicated since it is not known which
projection will be selected.

• A <g> B : The tensor product is the data constructor where both components
of the pair must be used; projections are forbidden. If we give our bricklayer
some bricks and mortar, then to produce a wall he will need both-one is no
good without the other. Note that eager evaluation should be used since both
components are used.

• A © B : The direct sum (or plus) is the linear version of the logical or. This
corresponds to an internal choice, where we will be offered one or the other,
but not both. Again, using our friend the bricklayer, if we give him some
resources (bricks and mortar) and tell him to get to work, we will either get
a straight wall or a crooked one. The outcome depends on how much beer
he had for lunch which is out of our control. Of course, we cannot have both
since the process of building the wall consumes the resources. A programming
example would be some form of non-deterministic 'function' A —o B © C. Note
that eager evaluation is indicated here.

• \A : The modality (exponential) 'of course A' is what puts the power back
into linear logic. It is this which reflects the non-linear use. This corresponds
to giving our bricklayer a credit card and telling him to buy the resources
he needs. So, he can now build many walls and also go on a holiday! A
programming example would be the functions in a standard environment-we
would want to use these functions many times. Note that lazy evaluation
should be used here since it is not known how the data will be used.

In particular for this logic we have the following four logical rules to handle the
exponential, which we will present here in the sequent calculus:

• Of course Right rule:

\r\-A
(promotion)

\T\-\A
where !F is a context containing only formulae of the form \A.

• Of course Left rules:
Y\-B

(weakening)T, \A V- B

T,A\-B
(dereliction)
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F, \A, \A\-B
(contraction)

T,\A\-B

Note that Weakening, Dereliction and Contraction correspond to the use of a
resource zero, once and twice respectively; and it is the Contraction rule that gives
the potential of an infinite number of copies.

2.2 The linear term calculus

The linear term calculus is the term assignment to the intuitionistic fragment of
linear logic. We begin with the definition of the linear term calculus which we will
take as standard. An important point to note is that the syntax is not context free-
the linearity constraint must be reflected in the construction of the terms. We adopt
the same approach to that of Abramsky (1993) and define an auxiliary syntactic
category of patterns S?x, the set of patterns with variables in X; and then define the
terms, STx, having free variables in X.

Definition 2.1 (The Linear Term Calculus)

* - G 9^ <x,.), (_, x), be e 9{x} x®y, x@y € 9{xj>)

We can now define 3~x, the linear terms with free variables in X, inductively as
follows:

• x e ST{x}

• * G JT 0

• t e &~x,ue £rY,xnY = 0 = > t®u,tu

• t € , f x = > inl(t), inr(t), !t € ST x

• t e srxu{x}, x $ X => Xx.t e Fx

• t e J ^ p e ^ y . u e J y u z J n Z = Y HZ = 0 => let t be p in u G
• t e $-x,ue 3rzv{x],v e srzu{y],xnz = {x,y}nZ =0

==> case t of inl(x) => u \ inr(_y) => v G ^~xuz

Remark
1. Throughout this paper we will adopt the form l e t t be p in u consistently.

One should read this as a pattern matching construct, where t is a term that
will match against a pattern p. Some other authors (e.g. Benton et al. (1992)
and Lincoln & Mitchell (1992)) have chosen to give a more intuitive but less
systematic syntax.

2. The reader who has tried writing terms in this calculus may have noticed that
there are several ways of writing what, at first sight, are the same thing. For
example, consider the linear version of the K. combinator (K. = Xxy.y); we
can write this in two ways:

Ixy.let x be _ in y and Ax.let x be - in ky.y

https://doi.org/10.1017/S0956796800001131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001131


400 Ian Mackie

Operationally, using a leftmost outermost evaluation strategy, the first version
takes two arguments, one at a time, then discards the first one. The second
version states that after the first argument has been provided, it will discard it,
then wait for the second argument. These terms have the same type, but surely
the second version is better from a programming point of view-the sooner we
can reclaim the data space the better. Technically, these terms are related via
what is known as a commutative conversion; the same proof (program) can be
given in different ways. The real proofs are those modulo these conversions.
A discussion on these issues can be found in Benton et al. (1992), and for a
more complete set of equations for the multiplicative fragment see Mackie et
al. (1993).

2.3 Operational semantics of the linear term calculus

It is important to have a model of the calculus which can be used as a basis for
proving properties about any implementation. We choose to give an operational
semantics rather than any other formalism for the following reason: an operational
semantics provides us with intuitions, removed from any mathematical structure or
specific implementation. It is generally regarded that the best formalism in which
to present a semantics depends upon who will be using it. Operational semantics is
biased towards the user of the language, hence is sufficient in the spirit of this work.

We present the operational semantics in the style advocated by Plotkin (1981), and
more recently for Standard ML by Milner, Tofte & Harper (1990). The operational
semantics take on the form of an inductive definition. We write t ty u for the
evaluation relation ('t converges to «') which formalises our notion of a computation
step.

We will use meta-variables c and d to range over canonical forms, which are:

* <t,u> H c®d Xx.t inl(c) inr(d)

The operational semantics are given in Fig. 1; taken from Abramsky (1993).

3 Linear type reconstruction

This section develops a type reconstruction algorithm, «Sf, for the linear term calculus
which we are taking to be our canonical functional programming language. Our
algorithm is in a similar style to that of Milner's algorithm if. We begin by
presenting the type assignment to the linear term calculus in natural deduction
form. These rules suggest the type reconstruction algorithm which we will go on to
prove to be both sound and complete with respect to these rules. (The full proofs
are given in Mackie, 1991). The reader is referred to the work of Milner (1978),
Damas & Milner (1982) and Damas (1985) for background to this work.

Work on linear type inference is not new:

• The work of Lincoln & Mitchell (1992) is very close to ours. The presentation
of the term assignment corresponds to their Nat2 system. In particular, in
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til * ullc

*D* le t t be * in ullc

tile ulld tllc®d u[c/x,d/y]lle

t ® ullc ® d l e t t be x ® y in

tll{v,w) vile u[c/x]lld tll(v,w) wile u[c/y]U

l e t t be (x,.) in ulld l e t t be (_, y) in uV<2

tUc ulld

tjjinl(c) M[

case t of inl(x) => u | inr(y) => vlld case t of inl(x) => u \ inr(y) => vtyd

til!« vile u[c/x]Hd

\t\l \t le t t be !x in ŵ d

u$c tV-t' u[\t'/x,\t'/y]llc

le t t be . in M̂ C let t be x@y in «^c

Fig. 1. Operational semantics of the linear term calculus.

that paper, they independently prove the existence of the type reconstruction
algorithm.
The work of Wadler (1991) and Wakeling (1990) tries to enforce a linear
type discipline onto the 1-calculus; they have the typed 2-calculus as the
term assignment to linear logic with the consequence of having the ability to
have many types for the same term. Our approach has a term corresponding
to each of the structural rules which gives us a unique type for each term.
Another advantage of our approach is that we have 'extra knowledge' about
our programs. Wadler points out that in a call-by-need regime dereliction leads
to us to not knowing how many pointers we have to a data item; see the
following example from (Wadler 1991):

: !(a -o a) -o a -o a

The claim is that, since dereliction was needed to type each occurrence of / ,
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it has a linear type a -o a, but since / really has a non-linear type, there may
be more than one pointer to it. The problem is that there is no history in the
proof to indicate that contraction and dereliction is used. Our version of this
function is:

A/x.let / be g@h in l e t g be !g' in l e t h be \h' in g'{h'x) : !(a -o a) -o a -o a

From this we know exactly how many copies of / are made-since we have
recorded the full history of the proof in the term we can extract this kind of
information-which is not the case in other work mentioned where there are no
terms for some of the logical rules. Of course, this information gives nothing
more than a reference count-a simple variable count on the original term will
provide exactly the same information. Although we will not take advantage of
this information in our implementation (see, for example, Chirimar et al., 1991,
for a reference counting model) we propose that this information provides a
general basis in which more refined and efficient implementations can be
developed.

3.1 A new notation

Linear logic is a resource logic: we place a restriction on the use of assumptions-
namely use them all exactly once in the linear case. It is imperative that our logical
rules reflect this constraint. To capture this we will write judgements in the following
way:

where we call F the before-set and 0 the after-set—indicating that the derivation
uses the assumptions only in the set F \ 0. Note that 0 £ F, and F \ 0 is precisely
the set of assumptions necessary to type t.

The idea is best explained by an example. Consider the Application rule:

F|Aht:a—o/J A|0 h u : a
(-o-elim)

F|0 h tu : j8
This rule states that if we type tu using F then © will be left over. We give t all of

the assumptions, and the remaining A are given to u. What are not consumed here
are exactly those which are left over in typing tu. The rationale for choosing this
new notation will become more apparent when we present the type reconstruction
algorithm.

For a substitution R, we will write R(A\Ai) for RA\RA\, and define substitution
on judgements by :

R((A | Ax) h t : a) = (RA | RAX) h t : R<x

We will write x : AT for concatenation of assumptions.
The Natural Deduction presentation (in sequent form) for Intuitionistic Linear
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Logic using our new notation is given in Figure 2. The natural deduction presentation
follows from the Sequent based rules of Abramsky (1993) by standard translations
(see, for example, Girard, Lafont & Taylor, 1989).

The only problematic case is the promotion rule which has been studied by Benton
et al. (1992), Lincoln & Mitchell (1992), O'Hearn (1991) and Wadler (1992). As noted
by Benton et al. and Wadler, the presentation of natural deduction given here is not
closed under substitution. However, since we are working with programs (i.e. closed
terms) and we are dealing only with outermost reductions (we never never substitute
a free variable) these problems never surface. This is a property coming from the
operational semantics used and for our application everything works. However, in a
more general setting such as a categorical semantics of the language a more delicate
treatment of the rules is required, for example that of Benton et al. (1992).

3.2 The type reconstruction algorithm S£

Our presentation of the algorithm JS? will assume that the terms are syntactically
linear. It is a trivial extension to the algorithm to perform this kind of checking-we
just need extra conditions to be satisfied. The reason we refrain from giving these
conditions is purely one of presentation-adding these extra checks obscures the real
details of the algorithm. The important point is that since our algorithm makes
resource consumption explicit it is a very useful place to perform such checks.

We begin with a short note on unification before giving the algorithm.

Unification

We will need the notion of unification in this section, for which we define an
algorithm •V, a simple extension to the unification algorithm used for Milner's "W;
based on a variant of Robinson's theorem (Robinson, 1965). Given two linear types
T and T':

{ U if Ux = Ux'

fail otherwise

where U is the most general unifier: if V also unifies x and x' then V is just a sub-
stitution instance of U, i.e. V = SU, for some substitution S. The final requirement
is that U only involves variables x and r'-no new variables are introduced during
unification.

The implementation is based on the notion of disagreement pairs, which is a
straightforward extension of the algorithm for intuitionistic types. We define this
algorithm as follows. We write x, x' for type variables and A, B, C, D for compound
formulae. We assume the following clauses are applied exhaustively from top-to-
bottom.
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(Axiom)
(x : aT | r ) I- x : a

( | A) h t : I (A | 0 ) h u : a
(I-intro) (I-elim)

(F | F) h * : I (F | 0) h le t t be * in u : a

(F | A) h t : a (A | 0) h u : 0
(®-intro)

(F | 0) h (® u : a ® p

(F | A) h t : a ® /( (x : a.y : 0.A | 0) h u : y

(F | 0 ) I- le t t be x ® y in u : y

(x : a.F | 0) h t : 0 (F | A) h t : a -o j? (A | 0 ) h « : a
(-o-intro) (-o-elim)11 0) h Ax.t :a-op (F | ©) h tu :,

(F | 0) h t : a (F | 0) I- u :,

( F | 0 ) h (t,u) :a&p

(r\A)\-t:u&P (x : a.A | 0) h u : y

(F | 0) h l e t t be < x,y > in u : y

(F | A) h t : a & P (y : p.A \ 0) h u : y

(F | 0 ) h l e t t be < x, y > in « : y

; & -intro)

(&-elim : left)

(&-elim : right)

| 0) h t : a (F | 0) I- t : 0
(ffi-intro : left) (ffi-intro : right)

0) h inl(t) : a e P (T \ 0) h inr(t) : a e /?

(F I A) h t : a e i? (x : a.A | 0) h M : y (y : p.A \ 0) h w : y

(r | 0) h case t of inl(x) => u \ inr(y) => t> : y

(F | A)ht :!a (x : a.A | 0 ) h u :

• (©-elim)

(F | 0 ) I- l e t t be !x in u :,

| A)ht :!a (x :!a.y :!a.A|0)hu :,

• (!-elim : dereliction)

(F | 0 ) h l e t t be x@y i n n :

(F | A)h( :!a (A | 0) h u : P

(F | 0 ) h le t t be . in u : P

(F | A) I- t : a

• (!-elim : contraction)

(!-elim : weakening)

(!-intro : promotion) (F \ A are all !-type)
( F | A)Ht :!a

Fig. 2. Natural deduction formulation of intuitionistic linear logic.
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3>{x, T') = if T = T' then 0 else (T, T')

= 0

® B, C <g> D) = if @(A, C) = 0 then S>(B, I>) else ®(A, C)

>B,C^>D) = if ®(/4,C) = 0 then S>(B,D) else S>(,4,C)

&B,C &D) = if S>(A, C) = 0 then S>(B, D) else S>(A, C)

3){A®B,C®D) = if ®(A,C) = <t> then ®(B,D) else 2>(A,C)

) = (A,B)

We can then use the standard iterative algorithm for unification (for example, see
Field & Harrison, 1988).

Our substitutions are mappings from types to types. They are associative and
idempotent. We will write composition of substitutions by juxtaposition.

To reflect the linearity constraint that all assumptions must be used exactly once,
we treat the assumption set as a set of resources-once used, we remove it. To this
end our type reconstruction algorithm will return a triple (rather than a pair in the
case of Milner's iV algorithm), which will consist of a substitution, a type and the
assumptions not yet used.

We will write R,S,... to range over substitutions, a,/?,... to range over type
variables, A,A',A\,A2,... to range over assumption sets. We will write id for the
identity substitution and substitution over sets is defined element-wise: RA = {x :
R<x\x : a G A}. We assume a function new which returns a fresh type variable.

Definition 3.1 (The type reconstruction algorithm

where:

1. If e is the identifier x, and x : a e A then T = id, T = a, A' = A \ {x : a}.

2. If e is of the form *, then T = id, z = I, A' = A.

3. If e is of the form l e t t be * in u, let

(R,P,Ai) =

U = rT pi

(S,u,A2) = &{VRAuu)

then T = SUR,x = a,A' = A2.
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4. If e is of the form t®u, let

(R,a,Ai) =

(S,p,A2) =

then T = SR,t = Sa ® p,A' = A2.
5. If e is of the form le t t be x <g> y in u, let

(^,6,^0 = if (At)

C/ = -T e a.®fi;<x,P new

(S,y,A2) =

then T = y
6. If e is of the form Xx.t, let

.x :a,t);a new

then T = /?,T = i?a -o ft, A' = Ax.
1. If e is of the form tu, let

(S,a,A2) =

(7 = y (Sa) (a-oP);P new

then T = USR,x = UP,A' = A2.
8. If e is of the form le t t be < x, _ > in u, let

(K.e.X,) = J?(A,t)

U = V e tx&P;oi,P new

(S,y,A2) = JS?([//M,.x:a,«)

then r = SJ7R,T = y,A' = ^2.
9. If e is of the form le t (be < _, y > in u, similar to above.

10. If e is of the form <t,u>, let

(S,p,A2) = 2[RA,u)

Condition : A2= A\

then T = SR,T = Sa&)S,/l'=y4i(=/42).
11. If e is of the form inl(t), let

(R.a.Ai) = J?(A,t)

then T = R,t = a®P,A' = A{; p new.
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12. If e is of the form inr(r), similar to above.
13. If e is of the form case t of inl(x) => u | inr(_y) => v, let

(R,e,Ai) =

U = -T e a®P;a,P new

(S,p,Ai) = &{URAl.x:a,u)

(S',a,A3) = Se(SURAi.y:p,v)

Condition : A3 = Ai

V = -T a S'p

then T = VS'SUR,T = Va,A' = A2(= A3).
14. If e is of the form l e t t be \x in u, let

(R,P,Ai) = i fM,0

[/ = •f p !a;a new

then T = S UR, % = p, A' = A2.
15. If e is of the form l e t t be x@y in w, let

U = "V p !a;a new

(S,P,A2) = &(URAi.x :\a.y :!

then T = SUR,x = P,A' = ^2-
16. If e is of the form l e t f be . in M, let

(R,e,Ai) = if(^0

t/ = V e !a;a new

then T = , y,
17. If e is of the form \t, let

condition : R{A\A\) are all !-type

then T = R,z =la,A' = Ax.

We also require that if will fail if it is not one of the above forms.
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3.3 Soundness of <£

If the algorithm Jz? succeeds in typing a term e under some assumptions, then
we want to be sure that e actually is well typed, i.e. a derivation exists. This is
called syntactic soundness of our algorithm and states that our algorithm is safe-it
produces no wrong results. The following Lemma will be useful for this result:

Lemma 3.2
If there is a derivation (A \ A') \- e : T then, for any substitution S, there is also a
derivation for S(A\A') h e : Sx.

Proof
By induction over the length of the derivation of A\A' \- e : x.

There are 17 cases, we will just show four.

1. If the derivation consists of the (Axiom) : A.x : x\A h x : x, then x : Sx is in
S(A.x : T), SO S(A.X : x\A) \- x : Sx is a valid derivation.

2. If the derivation consists of just the (I-intro) step: A\A h * : I, then S(A\A) \-
* : SI follows trivially.

3. If the last step of the derivation was (I-elim), then by the inductive hypothesis
twice, there are two valid derivations S(X|y4i) h t : 51 and S(Ai\A2) \- u : Sa.
By application of the (I-elim) rule, we obtain S(,4|/l2) l~ l e t f b e * in « : Sa,
as required.

4. If the last step of the derivation was (!-elim : weakening), then by the inductive
hypothesis twice, we have derivations S(/l|y4i) \- t : Slot and S(/li|/l2) h u : S/?.
Now, since 5!a =!(Sa) we apply the (!-elim : weakening) rule to obtain the
required derivation. •

Theorem 3.3 (Soundness of
If S£{A,e) succeeds with (S,T,A') then there is a derivation of S(A\A') h e : t.

Proof
By induction on the structure of terms e.

There are 17 cases, we will show just seven.

1. If e is the identifier x, x : a € A.x : a then £f(A.x : a,e) succeeds immediately
with (id, OL,A) and there is a derivation consisting of the (Axiom) : A.x : a\A h
x : a. The result follows since id(,4|i4') = A\A'.

2. If e is * then <£{A,e) succeeds immediately with (id,I,,4) and there is a
derivation consisting of the (I-intro) rule: A\A I- * : I. The result follows since
\4(A\A) = A\A.

3. If e is of the form le t t be x® y in u then if(/4, t) succeeds with (R,?,A\),
"V x a ® /? succeeds with a substitution U and J?(URA\.x : a.y : jS,u) suc-
ceeds with (S,y,A2). By the inductive hypothesis twice, there are derivations
R(A\Ai) h t : x and SUR(Ai.x : a.y : /J|/42) \- u : y. By Lemma 3.2 the
first derivation can be written as SUR{A\Ai) \- t : SUx, i.e. SUR{A\A\) h
t : S(Ua ® UP). By the (®-elim) rule there is a derivation SURiAi^) h
le t t be x ® JI in u : y.
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4. If e is of the form < t,u > then <£{A,t) succeeds with {R,OL,A{) and g{RA,u)
succeeds with {S,$,Ai). By the inductive hypothesis twice there are derivations
R{A\Ai) h t : a. and SR(A\A2) I- u : /?. By Lemma 3.2 we can write the first
derivation as SR(A\A\) h t : Sa. By the ( & -intro) rule and the condition that
Ai = A2 there is a derivation SR(A\Ai) \- t : (Sa) & 0.

5. If e is of the form le t t be x@y in u then J?(A,t) succeeds with (R,p,A\),
y p \a. succeeds with a substitution U and =S?(l/./L4i.x :!<x._y :!<x,w) suc-
ceeds with (S,fi,A2). By the inductive hypothesis twice, there are derivations
R(A\Ai) \- t : p and SUR(Avx :la.y :\a\A2) \~ u : j8. By Lemma 3.2 the
first derivation can be written as SUR(A\A\) h t : SL/p /.e. Sl/R(^|/li) h t :
S{lUa). By the (!-elim : contraction) rule there is a derivation SUR(A\Ai) V-
l e t t be x@y in u : /?.

6. If e is of the form le t t be !x in u then £f{A,t) succeeds with (R,P,A{), V fi \u.
succeeds with a substitution U and Jjf(URAi.x : a, w) succeeds with (S,p,Ai).
By the inductive hypothesis twice, there are derivations K(/l|/li) h t : /? and
Sl//?(y4i.x : OL\AI) h M : p. By Lemma 3.2 the first derivation can be written
as SUR(A\Ai) h t : SI//?, which rewrites to SUR(A\Ai) h t : S(!I/a). By the
(!-elim : dereliction) rule there is a derivation SUR(A\A2) I- l e t t be !x in u :
P-

7. If e is of the form !t then &(A,t) succeeds with {R,a,Ai) and R(A\At) are all !-
assumptions. By the inductive hypothesis, there is a derivation J?(/4|/li) h t : a,
and by the (!-intro : promotion) rule there is a derivation R(A\Ai) Mr :!a as
required. •

3.4 Completeness of j£?

If a term can be typed using the inference rules, then we would require our algorithm
to also be able to compute the type of this term. The proof given will follow very
closely the proof of the completeness of "W in Damas (1985). Note that since we
have monomorphic types the notion of a principle type follows as an immediate
corollary of the completeness theorem.

We will need some new notation, which is taken from Damas (1985). We write

dom(S) =def {a|Sa + a}

for the domain of a substitution;
and write R + S for the simultaneous composition of R and S; defined as:

{ Ra. if a e dom(R)

Sa. otherwise

Additionally, we will call a substitution minimal if it has the smallest domain
possible for the required substitution.

Theorem 3.4 (Completeness of Jif)
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If there is a derivation S(A\A\) h e : x for some substitution S, then:

1. J?(A,e) succeeds with (R,a,A\) for some R,a.
2. There exists a substitution T such that: TR(/4|/4i) = S(A\Ai) and Toe = x.

Proof
By induction over the structure of linear terms e.

There are 17 cases, we will show just seven.

1. If e is the variable x, then the derivation just consists of the (Axiom) :
S(A.x : <x\A) \- x : Sa. Now, ££{A.x : a, x) succeeds with (id, a, A) and we must
find a substitution T such that T\d(A.x : a|A) = S(Ax : a\A) and Toe = Sa.
Let the substitution just be S and we are done.

2. If e is of the form *, then the derivation consists of just the (I-intro) rule:
S(/4|.4) h * : I. Now <£{A,e) succeeds immediately with (id, 1,̂ 4) and since I
contains no type variables (2) follows trivially by letting the required substitu-
tion be just S.

3. If e is of the form le t t be * in u, then there is a derivation ending in the
(I-elim) rule, where the antecedents are: S(,4|,4i) h t : I and S(A\\A2) h u : y.
By the inductive hypothesis, ^C(A,t) succeeds with (R\,P,A\) and there is
a substitution T\ such that TiRi(̂ 4|̂ 4i) = S{A\A\) and TjjS = I. To show
U = ir p I is a unifying substitution observe that there is a substitution UQ
which satisfies: Uofi = C/oI. Now, since I is a type constant this must satisfy
Uofi = I; hence the substitution f/o is just T\ from above. Now ~f~ p I succeeds
with some substitution U, which is the most general unifier— i.e. we have
XU = Uo for some substitution X. Hence Xt/Ki^l^i) = S{A\A\). Again by
the inductive hypothesis, <£{UR\A\,u) succeeds with {Ri,a, UR\A2), and there
is a substitution T2 satisfying T2R2UR\{A\\A2) = XURl(Ai\A2) and T2a = y.
£?(A, l e t t be * in u) succeeds as required with (^ t / ^ i . a , ^ ) - To show
clause (2) of the theorem we must exhibit a substitution T which satisfies
TR2URi(A\A2) = S(A\A2) and To. = y. Let this substitution be T2 from above
and we are done.

4. If e is of the form inl((), then there is a derivation ending in the (©-intro : left)
rule : S(A\Ai) h inl(t) : x ® x'. The antecedent of this rule is S(A\Ai) \- t : t.
By the inductive hypothesis SC(A,t) succeeds with (R,a,A\) and there is a
substitution T\ such that T\R{A\A\) = S(A\A\) and T\a. = x. Now, &(A, inl(t))
succeeds as required with (R,x(B P,Ai) where /? is a new type variable. To
show clause (2) of the theorem all we have to do is show that there is a
substitution T such that TR{A\AX) = S(.4|,4i) and T(a 0 0) = x © x'. If we
let T be [T'/0] + T,, then TR(A\A{) = S(^|Xi) from before since 0 does not
occur in [A\A\), and T(a © $) = Ta © T0 = T â © T' = x © T', as required.

5. If e is of the form le t t be . in u, then there is a derivation ending in the
(!-elim : weakening) rule: S(A\A2) \- le t t be _ in u : y. The antecedents
to this rule are S(A\Ai) \- t :!a and S(/4i|A2) I- u : y. By the inductive
hypothesis, !£(A,i) succeeds with (R\,x,Ai) and there is a substitution T\
satisfying TxRi(A\Ai) = S(A\AX) and T\x =!a. To show that f 1 !f is a
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unifying substitution, let UQ = [e/a] + T\. Now, UQT = T\x =!a, and U$\e =
\(Uoe) = !a. So, Uo is a unifying substitution, therefore y z \e succeeds with
some substitution U. Since U is the most general unifier, there is a substitution
X such that XV = Uo, hence we have XURi(A\Ai) = S(A\Ai) since e does
not occur in (A|Ai). Now, Z£(UR\A\,u) succeeds by the inductive hypothesis
with {R2,P, UR\A2), and there is a substitution T2 such that T2R2U Ri{A\Ai) =
XUR[(A\A\) and T2ji = y. Now, J?(A,let t be _ in w) succeeds as required
with (R2UR\,P,A2), all we are left to show is that there is a substitution T
such that TR2URi(A\A2) = S(A\A2). Let this substitution be just T2 from
above and we are done.

6. If e is of the form le t t be !x in u, then there is a derivation ending in the
(!-elim : dereliction) rule: S(A\A2) h le t t be !x in u : y. The antecedents
to this rule are: S(A\A\) h t :!a and S{Ai.x : tx\A2) \- u : y. By the inductive
hypothesis on the first antecedent, Z£(A, t) succeeds with (Rup,Ai) and there
is a substitution Ti satisfying riKK^lAi) = S(A\A{) and TijS =!a. To show
that -V p \e is a unifying substitution, observe that C/o = [a/e] + T\ is a
valid substitution satisfying the following: t/o/5 = Uole which simplifies to
T\P =!a, which is satisfied from above. Because UQ is a unifying substitution,
"V P \e succeeds with the most general unifier U, such that XU = Uo for some
substitution X. Since a is not free in A, we also have XURi(A\Ai) = S(,4|/li). By
the inductive hypothesis again, £C(URiAi.x : a,u) succeeds with (R2,p, UR\A2)
and there is a substitution T2 satisfying T2R2UR\{A\.x : <x\A2) = XUR^Ay.x :
OL\A2) and T2P = y. Now £C(A,let t be !x in w) succeeds as required with
(R2 UR\,p, A2). To show clause (2) of the theorem we must exhibit a substitution
T satisfying TR2URi(A\A2) = S(A\A2) and Tp = y. Let this substitution be
just T2 and we are done.

7. If e is of the form < t, u >, then there is a derivation ending in the ( & -intro)
rule: S{A\A\) h< t,u >: T & T'. The antecedents to this rule are S(J4|J4I) 1- t : T

and S(A\Ai) \- u : T'. By the inductive hypothesis on the first antecedent,
Z£{A,t) succeeds with (i?i,a,^4i) and there is a substitution T\ such that
T\R\(A\A\) = S{A\A\) and Tia. = T. Again, by the inductive hypothesis on
the second antecedent, ££{R\A,u) succeeds with (^ /^Ki^ i ) , and there is a
substitution T2 satisfying T2R2RX{A\A\) = TXR\{A\AX) and T2p = T'. NOW,
S£{A,< t,u >) succeeds with (i?2^i,^2a & P>A\) as required. To show clause
(2) of the theorem, observe that T2R2<x = T\<x, all a € i?iX. Hence, let the
substitution required be T2, then TR2Ri{A\Ai) = S(/l|,4i) from above, and
T(Ria &P) = TR2a. & Tp = x & T' as required. •

J.5 Polymorphism in <£

Throughout this paper we will work with monomorphic types, although we do have
an ad hoc polymorphic construct in our implementation which we will discuss below.

The reason we refrain from including a polylet construct (cf. Milner's polymor-
phic l e t construct) is that it is not clear how one should include such entities into a
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linear framework. We give the general idea of the problem and suggest one possible
solution.

We begin with the archetypical example of a polymorphic function from the
A-calculus. (cf. l e t / = Xx.x in / / in Milner's notation.)

polylet Xx.x be / in / /

We can extend our linear term calculus with such a construct, for which we might
write:

polylet l(Xx.x) be / in l e t / be /@g in le t !/ be / ' in l e t g be !g' in f'g'

Note first that we needed to promote the function since we are copying it-an
intrinsic part of the pragmatics of polymorphism. Polymorphism is very closely
linked with Contraction-one does not need polymorphism if one never uses the
function more than once!

The basic problem is that the generalisation of the type of/ will be Va.!(a —oa)
which does not type check correctly, i.e. this indicates that we instantiate, then
copy-we want the converse !Va.(a -o a), copy then instantiate.

The solution we propose is to have a polylet construct which allows us to write:

polylet Xx.x be / in / /

i.e. we omit the exponential and the polylet construction is allowed to use the
function any number of times. We feel this is the only reasonable solution when we
look at the general case:

p o l y l e t e\,...,en be x\,...xn i n e

which would arise in the standard environment of a functional programming language
for example. It would not be very sensible to have the programmer weakening all
the functions in the standard environment before using just one of them. It is for
this reason we adopt this solution since it appears to be the most satisfying solution
both theoretically and practically. For the moment this has only be implemented
in Lilac at the outer level; within the standard environment. The extension of the
calculus to allow local polymorphic declarations is one gap in our work.

To summarise, the terms of a polylet construct will be typed using if, then gen-
eralised and Promoted. This, of course, is allowed since we are dealing with programs
(closed terms). Lilac will automatically use Contraction, Weakening, Dereliction and
instantiation-the linking phase—while typing the program to be executed.

We therefore have two additional logical rules that we need to add to complete
our natural deduction presentation of intuitionistic linear logic:

r h t : T T\-t: Va.r
(generalise) — —— (specialise)

Where the side condition that a is not free in T applies to the (generalise) rule.
Note that we do not have any additional syntax for polymorphism. The justification
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of this method comes from the observation that the standard environment is just a
series of definitions-if we want to use any of them, then we take a copy and compile
that definition into the object code. What we are really performing is a linking
phase in the compilation, i.e. we are merely selecting the relevant components of the
chosen computation.

4 Lilac: a linear functional programming language

The language of the linear term calculus, as with the A-calculus, is a very puritanical
one. There is a need therefore to place some reasonable syntax around it so that
we can investigate the usefulness of the calculus as a programming language.
We enrich the linear term calculus with constants and recursion, give corresponding
operational semantics and typing rules, then give an SECD machine implementation.
Our language Lilac will just be a sugared version of this enriched calculus.

Our implementation will be based on the call-by-need strategy. To be more precise,
linear functions will be implemented as call-by-value: we don't need to build closures
for linear functions since we know we will need the value. Non-linear functions will
be implemented as call-by-need: we evaluate the argument only if it is needed in
the computation and moreover we will share the result once computed. The elegant
mechanism which will decide which strategy to use comes directly from the type
information: no additional analyses (such as strictness analysis) are required.

Our implementation however will not take advantage of the garbage collection
and in-place updates mentioned in the introduction. Details of these issues can be
found in the paper by Chirimar et al. (1991).

4.1 Extending the linear term calculus

It is possible to program in the pure linear term calculus and implement various data
types by coding tricks. We prefer, however, to add several constants to the calculus
for both practical and efficiency purposes. Turner (1991) gives a good discussion on
the relative merits of adding constants to a pure calculus.

We do not provide user defined data-types, but several useful built-in data-types.
The extension to user defined data-types is where we feel we can start to see many
advantages of working within a linear framework. The ability to have both lazy and
eager data structures within a unified system is a rather novel feature. For example
we could define binary trees which are lazy in one branch and eager in the other.
It is the exponential that gives this power of control. We leave the study of data
structures for further work.
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Natural numbers and Booleans

We build in the eager natural numbersf, nat, denned by the recursive type equation
nat = I © nat. Our intended interpretation will be zero = inl(*) and succ = inr,
e.g. 2 = inr(inr(inl(*))).

For Boolean values we have the type equation bool = I © I, our interpretation
being true = inl(*), and fa lse = inr(*).

We provide some standard functions over these types : +, —, *, div, mod, <, = for
nat and or, and, not for bool. The operational behaviour and typing rules for
these constants are standard. The conditionals for these two types are derived from
the ©—elim rules given in Fig. 2. The calculus is enriched by a casenat and a
casebool construct. The operational semantics are given by:

n § zero u § c

casenat n of zero => u | succ(m) => v ̂  c

n (I succ(d) v[d/m] |} c

casenat n of zero => u \ succ(m) => v || c

b ̂  true u V d

casebool b of true => u | false => v ̂  d

i> I) false v $ d

casebool b of t r u e => u | f a l s e => v § d

The typing rules for these two additional constructs are given by:

F h n : na t A h u :a m : nat, A h t> : a
(nat—elim)

F, A h casenat n of zero => u | succ(m) => v : a

P h i : bool A h u : a A h u : a
(bool—elim)

F, A h casebool b of t r u e => u \ f a l s e => v : a.

Eager lists

The type of eager lists in our linear system is given by the recursive type equation
l i s t ( ^ ) = I © {A ® l is t ( /4)) . We write '[ ] ' for the empty list, and ':' for the
right associative cons operator. We have an abbreviation and write [1,2,3,4] for
1 : 2 : 3 : 4 : [ ]. The conditional for lists is again a derivative of the ffi—elim rules.

The operational semantics of lists is given by the following:

h tyc ttyd

h :

t The lazy natural numbers would be defined as nat = I©!nat.
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casel is t n of [ ] => u \ (h : t) => v ty c

n\id:e v[d/h,e/t] |)c

casel is t n of [ ] => u \ (h : t) => v 4} c

and the corresponding typing rules are as follows:

r h l i : a A\-t : l ist(a)

I" [] = "st(«) r A H ^ ^ i s ^ ( M S t - i n t r O )

T h n : l ist(a) Ah ic j ? h : a, t : list(a), A h i> : ft
(list—elim)

T , A h c a s e l i s t n o f [ ] = > u \ ( h : t ) = > u : yS

Lazy lists (streams)

The type of streams is given by the recursive type equation stream{A) = I @
(A® !stream(j4)). The empty stream is denoted by '{}'; '::' is the cons operator, and
again we have an abbreviation and write {1,2,3,4} for 1 :: 2 :: 3 :: 4 :: {}. The
conditional for streams is again a derivative of the ©—elim rules.

The operational semantics for streams is as follows:

h :: t li c :: t { } < } { }

casestream n of { } => u | (h :: t)

casestream n of { } => u \ (h :: t)

and the typing rules are give by:

T \- h : a A h t : stream(a)
(stream—intro)h { } : stream^) r,A\-(h :: t) : stream(a)

T \- n : stream(a) A h u : fl h :<x,t : stream(a), A h v : /?

F, A h casestream n of { } => u | (/i :: t) => v : /?
(stream—elim)

The above specifies the operational behaviour of the data types in terms of the
connectives of linear logic already given. Our implementation of these data types
will have the same operational behaviour of the linear logic connectives as shown,
but will be implemented by enriching the calculus with the corresponding constructs;
which are derived from existing linear term calculus constructs.
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Recursion

One of the most important pieces of machinery in a functional programming lan-
guage is recursion; without some form of recursion we cannot write very interesting
programs. In our strongly typed calculus we have no hope of defining a ' l " recursion
combinator from the raw syntax. We must therefore introduce it as a constant to
the language.

In addition to the normal typing constraints, we must also take care of the linearity
aspect of the language, e.g. Y(f) = /(• • •/(-!_)• • •) indicates we need many copies
of / . Fortunately the exponential of linear logic allows us to copy the function / ,
so will will need something like: Y(\f) = f]-(Y(lf)). Hence we need to derelict the
value / and promote the argument for each recursive call in our programs.

We extend the linear term calculus with recursion which we will write as:

l e t rec t be x in u

which has the usual interpretation:

le t rec t be x in u = l e t (rec x.t) be x in u

Note that rec x.t can be written as Y(Xx.t).
We will present the operational semantics and typing rules just for the rec

construct, since this is the heart of recursion. There is nothing deep in this; it just
economises the presentation. The reason why we needed to introduce the letrec
construct is for the compilation into SECD codes; to be discussed later.

The operational semantics for this construct is given by:

t[!rec

rec x.ttyc
The important point is that we promote the rec x.t at each substitution. This is

an application of using the exponential as both a control (we need lazy evaluation
here) and resource (we may need to copy this when we substitute) operator.

We have the corresponding typing rule which reflects this operational behaviour:

!r,x :!a \-t : a

!F h rec x.t : a

Note that we promote the type of x to type the term t. In intuitionistic logic
rec x.t provides the least solution to the equation x = t, note that in intuitionistic
linear logic our presentation gives these two values different types. An analogy can
be made here with the way the function space of intuitionistic logic is translated
into linear logic using the translation due to Girard (1987), i.e. (A = > B)° becomes
\A° —o B°.The Axiom: x : A \- x : A, for example, is translated into a Dereliction:
x :\A \- l e t x be x' in x' : A. When we perform our recursive call we have to
Promote the value, which is possible by the typing rule-the term t is in an [-context.

Examples
We give three simple examples of use.
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1. The first example is the most trivial case to show how things work. We will
show the reduction of T / ' which is coded as:
le t rec (let z be !z' in z') be z in z = rec z.let z be !z' in z'
The reduction proceeds as follows:

rec z.let z be !z' in z'

I) l e t (!rec z.let z be !z' in z') be !z' in z'

K rec z.let z be !z' in z'

i.e. an infinite computation.
2. The second example is very similar, but based on streams. The function will

yield an infinite stream of ones (1 :: 1 :: 1 ::•••). The function is coded as:
le t rec (1 :: l e t x be !x' in x') be x in x = rec x.l :: l e t x be !x' in x'
The reduction proceeds as follows:

rec x.l :: l e t x be x' in x'

^ 1 :: l e t (!rec x.l :: l e t x be !x' in x') be !x' in x'

Which terminates by the operational semantics of streams. A forced evaluation
of the tail of the stream will perform the dereliction and so on.

3. Finally, we give a coding of the infamous factorial function within this linear
framework.
Recall that in an Intuitionistic framework we would represent this function as
follows:

fact = rec f.An.ca.se n of 0 => 1 | succ(n) => n * f(n — 1)

In the enriched linear term calculus we get:

fact = rec f.kn. l e t n be ni@n2 in
le t n\ be \n\ in
casenat n\ of 0 => l e t / be . in

le t «2 be _ in 1
succ(m) => l e t / be !/' in

succ(m) • f'(n2)

which will get a type : !(!nat —o nat).

This last example looks a rather complicated way of writing one of the simplest
recursive functions. Fundamentally the problem is the excessive number of resource
management operations which causes the problems. In our language Lilac we will
improve the syntax by allowing nested patterns which will shorten the definition,
but it remains a fact that we have to explicitly Contract, Weaken and Derelict many
values. It is examples like these that are starting to show that the usefulness of such
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a language may be limited-no programmer would like to have to write a function
in such a complicated way. We will come back to this point in the conclusions, but
next we show an alternative way of coding many functions in this calculus in a
much simpler way.

Iterators

The calculus is enriched with iterators for the natural numbers, lists and streams.
Since all these iterators are essentially the same, we just mention the case for natural
numbers. An iterator for the natural numbers gives us the power to repeatedly apply
a function to an argument a specified number of times. We enrich the syntax of the
linear term calculus with the iternat construct:

iternat(n,/, b) = (/ o • • • o / ) b

n

Whereas in general recursion we do not know how many times we need to
recurse, here we have the contrary-the iterator tells us exactly how many copies
of the function / we need to make. It is for this reason we will work without
exponentials: an iterator will take a function without an '!' around it and use it
many times. We are safe to do this since we will ensure that the term has only free
variables of the !-type, to made clear in the typing rule below. It is the iterator that
will effectively do the Contraction, Weakening and Dereliction for us.

We can give this an explicit operational semantics as follows:

njjzero btyc n|[succ(m) iternat(m,/,fr)(|c fctyd

iternat(n, / , b)§c iternat(n, / ,

with the corresponding typing rule:

! r h / : a - o a A V- b : a

n : nat, !F,A h iternat(n,/, b) : a

Note that this is a derived rule; we have used the promotion rule for the function
/ . Note also that this function is the only non-linear part of the iterator-the base
value b and the number of iterations n are used only once.

The expressive power of the iterator should not be underestimated. The exact
class of functions we can represent with this iterator is an open question, but we get
at least all of the primitive recursive functions, even without using the exponential
'!' (Mackie et al., 1993). The following example shows that we can get a cartesian
structure from the tensor product, i.e. we can both project and duplicate natural
numbers:

• fst = Ax.let x be u ® v in iternat(i), Xz.z, u) : nat ® nat —o nat
• snd — /bc.let x be u 0 D in iternat(w, Xz.z, v) : nat <8> nat —o nat
• copy = /foc.iternat(x, ly.let y be a ® b in (a + 1) ® (b + l),0 ® 0) : nat -o

nat ® nat

Note that this works by using the structure of the natural numbers. We can use
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the same technique for other recursive data types such as lists of natural numbers,
lists of lists, etc.

It is evident that there is a relation between nat and !nat. The exact relationship
is beyond the scope of the present paper, but one can find models of linear logic
with natural numbers objects such that !nat ~ nat. This basic result gives us the
power to write programs with natural numbers without the exponential. It would
be interesting to investigate just how useful this !-free language would be.

As a final example we will give an iterative version of factorial:

fact = /ln.snd(iternat(n,Az. l e t z be x ® y in
l e t copy(x) be a ® b in {a + 1) ® (b * y), 1 <g> 1))

where snd and copy are denned above. This version of factorial gets a more linear
type: nat —o nat.

It is an interesting point that functions which are primitive recursive are much
easier to express using the iterator and the denned copying (copy) and projection (fst,
snd) functions than in general recursion; the factorial functions denned exemplify
this. One could hypothesise in saying that a Linear Logic is guiding the programmer
to use the appropriate level of machinery-it is well known that general recursion is
overkill for many algorithms. More solid connections must be left to further work.

4.2 The linear SECD machine

The linear SECD machine is not the most efficient implementation of the linear term
calculus. It is, however, our de facto standard; all other implementations should give
the same results. It is also a nice mathematical account of an implementation.

The machine that we shall present is an extension of the machine presented in
Abramsky (1993). We refer the reader to that paper for the exposition of of the
unextended language.

The machine is based on a list structured memory where functions are implemented
as call-by-need-&n argument will only be evaluated if it is used and, moreover, we
will share this result on successive uses.

Extending the machine

To support the extensions to the calculus, we need to extend the original Linear
SECD machine. Our presentation will be of the entire machine; we will follow Hen-
derson (1980) in our presentation-particularly for the implementation of recursion.

The machine is based on four stacks: Stack, Environment, Control and Dump.
We will use a list notation for each of the stacks; using ':' for a right associative
cons operation and '[ ]' for the empty list.

Definition 4.1 (Linear SECD instruction codes)
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NUM(n)

NOT

PUSH

UNIT

SND

DUP

DUM

LT

ADD

AND

POP

UNUNIT

INL

MAKEFCL(C)

UPD

CONS

SUB

OR

HD

PAIR

INR

MAKECCL(Ci,C2)

BOOL(fr)

C A S E L I S T ( C I . C T )

MUL

PUSHENV

TL

UNPAIR

CASE(Ci,C2)

MAKEOCL(C)

MOD

CASENAT(CI.O)

DIV

RET

AP

FST

READ

NIL

EQ

ITER(

CONSSTREAM CASESTREAM(Ci,C2) CASEBOOL NILSTREAM

RAP

where n is a natural number, b is a Boolean, and c,c\,ci are codes.

The following are the values:

Definition 4.2 (Values)

num(n) bool(b) env(e)

fcl(c,e)

n u l

ccl(ci,C2,e) ocl(c, e)

dummy(ref(i;)) list([i;]) stream([y]) ocv(i;)

where n is a Natural Number; b a Boolean; v,v\,V2 are values; c,c\,ci are codes;
e is an environment. Note that dummy holds a reference to a value. We assume
our machine has reference values (cf. Standard ML (Milner et al. 1990)) which are
required for the efficient coding of recursion and our implementation of call-by-need;
we also assume our machine is equipped with basic operations on base data types,
e.g. +, —, mul, div, mod.

Our stacks have the following types:

• S : list of value
• E : list of value
• C : list of instruction
• D : list of (S,E,C) triples

We now give the transition rules for each of the possible states of the machine.
Each rule corresponds to our atomic computation step.

Figure 3 shows the state transitions for the linear SECD machine, and is taken
from Abramsky (1990), with a couple of alterations. Figure 4 shows the extensions to
the linear SECD machine to handle the enriched linear term calculus. The constants
(Cl) to (CIO) are straightforward. We do not show all of the compilation rules-just a
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s, e, UNIT : c, d

* :s,e,UNUNlT :c,d

s, e, PUSHENV : c, d

env(u : /) : s, e, HD : c, d

env(u : I) : s, e, TL : c, d

v :s,e, PUSH : c, d

s,v : e, POP : c, d

* : s,e,c,d

s, e, c, d

env(e) : s, e, c, d

v : s,e,c,d

env(/) : s, e, c, d

s,v :e,c,d

s, e, c, d

s, e, MAKEFCL(c,) : c, d

fcl(ci,e2) : v : s, e,AP : c,d

v :s,e,RET :c,(si,ei,ci) : d

) : s,e,c,d

[],v :euci,(s,e,c) : d

v : s1,e1,cl,d

v : s,e, INL : c, d

v : s, e, INR : c, d

inl(y) : s,e,CASE(ci,C2) :c,d

inr(y) : s,e,CASE(cljc2) : c,d

inl(y) : s, e, c, d

inr(u) : s,e,c,d

[],« : e, ci,(s,e,c) : d

[],v :e,c2,(s,e,c) : d

v : w : s,e, PAIR : c, d

t u p l e ^ , w) : s, e, UNPAIR : c, d

s,e,MAKECCL(ci,c2) : c,d

ccl(ci,C2,ei) :s,e,FST :c,d

ccl(ci,C2,ei) :s,e,SND :c,d

tuple(i), w) : s, e, c, d

v : w : s,e,c,d

ccl(ci,C2,e) : s,e,c,d

[],euci,(s,e,c) :d

[],ei,c2,(s,e,c) :d

s,e,MAKEOCL(ci) :c,d

I :: ocl(ci,e!) : s,e,READ : c,d

ocv(u) : s, e, READ : c, d

v : s,e, DUP : c, d

v : s,e,UPD : c,/ : (si,ei,Ci) : d

ocl(ci,e) : s,e,c,d

[],<?!,c,,/ : (s,e,c)

u : s,e,c,d

v : v : s,e,c,d

v :suei,ci,d

where / := ocv(y)

Fig. 3. SECD machine transitions for the linear term calculus.
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selection. We assume our machine has built in operations for primitive functions over
the Booleans and natural numbers. The selectors (SI) to (S8) are straightforward
and are derived from the general case construct in the pure calculus.

For the efficient implementation of recursion on an SECD machine we build a
circular environment by placing a hole (ref (nul)) on the environment stack (Rl) in
preparation for the recursive application. A recursive application (R2) ties the knot
by assigning this hole to the function. Rule (R3) is a cleanup rule which extracts the
value from the referencing mechanism.

The implementation of iteration is straightforward. We compute the value of the
number of iterations and apply the function / that many times to the argument,
which is placed at the head of the stack. Rule (II) sets up the stacks so that the base
value is computed, and packages up the function and number of iterations required
in the ITER instruction. Rules (12) and (/3) apply the function to the base value the
appropriate number of times. There is scope for optimisation here since we could
partially evaluate the function before making each copy.

Compiling the extended language

We define the compilation of the enriched linear term calculus in the style of
Henderson (1980) in the following sense: we define a function %>(t,l,c), where t is
the term for compilation, / is a list of variables and c is the code to be executed
after t; a continuation.

Constants

<g(vax(x), I, c) = PUSHENV : (LOOKUP(X, /, HD : c))

# ( l e t t be * in u, I, c) = <g(t, I, UNUNIT : <g(u, I, c))

#(*,/, c) = UNIT:C

<€(CL + b, I, c) = <6(a, I, %{b, I, ADD : c))

#(not(a), /, c) = #(a,/,NOT :c)

<$(Number(n), /, c) = NUM(M) : c

<&(Boolean(b), /, c) = BOOL(fc) : c

^(casebool b of t r u e => 11 f a l s e => f,l,c) =

V(b, I, SEL(«(t, /, [RET]), V(f, I, [RET])) : c)

^"(casenat v of zero => c\ \ succ(n) => C2,1, c) =

*(«,/, CASENATCBXC,/, [RET],<f(c2,n : /, [POP, RET]))) : c)

where LOOKUP(X, y : t, r) = if x = y then r else LOOKUP(X, t, TL : r).

Lists and Streams

,c) = N I L : C
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(Cl) s,e,NUM(n) : c,d

(C2) s,e,BOOh(b) :c,d

(C3) s,e,NiL : c,d

(C4) c : l i s t ( t ) : s,e,C0NS : c,d

(C5) s, e, NILSTREAM : c, rf

(C6) u : ocl(/, ei) : s, e, CONSSTREAM : c, d

(Cl) num(n) : num(m) : s, e, ADD : c, d

(C8) num(n) : num(m) : s, e, LT : c, d

(C9) bool(fe) :s,e, NOT :c,d

(CIO) bool(b!) : bool(b2) : s,e,AND : c,d

num(n) : s, e, c, d

bool(b) : s,e,c,d

:s,e,c,d

(u : () : s,e,c,d

stream({ }) : s,e,c,d

stream(y : ocl(/,ei)) : s,e,c,d

num(m + n) : s, e, c, d

bool(« < m) : s, e, c, d

: s,e,c,d

and 62) : s,e,c,d

(51) bool(true) : 5,e,CASEBOOL(c1,c2) : c,d

(52) bool(false) : s,e,CASEBOOL(ci,C2) :c,d

(53) l i s t ( [ ] ) : s,e,CASELIST(CI,C2) : c,d

(54) l i s t ( ^ : t) : s,e,CASELiST(ci,c2) : c,d

(55) stream({ }) : s,e,CASESTREAM(c1;c2) : c,d

(56) stream(/i : t) : s,e,CASESTREAM(CI,C2) : c,d

(SI) n u m ( z e r o ) : s,e, C A S E N A T ( C I , C 2 ) :c,d

( S 8 ) n u m ( s u c c ( n ) ) : s ,e ,CASENAT(ci ,c2) :c,d

[],e,cu(s,e,c) :d

[],e,c2,(s,e,c) :d

[],e,ci,(s,e,c) : d

[],h : l i s t ( t ) :e,C2,(s,e,c) : d

[],e,cu(s,e,c) : d

[],h : stream(t) : e,Ci,(s,e,c) : d

[],e,ci,(s,e,c) :d

[ ],n : e,C2,(s,e,c) : d

(Rl) 5,e,DUM : c,d

(R2) fcl(ci,ei) : v : s,dummy(t) : e,RAP : c,d

(R3) duminy(ref (v)) : s,e,c,d

s, dummy(ref (nul)) : e,c,d

[],v : : ( t l ei),ci,(s,e,c) : d

where t :— v

v : s,e,c,d

(/I) num(n) : s,e,n(b,f) : c,d

(12) s,e,ITER(SUCC(W),/) : c,d

(13) s,e,iTER(zero,/) : c, d

[ ] , e , b , (s, e , I T E R ( M , f ) : c ) : d

s,e,f : AP : ITER(«,/) : c,d

s, e, c, d

Fig. 4. SECD machine transitions for the extensions.
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<?(h : t , /, c) = <g(t, I, CONS : <6{h, I, c))

, I, c) = MAKEOCL([NILSTREAM,RET]) : c

::t,l,c) = MAKEOCL(^(t,/,<g(h,I, [CONSSTREAM,RET]))) : c

^ ( c a s e l i s t v of [ ] => c\ \ (h : t) => c2, l,c) =

<£{v, 1,C\SELISTC#(CI,1, [RET], ̂ (02, h : t : /, [ P O P , P O P , R E T ] ) ) ) : c)

^(casestream v of { } => a \ (h :: t) => ci,l,c) =

: CASESTREAM(^(Ci,/, [RET],^{c2,h \ t \ I, [POP, POP,RET]))) \ C) .

Note that the only difference between lists and streams is that we place an
of-course closure around streams-we do not need any new machinery.

Recursion and Iterator

< f ( i t e r n a t ( n j , fc),J,c) = «f(n, Z, rr(tf(&,/, [RET]),<^(/, / , [ ] ) ) : c)

^ ( l e t r ec t be x in u,l,c) =

DUM : ^(t,x : /,MAKEFCL(^(M,X : /, [POP,RET])) : RAP : c)

The compilation rules for recursion places a dummy value on the environment
stack, followed by code for the recursive function and the application. It is the
RAP instruction that we use for the recursive application. It is for this reason we
need a l e t r ec construct, we need to differentiate between standard applications and
recursive function applications

The compilation rule for iteration places the code for the number of iterations,
followed by an IT instruction which contains the code for the base value and the
function. The extended SECD machine will unpack these codes to apply the function
the required number of times; as shown above.

The following compilation rules are for the pure linear term calculus and are
taken (modulo notation) from Abramsky (1993).

Functions

<#(Xx.t,l,c) = MAKEFCLC^(J,x : /, [POP,RET])) : c

V(tu,l,c) =

Products and Sums

(t®u,l,c) = #(£,/,#(!<,/, PAIR :c))

t, u >, I, c) = MAKECCL(#(£, /, [RET]),#(U, /, [RET])) : c

t be < x, _ > in u, I, c) = #(t, /, FST : PUSH : #(u, x : /, POP : c))

^ ( l e t t b e < _,y > in u,l,c) = <£(t,l,SND : PUSH : #(u,y :l,POP : c))
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[bex®yin«,(,c) =

^(t, I, UNPAIR : PUSH : PUSH : ̂ (w, X : y : I, POP : POP : c))

^"(case t of inl(x) => w | inr(y) => v, I, c) =

#(f,/, CASE(#(U, x : /, [POP,RET]),#(!>,;> : /, [POP,RET])) : c)

Exponentials

\t, I, C) = MAKEOCL(^(t, /, [UPD])) : C

be !x in «, /, c) = #(t, /, READ : PU S H : ̂ (u, x : /, POP : c))

t be . in u,/,c) = <8(u,l,c)

t be x@y in u, /, c) =

^(t, /, DUP : PUSH : PUSH : #(u, x : y : I, POP : POP : c))

4.5 Implementation overview

The principle behind the implementation is standard: we perform syntactical analyses
on the programs and generate an abstract syntax tree; then translate this into our
canonical functional programming language: the extended linear term calculus. It is
this form that we perform type inference upon. We then translate into Linear SECD
codes and evaluate the results on an implementation of this abstract machine.

Lilac is a very small language without many of the advanced features found in
languages such as Standard ML. Our design philosophy was to keep things simple-a
syntactically sparse language in the same spirit as Miranda^ for example. The key
features provided are:

• Script style: the current program is held in a script-a collection of function
definitions.

• Pattern matching: on both built-in data structures, and the linear patterns.
• Lists: eager lists and lazy lists (streams).
• General Recursion and Iterators (for the natural numbers).
• Currying.

The BNF of the abstract syntax of Lilac is given in Fig. 5. Note that this syntax
is ambiguous; but can be disambiguated using standard precedence rules. Functions
are denned by a series of equations, with multiple left hand sides corresponding
to pattern matching. The only patterns we need to generate selection code for is
matching against numbers, Booleans and lists. We insist that patterns are non-
overlapping and total. Additionally, the 'let' construct of the enriched linear term

% Miranda is a trademark of Research Software Ltd.
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script

definition

Ihs

pattern

exp ::=

expJist

binop

unop

{ definition ; }*

[fun | funrec ] { Ihs exp } *

ID { pattern }*

ID \ NUM | true | false

[ ] (• eager lists *) I { } (* streams *)

pattern + NUM

pattern : pattern (• eager lists *)

pattern :: pattern (• streams *)

! pattern | . | *

( pattern @ pattern )

< pattern , pattern > (* & : Direct Product *)

( pattern , pattern ) (* ® : Tensor Product •)

( pattern )

if exp then exp else exp end

let exp be pattern in exp end

case exp of inl(JD) = > exp inr(/D) = > exp end

casenat exp of 0 ==> exp succ(exp) = > exp end

caselist exp of nil ^=> exp exp : exp = > exp end

casestream exp of nilstream = > exp exp ..exp

fn pattern => exp

iterlist(exp,exp,exp)

prim rec(exp,exp,exp)

(exp , exp) | < exp , exp >

exp binop exp

unop exp

exp exp

[ expJist ] | { expJist }

ID | NUM | true | false | •

( exp )

exp , . . . , exp

+ | - | mul | div | mod | = | < | : | ::

— | !

expend

= inl I inr I — I ! I not
A few notes on the syntax: we write {T}' for zero or more occurrences of T and

alternatives are separated by a '|\ Reserved words are indicated in boldface. NUM
corresponds to the Natural Numbers, and ID the Identifiers.

Fig. 5. Lilac abstract syntax.
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calculus has been included into the language, this allows pattern matching on the
right hand side of an equation. To allow a more concise way of expressing many
linear constraints together, we allow nesting of the patterns. For example we can
write /(!x@.) = x for

/ = Ax.let x be y@z in l e t z be . in l e t y be !z in z

We also give the syntax of the types generated by J£? for Lilac; see Fig. 6. We will
show in our examples below the types generated for the programs, but note that
our language does not allow type declarations.

t : := t®\! basetype : := I

| t -o t1 | nat

| t & t' | bool

| t®f | list(r)

| \t | stream(r)

| basetype

Fig. 6. Syntax of Lilac types generated by <£.

Since Lilac is just a sugared version of the enriched calculus we need not say very
much about the translation between the two formalisms. We just state that standard
techniques have been used for pattern matching etc. (see Field & Harrison, 1988,
for example).

4.4 Pragmatics: Using Lilac

This section gives examples of linear functional programs that can be written using
Lilac. We begin with some very basic functions which are shown together with the
types generated by JS?:

funrec zip (x : xs,y : ys) = let zip be \zp in (x,y) : zp(xs,ys) end
zip ([ ],[]) = let zip be _ in [ ] end ;
zip : ! ( l is t(a) , l is tO?)-olis t(a,£))

funrec length (_:() = let length be lien in 1 + len(t) end
length [ ] = let length be . in 0 end ;
length : !(list(!a) -onat )

funrec sum (h : t) = let sum be !s in h + s(t) end
sum [ ] = let sum be _ in 0 end ;
sum : !(list(nat) —onat)

Note that the types of sum and length are different with respect to resources.
length discards the elements, whereas sum uses each element exactly once.

15 FPR4
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Suppose we wanted to write a function to compute the average of the elements
of a list. A naive algorithm would be average I = sum I div length I which, first uses
two copies of the list, then each copy is used in different ways.

In Lilac if we were to write this naive version then the type of the list that this
function would require would be !(list(!nat)). An example application would be
average ![!1, !2, !3], which is far from a useful notation.

However, no self-respecting functional programmer would write average in this
way-a much more worthy solution would traverse the list only once and accumulate
the sum and length. Indeed this solution follows from the above definitions of sum
and length using the unfold/fold program transformation methodology of Burstall
& Darlington (1977). We can write the following version of average in Lilac:

fun average I = let av be !/ in let / / be (u, v) in u div i; end end
funrec av [ ] = let av be _ in (0,0) end

av {h :t) = let av be !/ in let ft be (u, v) in (h + u, 1 + v) end end

which gives average a more linear type l i s t ( n a t ) - o n a t and can be applied as:
average [1,2,3], which is much more acceptable.

The above is an example of a phenomena that, through practical experience with
an implementation, is indicating that there is an evident connection between just
how linear a function is and how efficient the algorithm is. This really should come
as no surprise-if a function can be written that traverses a data structure only once
then we would expect it to be more efficient.

We feel that there is scope for more work here in using the types generated
from a program to indicate just how efficient the algorithm may be. One could
use the typing algorithm to guide the programmer in using program transformation
techniques to achieve more efficient algorithms, i.e. the typing information may help
to provide heuristics.

An script showing more examples of Lilac functions is given below. The functions
are given with their types as generated by JS?.

Examples

fun square (!x@!y) = x * y ;
square : !nat —o nat

fun S f g (y@z) = fy(gz) ;
S : (!<x—o p —oy) —o (lot —o /})—o!a -oy

fun K x _ = x;
K : a—o!/? —o a

fun/st < x, _ > = x ;
fst : a & /? - o a

fun not true = false
not false = true ;
not : bool —o bool
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funrec ones = 1 :: let ones be \x in x end ;
ones : stream(nat)

fun assoc (x,(y,z)) = ((x,y),z) ;
assoc : a ® (/? ® y) -o (a ® /?) ® >>

fun insr a = (a, *) ;
insr : A-oA®I

fun exch (a,b) = (b,a) ;
exch : A®B-oB®A

It is interesting to note that the last three functions give rise to the basic ingredients
of a Symmetric Monoidal Category. Hence we can use the (I, ®, -o) fragment of
Lilac as an internal language for such categories. This has been studied in depth in
Mackie et al. (1993).

Problems with linear programming

We close this section by mentioning some of the fundamental problems that have
arisen by practical experience of using Lilac. We feel that these comments are valid
for linear functional programming languages in general:

• The most fundamental problem is that of explicitness. Our algorithms become
hidden in a wealth of Contractions, Weakenings and Derelictions. There is
no harm in the programmer being aware of the linearity aspect, but one
would like to think the problem on two levels-the algorithm first, then the
resource constraints. Our present system blends these two distinct issues into
one which gives rise to problems such as debugging-one has to debug not only
the algorithm, but also the resource constraints.

• Composition of programs becomes more subtle. Typing is a theory of plugging
compatibility-v/ithin a linear framework this extends to a resource compatibility.
For two linear functions to compose, they must additionally have the same
resource requirements. To illustrate the point, consider the following example:

square( \x@ \y) = x * y : !nat -o nat

The composition square o square is not valid since the output of the first
square can only be used linearly. We are obliged to use promotion: square o
! square (cf. composition in the co-Kleisli category). This generally does not
cause any problems, but it does show up most acutely in recursion where one
generally has to promote the argument in the recursive call.

5 Extensions and conclusions

Our implementation is really a testbed-to get some experience in programming in
such a formalism. The current implementation has several shortcomings and we
envisage it being extended substantially. Some possible extensions are:

15-2
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• Polymorphism. The omission of a polylet construct, as discussed in Section 3,
is one of the main technical problems that we have failed to provide a suitable
answer. An ad hoc solution has been implemented for Lilac, but a more solid
foundation needs to be formulated.

• User defined data-types. One of our main conclusions with experimenting with
this kind of formalism is that the modality of linear logic can give great power
to the programmer to express control over data-structures. Both eager and
lazy data-structures are available within a unified framework. We are confident
that the extension of Lilac for user defined data-types will make this into a
useful programming paradigm.

• Optimisation. The SECD machine implementation is not so efficient—we used
it just to get a prototype implementation working; it was already defined
for the linear term calculus by Abramsky (1993) and did not need too much
work to extend it to our enriched linear term calculus. For a more practical
implementation we suggest the a graph reduction style (Peyton Jones, 1987)
as a promising alternative, particularly since there are now strong connections
with Linear Logic and optimal reduction strategies (Gonthier et al, 1992).

Practical experience of using an implementation has left us with some strong
conclusions. A programming language where we have explicit annotations of re-
source management is beneficial to the programmer in the sense that it gives a good
indication of what work is required during execution. However we join the views
of Holmstrom (1988) and Wakeling (1990) in that these annotations obstruct the
algorithm-the most important part-which is not a desired property of any program-
ming language. One could then regard Lilac, in some sense, as a failure. However we
feel that this is a step in the direction of finding a programming paradigm where the
programmer does not need to be aware of the linearity constraints, but we can still
reap the benefits of having the linearity information available. To be more precise,
a language based on a logic that sits between Intuitionistic and Linear Logic. One
such candidate is the current work of Wadler (1993).

We suggest some variations on our theme to counter these problems:

• A language that is not so pedantic about resources. We see the principle
advantages of this formalism as providing both eager and lazy data-types
within one framework. A language which provides these facilities without the
overhead of all the explicitness of Contraction, Weakening and Dereliction
would give the gains of our system without the disadvantages. The kind of
language we suggest here is one where we annotate functions and data types
with control and resource information, but in a more user friendly way. To
some extent these languages already exist, for example in the early versions of
Miranda the programmer could annotate the function to indicate the method
of evaluation: eager or lazy. We propose to investigate a similar language, but
with a more solid logical foundation. Recent work reported by Wadler (1993)
and Boudol (1993) seem to offer promising hope.

• A two-level system. One can see a program as a specification of two distinct
entities: the algorithm and the resource management. A framework which
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separates these two independent aspects seems as promising compromise. It
is, however, unclear for the moment how the pragmatics of such a language
would work out; we leave this for further investigation.

• !-free functional programming. When programming with recursive data types
and iterators we can eliminate a lot of the problems with the resource con-
straints since we can copy and project for free; as shown in section 4. This
opens up a very exciting area of modal free linear functional programming. It
would be interesting to see just how far we can get using this formalism, and
classify just how many functions we can define. Again we leave this for further
investigation.

As a final remark we suggest that such a formalism is an ideal intermediate
language rather than a programming language. What now needs to be developed is
a translation from the A-calculus to the linear term calculus which captures as much
linearity as possible. Such a translation would essentially be performing some form
of abstract interpretation. This has been studied by Bierman (1992) and Roversi
(1992).
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